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fects and spatially positive correlation.
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Assessment of ecosystem service supply and demand, as well as the budgets of ecosystem service supply and demand,
is the basis of scientific urban planning. In the 20 years between the proposal and formation of the Guangdong-Hong
Kong-Macao Greater Bay Area (GBA), the natural ecosystem has been degraded and the ecological balance has been
destroyed. In this paper, in order to assess the changes in ecosystem services in the GBA, a deep learning method com-
posed of deep change vector analysis and the ResUnet model is proposed to achieve land use/land cover (LULC) map-
ping for 2000 and 2020. An index-based non-monetary evaluation method is then employed to quantify the value of
the ecosystem services, and the spatial and temporal characteristics of the ecosystem service changes are analyzed. The
results reveal that: (1) the proposed deep learning approach that combines deep change vector analysis (CVA) and
model fine-tuning is able to achieve rapid and efficient LULC mapping in a large-scale area with multi-temporal
image sequences. The overall accuracy of LULCmapping is 86.06% for 2000 and 86.67% for 2020. (2) The impervious
surface area of all the cities in the GBA has increased significantly between 2000 and 2020, with an overall increase of
11.95%. (3) The mismatch between supply and demand for ecosystem services in the GBA has intensified, especially
for provisioning, regulation, and cultural services. (4) The spatial distribution of the ecosystem service budget changes
in the GBA shows aggregation characteristics and spatially positive correlation. These findings will provide important
insights for promoting the coordinated development of the regional ecosystems and social economy in the GBA.
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1. Introduction

Urbanization has become one of the most significant changes in the de-
velopment of human society (Li et al., 2012). During the process of
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urbanization, natural ecosystems have been transformed into semi-natural,
semi-artificial, and artificial ecosystems (Song and Deng, 2017), causing
massive shrinkage of ecological land and severe environmental pollution.
In this context, the structural and functional composition of ecosystems
has been under great threat (Aguilera et al., 2020), leading to the loss of
ecosystem service values (Fu et al., 2016). Therefore, how to coordinate
the process of urbanization and ecosystem services is of great significance.

Ecosystem services reflect the knowledge and perspectives on thefinite-
ness of natural resources and the availability of ecosystems (Feng et al.,
2010). Costanza et al. (1997) considered ecosystem services as being the
benefits that humans derive, either directly or indirectly, from ecosystem
functions, and they estimated the economic values of 17 categories of ser-
vices, including gas regulation, climate regulation, and food production.
Daily (1997) defined ecosystem services as “the conditions and processes
through which natural ecosystems, and the species that make them up, sus-
tain and fulfil human life”. In 2005, in order to comprehensively and syste-
matically assess global ecosystem services frommultiple scales and explore
their complex impacts on human society, the United Nations launched the
Millennium Ecosystem Assessment, which comprehensively discusses the
concept, classification systems, impact mechanisms, evaluation techniques,
and methods of ecosystem services (Chopra and Group M., 2005). In 2007,
Germany and the European Commission took the lead and launched The
Economics of Ecosystems and Biodiversity (TEEB) study (Bösch et al.,
2018). In 2012, the UnitedNations approved the establishment of the Inter-
governmental Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES), which reflects the renewed attention to ecosystem ser-
vices in the world (Borie et al., 2020). In 2014, China formally launched
an assessment of the TEEB project. In 2019, the seventh session of the
IPBES Plenary considered and adopted the Global Assessment Report on
Biodiversity and Ecosystem Services, which is the first report to assess
global biodiversity and ecosystem services (Brondízio et al., 2021). The as-
sessment of ecosystem services can not only be used to evaluate their com-
modity value and promote the consideration of the ecological environment
in national economic accounting systems, but it also lays the foundation for
the planning of ecological environment construction and the scientific eval-
uation of environmental protection measures.

Scientific assessment methods are essential for evaluating ecosystem
service values. At present, the commonly used methods include dynamic
model assessment, physical assessment, value assessment, and index-
based non-monetary evaluation. One of the most important methods of dy-
namic model assessment method is the Integrated Valuation of Ecosystem
Services and Tradeoffs (InVEST) model. InVEST is a suite of spatially ex-
plicit ecosystem service models covering terrestrial, freshwater, marine,
and coastal ecosystems, which can be used to explore the relationship, as
well as the dynamics, between ecosystems and people's benefits (Tallis
et al., 2015; Yang et al., 2019; Zawadzka et al., 2021). However, in this
model, a number of the ecosystem service categories, such as gas regulation
and climate regulation, are difficult to measure. Physical assessment is a
comprehensive way of assessing the materials provided by ecosystem ser-
vice functions (Feng et al., 2010; Peng et al., 2017). Nevertheless, someme-
teorological or ecological data are often not easy to obtain. Therefore, it is
difficult to adopt physical assessment to assess the value of ecosystem ser-
vices at a large scale or through multiple time series. The value assessment
method translates the services provided by ecosystems into monetary
values. These values reflect the overall scarcity of the service, and enable
comparisons between different ecosystem services (Xie et al., 2017; Fu
et al., 2016). A commonly used method of value assessment is to construct
value equivalents of the various service functions in the different types of
ecosystems based on land use/land cover (LULC) data, and to then evaluate
the ecosystem service values based on the distribution area of the ecosys-
tems.However, it should be emphasized that, because the natural economic
values of food in the current year need to be considered, the ecosystem ser-
vice values can be influenced by economic market prices. Furthermore, the
value assessment method does not take into account the requirements of
supply and demand. The non-monetary evaluation method represents a
clear and easy-to-apply way to evaluate the budgets of ecosystem services
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supply and demand, which is applicable in different research areas at mul-
tiple scales. Therefore, the non-monetary evaluation method is widely used
in large-scale and multi-temporal research into ecosystem services
(Burkhard et al., 2012; Goldenberg et al., 2017; Tao et al., 2018).

Accurate LULC data are the basis for non-monetary evaluation, and are
usually obtained by the use of a machine learning algorithm with remote
sensing images (Huang et al., 2020; Yang and Huang, 2021; Yang et al.,
2020a; Singh et al., 2017; Fu and Weng, 2016). Machine learning can be
roughly divided into shallow learning and deep learning. Support vector
machine andmultilayer perceptrons are representative methods in shallow
learning. In shallow learning for LULC mapping, the features need to be
manually designed in advance, according to prior knowledge and experi-
ence. However, these features always suffer from poor performance and
limited generalization ability. Compared to shallow learning methods, bet-
ter mapping results can be obtained by applying deep learning models (Ma
et al., 2019). Deep learning models can adaptively extract meaningful fea-
tures in a data-drivenmanner (Fan et al., 2021), and can achieve an optimal
model parameter configuration during the training process by simulta-
neously training related classifiers (Ienco et al., 2019), which greatly en-
hances the ability to fit complex models and avoids uncertainty. In recent
years, deep learning models have been increasingly used in LULC mapping
(Zhang et al., 2019; Adrian et al., 2021; Mboga et al., 2020). However,
owing to the huge parameters in a deep network, a large number of samples
are required (Fang et al., 2020). For multi-temporal LULC mapping over a
large area, in particular, collecting sufficient training samples is time-
consuming and laborious. Therefore, in this paper, we propose an approach
based on information transfer from the existing thematic maps for land-
cover mapping of the target year. In contrast, most studies of the dynamic
monitoring of ecosystem services have used the existing land-cover datasets
(e.g., the China Land Use/Cover Dataset (Song and Deng, 2017)). Land-
use/land-cover data can also be generated by visual interpretation of re-
mote sensing images (Hu et al., 2019; Jiang et al., 2019), or obtained
from time-series land-use planning data (Rao et al., 2018). Deep learning,
as a new mapping method, has the potential to be used for obtaining accu-
rate time-series LULC maps, but has rarely been used to monitor ecosystem
service changes. Therefore, one of the motivations of this study is to inves-
tigate the effectiveness of deep learning for ecosystem service evaluation.

The Guangdong-Hong Kong-Macao Greater Bay Area (GBA), as one of
the fastest-growing regions in China, has been formed mainly over the
last 20 years. The building of the Shenzhen-Hong Kong Bay Area was first
proposed around the year 2000. In 2009, the planning framework for the
Reform and Development of the Pearl River Delta was officially released,
involving Guangzhou, Shenzhen, Zhuhai, Foshan, Jiangmen, Dongguan,
Zhongshan, Huizhou and Zhaoqing, and also including Hong Kong and
Macao. In the same year, a framework promoting closer cooperation be-
tween Hong Kong and Macao and a coordinated development plan for the
Greater Pearl River Delta were released, with the aim being to build a
world-class urban agglomeration made up of Guangdong, Hong Kong and
Macao. In 2016, the 13th Five-Year Plan for Economic and Social
Development of the People's Republic of China clearly stated that
China would help Hong Kong and Macao to play an important role
in Pan-Pearl River Delta regional cooperation, and would promote
the construction of “major cooperation platforms” in the GBA (Peng,
2020). During the 20 years of the formation and development of the
GBA, this region has experienced rapid social, economic, and political de-
velopment, but at the same time, a series of ecological and environmental
problems have emerged (Fang et al., 2019; Yang et al., 2020b; Wu et al.,
2021a). In this regard, it is essential tomonitor the dynamic changes of eco-
system services and promote sustainable development in the GBA.

A number of studies have been conducted with regard to the impact of
urbanization on ecological and environmental quality in the GBA (Yang
et al., 2020c; Zhou et al., 2018). Dynamic model assessment, physical as-
sessment, and value assessment have all been adopted for multi-temporal
dynamic monitoring of ecosystem services in the GBA (Liu et al., 2021;
Wu et al., 2021b; Li andWang, 2019). However, these methods have failed
to demonstrate the supply and demand requirements of ecosystem services.
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The index-based non-monetary evaluation method can directly reflect the
supply and demand for different ecosystem services in different LULC catego-
ries, while providing targeted suggestions for coordinating the relationship
between people's needs, economic development, and ecological environment
supply. As such, the index-based non-monetary evaluation method could be
used to formulate a more scientific urban planning scheme for the GBA.

In summary, the objectives of this study are: (1) to propose a deep learn-
ing method that combines deep CVA and model fine-tuning for sample
transformation and LULC mapping in the GBA for the years of 2000 and
2020; (2) to quantify ecosystem service values in the GBA by linking
LULC types to supply and demand matrices; and (3) to analyze the spatial
and temporal characteristics of ecosystem service changes in the GBA.

2. Study area and methodology

2.1. Study area

The GBA (221°32′–24°26′N, 111°20′–115°24′E) is located in southern
China, and includes nine cities (Guangzhou, Shenzhen, Foshan, Dongguan,
Zhongshan, Zhuhai, Huizhou, Jiangmen and Zhaoqing) in the Pearl River
Delta, as well as the Hong Kong andMacao Special Administrative Regions.
According to theOutline Development Plan for the Guangdong-Hong Kong-
Macao Greater Bay Area, the GBA should not only be a vibrant world-class
city cluster and an important support for the construction of “the Belt and
Road Initiative”, but also a quality living area in which it is pleasant to
live, work, and travel. However, during the development of the GBA, a
large amount of natural land has been converted into construction land,
and the natural ecosystem has suffered different degrees of degradation,
leading to the destruction of the regional ecological balance and threats
to the regional ecological security and socio-economic development. There-
fore, how to ensure the sustainable provision of ecosystem services is an ur-
gent issue for this region.

2.2. Multi-temporal LULC mapping based on deep learning

In this study, LULC maps of the GBA for 2000 and 2020 were obtained
based on the FROM-GLC10 LULC product and Landsat remote sensing
datasets. FROM-GLC10,which has been reported to have an overall accuracy
of 72.76%, is the first global land-cover product with a 10-m resolution. The
FROM-GLC10 product was produced using Sentinel-2 remote sensing
datasets from2017 (Gong et al., 2019). Comparedwith other LULC products,
such as FROM-GLC30 (Gong et al., 2019) and the China Land Use/Cover
Dataset (CLUD) (Kuang et al., 2019), FROM-GLC10 has a higher spatial res-
olution and providesmore spatial detail information. FROM-GLC10has been
used to achieve satisfactory results in distinguishing forest from shrub and
grassland classes, and it is also able to reduce the misclassification between
water and shaded areas (Gong et al., 2019). In particular, FROM-GLC10 per-
forms well in coastal areas, and is good at highlighting aquaculture activities
(Gong et al., 2019). Considering these factors, FROM-GLC10was used to col-
lect the candidate training samples for deep learning and LULC mapping in
this study. Considering the land-cover characteristics in the GBA, seven
LULC types were adopted: cropland, forest, grassland, shrubland, water, im-
pervious surface, and bareland. The Landsat remote sensing datasets were
the atmospherically corrected (and almost cloud-free) Landsat 5 and Landsat
8 surface reflectance products for the GBA from the years of 2000, 2017, and
2020, which were obtained from the United States Geological Survey.

In this study, a deep learning method combining deep CVA and a fine-
tuned ResUnet model was developed to achieve multi-temporal LULCmap-
ping in the GBA. Specifically, deep CVA was used for automated sample
production, and the fine-tuned ResUnet model was then employed for
multi-temporal land-cover mapping.

The 2020 LULCmapping is taken as an example to illustrate the process
of LULC classification in detail (Fig. 1a). The processing steps are as follows:

(1) Multi-temporal deep feature generation: The ResUnet model was
trained with the 2017 Landsat images as the input features and the
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downsampled FROM-GLC10 maps as the training labels. The multi-
temporal deep features were obtained by feeding the Landsat 8_SR
image bands of 2017 and 2020 into the pre-trained ResUnet and fine-
tuned ResUnet models, respectively.

The ResUnet model was chosen for the feature extraction and subse-
quent mapping, for the following reasons: (1) the ResUnet model is effec-
tive at representing detailed and semantic information; (2) the ResUnet
model can be used to achieve pixel-wise classification; and (3) the ResUnet
model contains skip connections for preserving the details of the features,
while simplifying the training of the deep network and reducing the param-
eters (He et al., 2016; Zhang et al., 2018; Waldner and Diakogiannis, 2020;
Wen et al., 2021). The ResUnet model synthesizes the advantages of U-Net
and deep residual networks. It not only combines low-level detail informa-
tion and high-level semantic information, but also ensures a better perfor-
mance in semantic segmentation (Qi et al., 2020). Therefore, ResUnet
was used as the basic network structure.

U-Net is a classical network for image semantic segmentation based on a
fully convolutional neural network, which consists of a contracting path
and an expansive path (Ronneberger et al., 2015). Compared with the tra-
ditional fully convolutional neural networks, U-Net combines low-level
contextual information and high-level semantics to achieve full feature ex-
traction by using the low-level detail information while retaining the high-
level semantic information through stronger linkages between layers (Xu
et al., 2021; Flood et al., 2019).

Increasing the depth (i.e., number of layers) of a neural network can im-
prove the performance. Nevertheless, the deeper the network is, the more
obvious the gradient disappearance can be. This phenomenon can hinder
the training and lead to poor training and degradation of the network. To
deal with this issue, the residual neural network architecture was proposed
by He et al. (2016).

ResUnet is an architecture that combines the respective advantages of
U-Net and deep residual networks. The ResUnet architecture is made up
of three parts: encoder, decoder, and bridge (Fig. 1b). The first part encodes
the input images into compact representations; the second part recovers the
representations to pixel-wise features; and the third part acts as a bridge to
connect the encoding and decoding paths.

(2) Automated production of samples: The multi-temporal deep features
for 2017 and 2020 were subtracted to generate deep change vectors.
The locations with a change vector magnitude less than a threshold
were identified as “no-change”. The labels for these no-change pixels
can be conveniently obtained from FROM-GLC10. These pixels were
then considered as candidate training samples for the year of 2020,
since their land-cover labels were invariant between 2017 and 2020.
In this way, a large number of samples were generated automatically
for the 2020 LULC mapping.

(3) Generation of the LULCmap for 2020: After obtaining the training sam-
ples for 2020, the fine-tuned ResUnet model was used for the 2020
LULC classification. In detail, the ResUnet model that was originally
trained with the samples from 2017 was further fine-tuned to make it
more suitable for LULC mapping in 2020 with the samples from 2020.

(4) Generation of the LULCmap for 2000: the same procedure as described
abovewas used for automatically generating the LULC classification re-
sult for 2000, through the deep CVA and the deep learning model fine-
tuned with the samples from 2000.

Thus, a deep learningmethod that combines deep CVA and a fine-tuned
ResUnet model was used to obtain LULC maps for 2000 and 2020 in the
GBA. The proposed method can not only solve the problem of acquiring a
large number of training samples in deep learning, but it can also boost
the mapping accuracy by adopting an effective deep neural network.

2.3. Assessment of the capacity of the ecosystem services

Different LULC types have different ecosystem functions, depending on
their structure and formation processes. The changes of land use and land



Fig. 1. (a) The proposed framework for deep learning based LULC mapping. (b) The architecture of ResUnet.
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cover have a strong influence on ecosystem integrity, leading to an increase
or decrease in the supply of certain ecosystem services on which human so-
ciety depends. Based on the existing studies (Burkhard et al., 2012;
Goldenberg et al., 2017; Tao et al., 2018; Huang et al., 2019a), seven
LULC classes with three ecosystem service categories and 22 ecosystem ser-
vice subcategories were used to create a supply and demandmatrix for eco-
system services in the GBA.

An assessment matrix illustrating the capacity of the different LULC clas-
ses to support and supply ecosystem services is provided in Table S1. An as-
sessment matrix illustrating the demands for ecosystem services within the
different LULC categories is presented in Table S2. By subtracting the values
of demand from the values of supply for each LULC category, an assessment
matrix of supply and demand budgets for the ecosystem services for the dif-
ferent LULC categories can be obtained, as shown in Table S3. The budget
values reflect the supply and demand dynamics for the ecosystem services.

It can be seen that natural LULC categories (such as forest, grassland,
and cropland) have higher ecosystem service supply values, especially for-
est and grassland (Table S1), indicating that LULC categories with less an-
thropogenic disturbance have higher ecosystem service supply capacities.
In contrast, in human-dominated LULC categories, such as impervious sur-
face, there is a higher value of demand (Table S2).

3. Results and discussion

3.1. Accuracy assessment of the LULC mapping

Before accuracy assessment of themapping results, we first evaluate the
quality of the training samples that were automatically obtained based on
the deep change detection method. It can be seen from Table S4 that the
correctness of the training samples is 91.24% and 92.01%, respectively,
for the years of 2000 and 2020, which is satisfactory, in general. Most of
the automatically generated samples have a correctness of over 90%, al-
though the quality of the shrubland and bareland classes, with a correctness
of 72–78%, is not as good. Considering that the training sample collection is
fully automatic, and the overall accuracy is high, it can be considered that
the automatic sampling strategy is feasible for mapping the LULC andmon-
itoring the ecosystem services.
4

The results of the LULC classification in the GBA for 2000 and 2020
are presented in Fig. 2b. A total of 911 and 908 test samples in the LULC
maps for 2000 and 2020 were randomly selected, respectively. The
overall accuracy is 86.06% for 2000 and 86.67% for 2020, indicating
a satisfactory classification result (Tables S5 and S6). There are seven
LULC categories in the classification maps, which, therefore, theoreti-
cally, leads to 42 (7 × 6) change types. However, in fact, only five
types of changes take place. Other categories rarely occur, such as
shrubland to cropland, impervious surface to forest, and water to forest.
Therefore, there are a total of six types of change transitions considered
in this study area (including the “no-change” category). To assess the ac-
curacy of the change detection, 90 test samples were randomly selected
for each category (540 samples in total). The overall accuracy of the
change detection is 83.33%, with a kappa coefficient value of 0.80
(Table S7).

To evaluate the performance of the proposed deep learningmethod that
combines deep CVA and a fine-tuned ResUnet model, we compared it with
the ResUnet model without sample transfer. Specifically, the FROM-GLC10
data were used as training labels, and the ResUnet model was directly
trained to obtain the 2000 and 2020 LULC results with the same samples
from FROM-GLC10. In this situation, the deep CVA method was not used
for transferring the samples of 2017 to the target years (i.e., 2000 and
2020). This experiment was designed to test the efficacy of the proposed
sample transfer method and multi-temporal mapping strategy. In addition,
the random forest classifier was chosen as a representative classifier for the
comparison with the proposed deep learning method, due to its robustness,
high efficiency, and high accuracy in processing high-dimensional data
(Bauer and Kohavi, 1999; Banfield et al., 2006). The effects of the random
forest classifier have been extensively tested in a large number of large-
scale land-cover mapping studies (Gong et al., 2019; Yang and Huang,
2021; Wang et al., 2015).

By comparing the classification results of the proposed method,
ResUnet without the sample transfer and the random forest classifier
(Tables S8 and S9), it can be seen that both the classification and change de-
tection accuracy obtained by the proposed deep learning method are better
than other ones. This comparison confirms the superiority of the proposed
deep learning method for accurate multi-temporal LULC mapping.



Fig. 2. (a) Overview of the study area. (b) LULC maps in the GBA for 2000 and 2020. (c) Samples of the LULC changes.
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3.2. Analysis of the LULC changes

Fig. 3 shows the composition of the LULC types in 2000 and 2020 for each
city in the GBA. The impervious surface areas of all the cities in the GBA
increased significantly over this timeframe, with an overall increase of
11.95%. In addition, most of the newly constructed impervious surface area
was transformed from cropland, forest, and water (Fig. 2b). On the one
hand, it could be stated that the rapid economic development has been the
main driver for the growth of the impervious surface area (Deng et al.,
Fig. 3. Composition of the LULC types by cit
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2018; Guo et al., 2019). According to the statistical yearbooks, from 2000 to
2020, the gross regional product (GDP) of all nine inland cities in the GBA in-
creased bymore than five times, and Hong Kong andMacao also experienced
significant growth. On the other hand, in order to accommodate the urban ex-
pansion and industrial layout, the land-use planning department of each city
has issued corresponding General Land Use Planning (2006–2020) docu-
ments, which put forward suggestions on land-use patterns. An orderly in-
crease in construction land in industrial, residential, commercial, and other
functional areas has resulted in the expansion of the impervious surface area.
y in the GBA for (a) 2000 and (b) 2020.
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It is worth noting that the last 20 years have been a critical period
for the change from the Pearl River Delta to the GBA. Relying on the
geographical advantages of being adjacent to Hong Kong and Macau,
as well as the corresponding supporting policies, the primary indus-
tries (i.e., agriculture and fisheries) of the inland cities have gradually
transformed into secondary industries (i.e., heavy industries and
manufacturing) and tertiary industries (i.e., service industries and
high-tech industries), which has led to the rapid economic develop-
ment. Meanwhile, according to the urban planning schemes for each
city, such as the Overall Urban Planning of Shenzhen (2010−2020)
and the Overall Urban Planning of Guangzhou (2011−2020), the
GBA cities are taking active measures to improve the urban infrastruc-
ture by constructing public transportation facilities, airports, parking
lots, and other facilities, such as the Dachan Bay Terminals facility of
Shenzhen (Fig. 2c). In addition, during the process of industrial
restructuring and infrastructure improvement, a large number of em-
ployment opportunities have been created by the rapid increase of
the urban population and residential land, which has also led to a dra-
matic increase of the impervious surface areas in these inland cities,
such as the new residential area in the town of Mayong in the city of
Dongguan (Fig. 2c). However, due to the different levels of economic
development and the different urban strategic plans, the impervious
surface areas have increased to different degrees in the GBA cities.
Specifically, with the smallest increment of impervious surface areas,
Jiangmen, Huizhou, and Zhaoqing have increased by 8.02%, 7.21%
and 2.68% respectively, while the other inland cities have all in-
creased by more than 18%. Jiangmen and Zhaoqing are third-tier cit-
ies, and the relatively long distance from Guangzhou and Shenzhen
has led to a weak radiation driving effect from the big cities. In addi-
tion, although Huizhou is a second-tier city and adjacent to Guang-
zhou and Shenzhen, the distance between the forest areas, such as
Shimen, Nankunshan, and Jianfengshan, to a certain extent, has hin-
dered the economic radiation effect from the first-tier cities. Therefore,
the economic development of Huizhou is not as good as that of Foshan
and Dongguan. Hong Kong, as a Special Administrative Region of
China, has a high level of economic development and a scarcity of avail-
able land, due to the high population density, resulting in only a small
change in impervious surface area (6.14%). Macau, which is also a Spe-
cial Administrative Region of China, has seen a significant increase in
impervious surface area (39.42%), which can mainly be attributed to
the construction and reclamation of the Hong Kong-Zhuhai-Macao
Bridge Artificial Island Port Project (Fig. 2c).

The cropland area in the GBA has decreased by 9.51%. Notably, the
cropland areas of Guangzhou, Shenzhen, Dongguan, and Zhongshan
have all reduced by more than 20%. The gradual reduction of cropland
area reflects the transformation of suburban and rural areas to metro-
politan areas (Huang et al., 2019a). Similarly, the degree of cropland
area reduction is also related to urban development. Guangzhou,
Shenzhen, and Dongguan are inland first-tier and new first-tier cities,
and have the strongest economic activity. Although Zhongshan is a
second-tier city, according to the Overall Urban Planning of Zhongshan
City (2004–2020), it has been committed to developing high-tech indus-
tries and modern manufacturing industries, and hence it requires the
construction of new impervious surfaces for the economic and industrial
development. Consequently, these four cities have seen the largest re-
duction in cropland area.

Interestingly, forest in the GBA has decreased by only 3.17%,
and nearly all the cities (except for Zhongshan) have experienced
a decrease of forest of less than 10%. In the last 20 years, the
GBA cities have adopted a series of policies and regulations related
to forest protection, and there has been an explicit proposal to
build a national forest city cluster, while the nine inland cities
have been recognized as National Forest Cities and National Garden
Cities. This indicates that, in the process of urban development, the
conservation of forest has been strongly emphasized in the GBA
cities.
6

3.3. Analysis of the ecosystem service changes

3.3.1. Overall change of the ecosystem services in the GBA
Table 1 lists the changes of the ecosystem services in the GBA cities from

2000 to 2020. As can be seen from the table, the ecosystem services of the
GBA have undergone significant changes from 2000 to 2020. The total de-
mand has increased by 67.17%, while the total supply and budgets have
fallen by 8.22% and 30.57%, respectively. This phenomenon reveals that,
during the formation and development of the GBA, the ecosystem has
been severely affected, and the imbalance between supply and demand
has been exacerbated.

Jiangmen, Zhaoqing, and Huizhou, as densely forested cities, account
for more than 75% of the total forest area in the GBA. In addition, the eco-
system service supply value of forest reaches 71, in terms of Table S1, which
is much higher than that of the other LULC types, so that the ecosystem ser-
vice supply values for Jiangmen, Zhaoqing, and Huizhou account for over
15% of the GBA, and their total contribution is greater than 70%. However,
the economic development of these three cities is relatively slow, and less
forest has been converted to other LULC types, according to the laws and
regulations for forest protection. Therefore, in these regions, the changes
of ecosystem service supply, demand, and budget are the least, and the eco-
system is the most stable.

In contrast, due to the reduction of cropland, forest, and water caused
by urban expansion and infrastructure construction, Shenzhen, Foshan,
Dongguan, Zhongshan, and Macau have seen a significant decrease in the
supply of ecosystem services and a significant increase of demand. In partic-
ular, the demand for Zhuhai, Zhongshan, andMacao has increased bymore
than 100%. Consequently, in 2020, the ecological supply for these five cit-
ies failed to meet their demand, and hence their ecosystem service budgets
became negative.

Budgets reflect the supply and demand balance of ecosystem service
values. A change in budget of less than 0 indicates that the ecosystem ser-
vice is changing to a stage where demand is greater than supply. The dy-
namic change of the budget of each ecosystem service in the GBA from
2000 to 2020 is described in Fig. 4, including three ecosystem service cate-
gories and 22 subcategories. The three ecosystem service categories
(i.e., regulating, provisioning, and cultural services) are highlighted in or-
ange in the figure. It can be seen from Fig. 4 that all the cities show a con-
sistent trend of change, i.e., the change values of all the service types are
less than 0. Among the different types, the provisioning services show the
largest degradation.

3.3.2. Change analysis of the provisioning services
Provisioning services mainly refer to services that provide food, live-

stock, aquatic products, and other materials, to meet the basic living re-
quirements of residents. However, in the process of urban expansion,
most of the impervious surface area has been converted from cropland,
grassland, water, and other LULC types, resulting in a loss of the corre-
sponding carriers for provisioning services. Consequently, urbanization
has the most direct and significant impact on provisioning services. The re-
duction in the supply of provisioning services reflects the transformation of
a city's industrial structure from primary to secondary and tertiary indus-
tries. The primary target of the GBA is to build a world-class city cluster,
and economic development is the main goal, so the reduction of local pro-
visioning services due to industrial restructuring seems inevitable.

Furthermore, the crops, livestock, and aquaculture services in the provi-
sioning services category were also analyzed to reflect the agricultural situ-
ation of the GBA. Specifically, the data for the permanent population, crop
production, number of slaughtered fattened hogs, and aquatic products
from 2000 to 2019 in the nine inland GBA cities were obtained from the
Guangdong Statistical Yearbook (http://stats.gd.gov.cn/gdtjnj/).

The population of the nine GBA inland cities has grown substantially in
the last 20 years, with Shenzhen and Guangzhou as first-tier cities having
the largest population growth, at over 5 million each (Fig. S1a). The de-
crease of cropland and the increase of impervious surface area has led to
the change of food service budget being less than 0 in all nine cities,

http://stats.gd.gov.cn/gdtjnj/


Table 1
Ecosystem service supply, demand, and budget dynamics in the GBA as a whole and in each city.

City Supply (%) Demand (%) Budget (supply−demand)

2020 2000 Rate 2020 2000 Rate 2020 (value) 2000 (value) Rate (%)

Guangzhou 11.42 11.71 −10.56 17.65 16.97 73.92 117,889,078 247,662,764 −52.40
Shenzhen 2.44 2.67 −15.93 7.09 6.88 72.29 −14,803,016 34,566,505 −142.82
Zhuhai 2.03 2.32 −19.57 3.85 2.79 130.98 12,513,500 53,248,436 −76.50
Foshan 3.65 4.67 −28.38 13.52 11.74 92.45 −57,578,618 62,801,928 −191.68
Jiangmen 16.33 16.48 −9.09 14.06 15.46 52.02 303,834,167 409,309,161 −25.77
Zhaoqing 34.80 32.67 −2.24 10.91 14.16 28.79 877,803,450 930,402,373 −5.65
Huizhou 23.30 22.21 −3.70 13.98 15.52 50.63 507,103,037 589,847,670 −14.03
Dongguan 2.12 2.81 −30.68 10.71 9.68 85.02 −67,836,945 18,898,534 −458.95
Zhongshan 1.64 2.34 −35.80 6.44 4.60 134.14 −30,298,495 40,785,567 −174.29
Hong Kong 2.25 2.08 −0.38 1.64 2.11 29.83 45,570,618 50,365,596 −9.52
Macao 0.02 0.04 −40.46 0.15 0.10 154.86 −1,067,220 505,674 −311.05
GBA 100.00 100.00 −8.22 100.00 100.00 67.17 1,693,129,556 2,438,394,208 −30.57

Rate ¼ Value 2020ð Þ−Value 2000ð Þ
Value 2000ð Þ � 100%
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indicating that crop services are all shifting to the stage of greater demand,
which coincideswith the decrease of per capita crop production inmost cit-
ies. As can be seen in Fig. S1b, Shenzhen is the only city with higher per
capita crop production in 2019 than in 2000, which is mainly related to
the change in the crop-sown area. From 2000 to 2016, the overall trend
of the crop-sown area in Shenzhen decreased, but the sown area in 2017
was significantly higher. Even though the sown area decreased in 2018
and 2019, the area in 2019 was still larger than that in 2000 (Fig. S2)
(http://stats.gd.gov.cn/gdtjnj/). This can be attributed to the implementa-
tion of the Structural Reform of Agriculture and Accelerating the Cultiva-
tion of New Driving Forces for Agricultural and Rural Development plan,
which was issued in 2017 by the government. In general, from 2000 to
2019, the yield per mu (a mu = 0.0667 ha) in the inland GBA cities was
consistently around 300 kg (http://stats.gd.gov.cn/gdtjnj/), but the signif-
icant decrease in the sown area of crops and the increase of population has
led to an overall decrease in crop yield and per capita crop output.

With regard to livestock (Fig. S1c) and aquaculture (Fig. S1d) services,
their budget change values are less than 0, since the land categories with
higher supply capacities have been changed to those with higher demand,
such as water to impervious surface. Due to the industrial transformation,
the livestock production in the inland cities has declined, resulting in a
decrease in the per capita number of slaughtered fattened hogs in all cities.
However, some cities (i.e., Zhuhai, Zhaoqing, Zhongshan, Foshan, and
Jiangmen) experienced an increase in per capita aquatic production.
According to the Thirteenth Five-Year Plan for the Development of
Modern Fishery in Guangdong Province, the traditional fishpond aqua-
culture has been gradually transformed into standardized, mechanized,
and information-based aquaculture, which has improved the technical
level of aquaculture production and led to a significant increase in the
yield and quality of aquatic products per unit area. This phenomenon
shows that the total and per capita production can be increased by improv-
ing production techniques and increasing the production per unit area.

Hong Kong and Macau put priority on the development of tertiary in-
dustries rather than primary industries, and their data for crops, livestock,
and aquatic production are not available in the statistical yearbooks. There-
fore, we approximated the changes in the service budgets for crops, live-
stock, and aquaculture by the use of their trade volumes of food imports
and exports (Fig. S1e). From 2000 to 2019, the population of Hong Kong
and Macau increased by 842,400 and 241,697, respectively, and the im-
port/export food deficit of the cities increased by 75,041 million HKD
and 12,597millionMOP, respectively. This indicates that,with the increase
of population, Hong Kong and Macau cannot satisfy their own needs with
locally produced food, and more imported food is needed, which is consis-
tent with the changes of the service budgets for crops, livestock, and aqua-
culture.

In summary, with the continued socio-economic development in the
GBA, the natural surfaces have been converted into impervious surfaces,
and the industrial structure of the cities has been changed from primary
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to secondary and tertiary industries, leading to greater demand for provi-
sioning services. In the context of the increasing population, it will be nec-
essary to improve production technology and efficiency, and also to
increase imports, in order to meet the demand.

3.3.3. Change analysis of the regulating services
From Fig. 4, it can be found that, among the regulation services, the

most unbalanced supply and demand in all the GBA cities is with regard
to local climate regulation and air quality regulation.

Impervious surfaces typically have a low specific heat capacity and high
thermal conductivity, and can therefore absorb a large amount of thermal
radiation and contribute to rapid ground warming (Lan and Zhan, 2017;
Yue et al., 2019). At the same time, the vegetated areaswith shade and tran-
spiration effects often decrease over time. Moreover, industrial production
and transportation often generate a large amount of anthropogenic heat,
leading to significant weakening of the local climate regulation effect,
which in turn further increases urban temperature. It is well known that
the urban heat island effect has become one of the most prominent features
of the urban climate, and can cause environmental pollution (Kleerekoper
et al., 2012; Grimmond et al., 2010) and increased energy consumption
(Cui et al., 2017), while posing a threat to the health of urban residents
and hindering urban sustainable development. In the last 20 years, the
urban heat island area in the GBA has kept increasing, and has formed an
inverted “U” shaped urban heat island strip on both sides of the Pearl
River Estuary (Yang et al., 2018). In addition, the natural land-cover
types with cooling effects have been changed to build types with warming
effects (Wang et al., 2019; Lu et al., 2021), which is consistent with the ob-
servation that all the GBA cities have more demand for local climate regu-
lation services. In a recent study, it was shown that vegetation and water
had the most dominant role in mitigating the heat island effect for the
GBA cities (Lu et al., 2021). Therefore, it seems reasonable that the im-
provement of the local climate regulation services in the GBA cities lies in
the coordinated development between natural (e.g., vegetation, water
areas) and built-up land-cover categories.

The supply and demand for air quality regulation is also unbalanced.
Firstly, some of the expanded impervious surface areas are used as indus-
trial sites, where smoke is generated by burning fossil fuels and biomass.
Moreover, industrial, metal, and cement dust generated from industrial
production can be sources of atmospheric aerosols or suspended particulate
matter (Fang et al., 2019). High aerosol concentrations reduce atmospheric
visibility (Deng et al., 2008; Jung et al., 2009), and suspended particulate
matter not only reduces atmospheric visibility, but is also hazardous to
human health (Huang et al., 2019b). Consequently, the demand for air
quality regulation has increased significantly in the GBA, but the supply
of air quality regulation has decreased, due to the reduction of vegetation
and the increase of the impervious surface area.

Annual average concentrations of the major air pollutants, namely, sul-
fur dioxide (SO2), nitrogen dioxide (NO2), and inhalable particulate matter

http://stats.gd.gov.cn/gdtjnj/
http://stats.gd.gov.cn/gdtjnj/


Fig. 4. Ecosystem service budget dynamics of each city in the GBA from 2000 to 2020.
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(PM10), were obtained from the environmental protection departments
and statistics departments, to reflect the trends of air quality changes in
the GBA cities over the past 20 years (Fig. S3). According to the Ambient
Air Quality Standard (GB 3095-2012) for China, the annual average con-
centration limits for the air pollutants of SO2, NO2, and PM10 in residential
8

areas, mixed commercial traffic residential areas, cultural areas, industrial
areas, and rural areas are 60 μg/m3, 40 μg/m3, and 70 μg/m3, respectively.

It can be seen from Fig. S3 that all the GBA cities have shown an overall
decreasing trend for air pollutant concentrations over the past 20 years. The
concentration values for SO2 and PM10 now meet the standards in 2020.
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Except for Hong Kong and the North District of Macao, the concentration
values of NO2 in the other cities also reached the standard around 2020.
These results demonstrate that, in the development and implementation
of policies and regulations such as the Action Plan for the Prevention and
Control of Air Pollution, most of the GBA cities have effectively coped
with the issue of air pollution through remediation of exhaust gases, reme-
diation of transport vehicles, renovation of high-polluting boilers, and con-
tinuous efforts to prevent dust pollution. These measures have led to an
overall improvement in air quality in the GBA cities, in general. Therefore,
although the impervious surface area has increased and human activities
have intensified in the GBA cities, the air quality has been effectively im-
proved through a series of control measures.

3.4. Spatial analysis of changes in the ecosystem service budgets

Due to the different economic levels and industrial structures in each re-
gion, the changes of the ecosystem service budgets in the GBA cities show
different spatial distributions. The difference of the ecosystem budgets be-
tween 2000 and 2020 is used to show the spatial distribution of the ecosys-
tem budget changes in the GBA in Fig. 5a. Subsequently, the values of the
budget changes for each city were used to produce the area composition
and intensity map (Fig. 5b and c). The red areas in Fig. 5a represent the
areas where the budgets are less than 0 (i.e., “demand > supply”). In con-
trast, the green regions denote “supply > demand”. For example, the total
ecosystem service supply and demand values per unit area of forest are
71 and 3, respectively, and those of impervious surface are 1 and 80, respec-
tively. Therefore, the budget values for the ecosystem services per unit area
of forest and impervious surface are 68 and−79, respectively. When forest
is converted to impervious surface, the change value in the ecosystem ser-
vice budget per unit area is 147, indicating that the demand has reached
the maximum. In contrast, when impervious surface is transferred to forest,
the change value in the ecosystem service budget per unit area is−147, in-
dicating that the supply is at its maximum. The gray, blue, and green areas
Fig. 5. (a) Spatial distribution, (b) area composition and (c) intensit
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in Fig. 5b and c represent the area composition ratios of areas where the
budget is less than 0, unchanged, and greater than 0, respectively.

The “demand > supply” areas are mainly concentrated in the central re-
gions of the GBA, since the central areas (e.g., Guangzhou and Shenzhen)
are the engines of regional development. Driven by the economic radiation
effect of Guangzhou and Shenzhen, their adjacent cities also have a high
level of economic development, and their urban areas have increased rap-
idly, where more natural surfaces (e.g., forest and grass) with high ecosys-
tem service supply have been converted into impervious surface. From
Fig. 5b, it can be seen that the city that has the largest area of “demand >
supply” is Jiangmen. In addition to the conversion of natural land surface
to impervious surface, in Jiangmen, there has also been some conversion
of forest to cropland and other natural surfaces with low ecosystem service
supply capacity. Fig. 5 c shows the area composition (or ratios) of budget
dynamics for each city in the GBA, reflecting the intensity of the budget dy-
namics. The ratio of “demand > supply” in Macao and Zhongshan reaches
47.51% and 44.73%, respectively, while the ratio is only 8.82% in
Zhaoqing. This phenomenon reveals that the citywith the greatest intensity
of budget change isMacao, followed by Zhongshan, while Zhaoqing has the
smallest intensity.

On the other hand, the “supply > demand” area accounts for 10% of the
total area of the GBA, where surfaces with low ecosystem service value
(e.g., bareland and shrubland) have been converted into those with high
ecosystem service (e.g., grassland and forest). It can be seen that the city
with the largest area and greatest intensity of “supply > demand” is Guang-
zhou (Fig. 5b and c), indicating that this city has achieved the greatest eco-
system restoration.

To further quantify the spatial distribution characteristics of the ecosys-
tem service budget dynamics, we conducted a spatial analysis of the budget
dynamics. By referring to the relevant literature (Hu et al., 2019), a series of
grid sizes were chosen, i.e., 600 m, 900 m, and 1200 m. The global Moran's
I index was calculated to explore the global spatial distribution characteris-
tics of the service budgets. The p-values are 0 for all three grid sizes, and the
y of the ecosystem service budget dynamics from 2000 to 2020.



Y. Lu et al. Science of the Total Environment 822 (2022) 153662
Moran's I is 0.375, 0.425, and 0.528 for the grid sizes of 600 m, 900 m, and
1200m, respectively. Therefore, 1200mwas selected as the analysis unit in
this study. The Moran's I index for the 1200 m grid size is 0.528, indicating
that the dynamics of the ecosystem service budgets have strong spatially
positive correlation. Furthermore, the z-score is 621.258, which means
that the spatial distribution for the dynamics of ecosystem service budgets
in the GBA shows aggregation characteristics.

We also conducted a hotspot analysis (Getis-Ord Gi*) (Fig. 6). The cold
spots denote clustered areas of low values, as shown in blue in the figure,
while hot spots stand for high-value aggregation areas, as shown in red.
Most of the urban areas have been transformed from natural land-cover cat-
egories to impervious surfaces, resulting in a greater demand for ecosystem
services. Therefore, the values of the budget changes in the urban areas are
relatively low (Fig. 5a), whichmakes the urban areas become low-value ag-
glomerations, i.e., cold spots. In contrast, most of the natural areas are hot
spots, where the supply of ecosystem services is greater than the demand.
Therefore, in the cold spot areas, we should not only strengthen the ecosys-
tem service supply by increasing natural surfaces and improving provision-
ing services, but we should also minimize the transformation of natural
surfaces into impervious surfaces. With regard to hot spot areas, in order
to optimize ecological security, we should continuously protect and restore
the natural resources andmaintain their supply value for the ecosystem ser-
vices.

4. Conclusions

In this study, a deep learning method that combines deep CVA and the
ResUnet model was developed to achieve multi-temporal LULC mapping
and change detection for the GBA region between 2000 and 2020. Based
on the generated LULC maps, an index-based non-monetary evaluation
method was employed to quantify the value of the ecosystem services, as
well as their changes. Moreover, spatio-temporal analyses of the changes
in ecosystem service budgets were conducted.

Our results showed that the proposed deep learning approach is ef-
fective in obtaining accurate LULC mapping and change detection,
when compared with other methods (random forest and the ResUnet
model without sample transfer). Moreover, the proposed method can
avoid the time-consuming sample collection for deep learning by
exploiting the relevance between multi-temporal images. Based on the
Fig. 6. Hotspot analysis of the ecosystem serv
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multi-temporal mapping results, it was found that, due to economic de-
velopment, urban expansion, and industrial layout, the impervious sur-
face areas of all the GBA cities have increased significantly, and the area
of cropland in all the cities has decreased, to varying degrees. In this
context, the ecosystem has been severely impacted during the formation
and development of the GBA, with an increased imbalance between sup-
ply and demand, especially for provisioning, regulation, and cultural
services. The dynamics of the ecosystem service budgets in the GBA
show a spatial aggregation pattern. Therefore, in summary, to promote
the coordinated development of the ecosystem and social economy, the
LULC change between natural and impervious surfaces should be effec-
tively monitored and managed, to maintain the balance of ecosystem
service supply and demand.
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