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ABSTRACT 

A nonlocal weighted joint sparse representation 

classification method for hyperspectral image is proposed 

in this paper. A discriminated contributions based on 

nonlocal spatial structure information are utilized in the 

joint sparsity model framework. The proposed algorithm 

is tested on two hyperspectral images. Experimental 

results suggest that the proposed algorithm shows 

superior performance over other sparsity-based 

algorithms and the classical hyperspectral classifier 

SVM. 

Index Terms-nonlocal, joint sparse representation, 

hyperspectral image classification 

1. INTRODUCTION 

Hyperspectral imagery (HSI) which consists in observing 

the same scene at different wavelengths refers to that 

every pixel of the image is represented by hundreds of 

values, each corresponding to a different narrow 

wavelength [1]. Image classification, which aims at 

categorizing all pixels in a remote sensing image into one 

of several land cover classes, is an important application 

of HSI. Up to date, a lot of HSI classification techniques 

[2] have been proposed, such as SVM [3], decision trees, 

artificial neural networks and etc. 
In recent years, as a popular signal modeling technique, 

sparse representation has been widely used in image pro­

cessing and analysis. For HSI classification, Chen et. al. 
proposed a classification method based on joint sparsity 

model (JSM)[4] that obtained excellent classification re­

sults [5]. Inspired by their work, we propose a non local 

weighted joint sparse representation classification 

(NLW-JSRC) method for HSI in this paper. The 

weighted joint sparsity model (W-JSM) is built up with 
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hyperspectral pixels in a small neighborhood around the 

central test pixel. The weight of one specific neighbor­

hood pixel is measured by the similarity between the 

neighborhood pixel and the central test pixel, which is of­

ten referred as nonlocal weighted scheme. After all the 

weights of the pixels in the neighborhood are determined, 

we set up the nonlocal weighted joint sparsity model 

which is solved by the simultaneous orthogonal matching 

pursuit (SOMP) [6] algorithm. 

The remaining part of this paper is organized as follows. 

Details about the proposed NL W -JSRC algorithm are 

described in Section 2. Section 3 shows the experimental 

results conducted on several HSIs with the proposed 

algorithm and several state-of-the-art classification 

methods. Finally, Section 4 summarizes our work. 

2. CLASSIFICATION OF HSI USING SPARSE 

REPRESENT ION 

In this section, we introduce the nonlocal weighted joint 

sparse representation classification algorithm which 

discriminates the contribution of one specific 

neighborhood pixel to the central test pixel by the 

similarity of the two image patches centered at the 

corresponding neighborhood pixel and the central test 

pixel, respectively. 

2.1. Sparse representation 

In the sparsity model, it is assumed that a signal can be 

approximated by a sparse liner combination of elements 

from a basis set named overcompleted dictionary. We 

consider a B x N dictionary matrix A with B « N , 
the compact signal S E IRB can be approximately 

represented by multiplying the dictionary with a sparse 

vector a in which only a few elements are nonzero. The 
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sparse vector can be represented by solving the following 

optimization problem: 

a = argmin Iiallo s.t. s = Aa + c; 

where � is a small constant for noise of the signal. 

(1 ) 

2.2. Joint sparse representation classification (JSRC) 

For sparse representation classification (SRC) [5], 

suppose we have M distinct classes and stack the given 

Ni (i = 1, . .. , M) training pixels as columns of a sub 

dictionary A = I a , a , ... a . I E jR R"N, , denote A,. as a I 1,1 1,2 I,lv, 

linear low-dimensional space, and B as the band number 

of the HSI. The signal s which belongs to i th class can be 

compactly represented as a linear combination of the 

given training, i. e., s ::::: A,a, . As the identity of the signal 

s is initially unknown before classification, in order to 

linearly represent it, we define a new matrix A E jRHxN 

which include all the training pixels and consider the A, 
as a sub matrix of A . Signal s can be represented as: 

s=Aa + ... +Aa + ... +A a +£ 
I I I I Ai M 

T = [A, ... Ai ... A,r][ a, ... aj ... aJ + £ 
� �\----�--�I 

A 

::::: Aa E]RB 
a 

(2) 

As the signals from the same class often span in a same 

low-dimensional subspace, which is constructed by the 

active training samples corresponding to the nonzero 

entries of the sparse vector a , we classify the signal s 
based on the approximations by assigning it to the object 

class that minimizes the residual: 

class(s) = arg min r;(s) 
i=l, ... ,M 

= arg min lis - A,a, 1 1 2 i=l, ... ,M 

(3) 

For hyperspectral data, each pixel in a small 

neighborhood with similar spectrum can be linearly 

represented in a same low-dimensional feature subspace 

by different compact coefficients. Assuming that a single 

signal can be sparsely represented by the B x N 
structured dictionary A, let S = [Sj, ... , sr] be a Ex T 
signal matrix constructed with a patch of hyperspectral 

image whose central pixel is the test sample and all the 

columns of S meet the "common sparse supports", and 

then the joint signal matrix can be represented by JSM: 
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S=[S, s, ... si]=[Aa,+£, Aa,+£, ... Aa,+£r1 

= Alai a2 ... aT] + � = A la, a, ... ai I + � 
'-.,--' 

(4) 

where L is the noise matrix which contains noise of 

each signal in the joint matrix. The optimization model 

corresponding to (4) can be expressed as: 

'¥ = arg min 11'¥llrow.o s.t. S = A'¥ + L (5) 

where 11·llrow,o denotes the numbers of nonzero rows of 

\jJ .Once the sparse matrix \jJ is obtained, following the 

similar way as SRC, we label the central test pixel of the 

patch by calculating the residuals [5]: 

class(sJ = argmin liS - A/pilip l-l, ... ,A1 (6) 

where \}I' denotes the portion of the recovered sparse 

coefficients corresponding to the training samples of the 

i th class. 

2.3. Weighted joint sparse 

classification (W-JSRC) 

representation 

Adjacent hyperspectral pixels often consist of similar 

materials, so the correlations of these spectral signals are 

high. However, it is not fair to take low-correlation 

pixels into JSM and consider them equally as the 

high-correlation pixels. When there exist the pixels in the 

neighboring window, which are close to the central pixel 

in spatial distribution, have significant disparities to the 

central pixel in spectral curve, the action that stacks these 

low-correlation pixels in the joint sparse representation 

classification method is unwise. Thus, the assumption of 

the joint sparsity model will not be satisfied. 

In view of this, each pixel in the neighborhood window 

should have different weight to the classification of the 

central pixel, and the weight should be determined by the 

correlation between each neighborhood pixel and the 

central pixel. So we extend the JSRC to W -JSRC by 

incorporating weighting as follows: 

'¥ w = arg min II'¥ w Ilrow,o S.t. SW = A'¥ w +,; (7) 
where W = diag(wj, w2"'" wr) is a diagonal matrix, 

and each entry on its main diagonal denotes the 

contribution of the corresponding neighborhood pixel to 

the central test one. 



2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS) 

2.4. Nonlocal weighted joint sparse representation 

(NLW-JSRC) 

In recent years, a nonlocal [8] weigh scheme which aims 

at explicitly exploiting self-similarities in natural image 

has been widely used in sparse signal processing [9]. 

Assuming that p denotes the central pixel to be tested 

and q denotes a pixel in the neighborhood of p. The 

weighted scheme can be mathematically expressed as: 

( )  
( IIJ(p) - J(q)ll ) 

W p,q = exp -
p 

(8) 

where IIJ(p)-J(q)ll denotes the similarity measure be­

tween p and q , J (. ) denotes spatial structure operators 

that centers at the corresponding image position, p is 

the factor to adjust the decay of the exponential function. 

We apply the nonlocal weighted scheme to the W -JSRC 

method, thus the non local spatial information are in­

cluded in the NL W -JSRC model. The nonlocal weighted 

joint sparsity model can be represented as: 

(9) 

where T is the size of neighborhood window and the 

NLW-JSRC model in (9) is solved by SOMP algorithm 

in our paper. We label the identity of the central test pixel 

Sc by minimizing the residual as before: 

class(sc) = arglllin IISWNL -Ai'!' NLW' II" 1-1, ... ,M 
(10) 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we demonstrate the effectiveness of the 

proposed algorithm on two hyperspectral images. The 

classical classifier SVMs [2], JSRC [5] is used as 

benchmarks in this paper. In addition, the OMP [10] are 

used to solve the SRC problems in (1) and also included 

in the comparisons. 

The first hyperspectral image in this paper was gathered 

by A VIRIS sensor over the Indian Pines test site in 

North-western Indiana and consists of pixels and 224 

spectral reflectance bands in the wavelength range 0.4-

2.5x 101\(-6) meters. We have also reduced the number 

of bands to 200 with 24 water absorption bands removed. 

The false color image can be visually shown in Figure 

l(a). This image contains 16 ground truth classes which 

978-1-4 799-3406-5/12/$31.00©20121 E E E 

can be visually shown in Figure l(b). In this experiment, 

we randomly sample 9% of the data in each class as the 

training samples and the remaining as the test samples, 

and the detailed information is shown in Table I. The 

classification accuracy for each class using different 

classifiers is also shown in Table I and the classification 

maps are shown in Figure l(c)-(f). The residual and 

optimal tolerance parameters for each greedy algorithm 

mentioned above are default. The optimal parameters for 

the NLW-JSRC are L = 30 and T = 81  , where the 

corresponding optimal neighboring size for JSRC is 

T = 25 . Besides, the parameters for SVM are obtained 

by 10 fold cross-validation. It is shown from Table 1 that 

by incorporating the nonlocal spatial information, the 

proposed algorithm outperforms the other classification 

algorithms. 

The second hyperspectral image used in this paper is the 

1I5-band ROSIS image Centre of Pavia of size 776 x 485, 

for which we use only 102 bands with the 13 water 

absorption bands removed. The false color image can be 

visually shown in Figure 2(a). There are 9 classes of 

interests as shown by the ground truth map in Figure 2(b), 

in this experiment, we randomly sample 1 % of the data 

in each class as the training samples and the remaining as 

the test samples, and the detailed is shown in Table 2 

which contains the classification accuracy for each class 

using various and the classification maps are shown in 

Figure 2(c)-(f). It is observed that we can draw the same 

conclusion with the first experiment. 

4. CONCLISIONS 

In this paper, we propose a new hyperspectral image 

classification algorithm based on nonlocal weighted joint 

sparsity model, which exploit different contributions of 

the neighborhood pixels to the classification of the 

central test pixel by incorporating nonlocal spatial 

structural information to support improved classification 

capabilities. The extensive experimental results clearly 

suggest the proposed NLW-JSRC method can achieve 

competitive classification results. Our further work will 

focus on other more reasonable weighted schemes which 

can be used to further improve the classification 

performance. 
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Figure l.Classification results of Indian Pines image: (a) false color image 
(R57 G27 B: 17) (b) ground truth (c) SVM, (d) SRC, (e)JSRC, (I) 
NLW-JSRC 
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Table I. Classification accuracy(%) for the Indiana Pine image on 
the test set using different classifiers 

Class Train Test SVM SRC JSRC NLW-
JSRC 

I 6 40 0.5750 0.8000 0.9250 0.9750 
2 129 1299 0.7282 0.7167 0.9145 0.9169 
3 83 747 0.6988 0.7149 0.8527 0.8862 
4 24 213 0.6291 0.5775 0.8122 0.8873 
5 48 435 0.8874 0.8966 0.9172 0.9448 
6 73 657 0.9802 0.9680 1 1 
7 5 23 0.0867 0.7826 0.7826 0.7826 
8 48 430 1 0.9977 1 1 
9 4 16 0.3125 0.7500 0.3125 0.8125 

10 97 875 0.6766 0.7166 0.8766 0.8686 
11 196 2259 0.8309 0.7928 0.9464 0.9695 
12 59 534 0.8783 0.6423 0.9195 0.9457 
13 21 184 0.9511 0.9891 1 1 
14 114 1151 0.9618 0.9513 0.9878 0.9983 
15 39 347 0.6311 0.5994 0.8963 0.9164 
16 12 81 0.8765 0.9506 1 0.9877 

OA 958 9291 0.8182 0.7995 0.9313 0.9467 
Kappa 0.7913 0.7708 0.9215 0.9390 

Figure 2.Classitication results of Centre of Pavia image: (a) false color 
image, (RI02, G:56 ,B:31), (b) ground truth (c) SYM, (d) SRC, (e)JSRC, (I) 
NLW-JSRC 

Table 2. Classitication accuracy(%) for the Centre of Pavia image on 
the test set using different classifiers 

Class Train Test SVM SRC JSRC NLW-
JSRC-

I 42 5268 1 0.9972 1 0.9994 
2 35 3471 0.9015 0.8778 0.9231 0.9268 
3 20 958 0.6378 0.8038 0.9509 0.9541 
4 32 2108 0.7434 0.3439 0.9132 0.9032 
5 22 1067 0.9156 0.5117 0.9897 0.9963 
6 39 4850 0.8759 0.7781 0.9462 0.9454 
7 58 7229 0.8434 0.8382 0.9644 0.9772 
8 31 3091 0.8948 0.9673 0.9964 0.9977 
9 24 1595 1 0.7643 0.9210 0.9442 

OA 303 29637 0.8860 0.8227 0.9608 0.9651 
Kappa 0.8655 0.7911 0.9538 0.9588 


