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ABSTRACT
A column generation kernel technology based nonlinear
regression classification method for hyperspectral image
is proposed in this paper. The nonlinear extension for the
collaborative representation regression is utilized in the
joint collaboration model framework. The proposed
algorithm is tested on two hyperspectral images.
Experimental results suggest that the proposed nonlinear

algorithm shows superior performance over other linear

regression-based  algorithms and the classical
hyperspectral classifier SVM.
Index Terms—column generation, collaborative

representation, hyperspectral image classification, kernel

1. INTRODUCTION
Hyperspectral image (HSI), spanning the visible to
infrared spectrum with hundreds of continuous narrow
spectral bands, can facilitate discrimination of object

types.

correlations between the higher-order spectral inter-band

Meanwhile, obstacles such as nonlinear
and lack of available training samples etc, appear as
spectral resolution and data dimensionality increase. In
this,

dimensional data set with small sample set is still a

view of supervised classification of high
difficult endeavor.

In recent years, a novel collaborative linear regression
approach for recognition has been introduced into
high-dimensional classification tasks [1], where the
usage of collaborative representation (CR) as an effective
mechanism leads to state-of-the-art performance. The CR
technique has also been applied to HSI classification [2],
relying on the observation that hyperspectral test pixel
can be approximately represented by a given dictionary
constructed from training samples. With aid from the rest

training samples, the CR-based classifier can work
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efficiently in the lack of sample case [1]. In view of this
approach, we further extend nonlocal joint collaborative
(2]

nonlinear version with a column generation (CG) kernel

representation classification (NJCRC) into a

technology [3]. This method firstly maps the origin
spectral space to a higher kernel space by directly taking
the similar measures between spectral pixels as new
feature, and then utilizes nonlocal joint collaborative
regression model for kernel signal reconstruction and
sequential pixel classification. Unlike the kernel trick
used in various approaches [4], the CG-strategy is easy to
implement and do not require the explicit inner product
structure in the regression analytical solution.

The remaining part of this paper is organized as follows.
Details about the proposed KNJCRC algorithm are
described in Section 2. Section 3 shows the experimental
results conducted on several HSIs with the proposed
algorithm and several state-of-the-art classification

methods. Finally, Section 4 summarizes our work.

2. CLASSIFICATION OF HSI USING
COLLABORATIVE REPRESENTION
In this section, we firstly briefly introduce the CR-based
algorithms for HSI classification, and then extend the
linear version algorithms into the column generation
kernel space, in which these hyperspectral classes will be

linearly separable.

2.1. Collaborative representation classification
For collaborative representation classification (CRC) [1],

suppose we have M  distinct classes and N,

(i=1,...,M) training samples for each class. In the
classical collaborative representation model, training

samples from the jth class as columns of a

sub-dictionary A, :[ai’l,ai,z,...am\,l ] e R | then the
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collaborative dictionary A eV with N :ZZ} N,

is constructed by combining all the sub-dictionaries
{Am}m:le. Thus, an unknown test pixel se® can
be written as a collaborative linear combination of all of

the training samples as
M
s=Aa+te=Aa+), Aa teck (1)

where & is a small constant for noise of the signal. The
collaborative coefficient vector @ can be obtained by

solving the following optimization problem:
& =argmin{|s—Ad, + 2o, | @

The classification rule for CRC via regularized least
squares which referred to as CRC-RLS [1] is denoted :

class(s) = arg min [s—Aal, /||, 3)

2.2. Nonlocal joint collaborative representation
classification

For hyperspectral data, pixels in a small neighborhood
with similar spectrum can be represented in a same
low-dimensional feature subspace by different compact
coefficients. In a spatial patch centered at spatial position
¢, we nonlocally select K most similar pixel with the
central pixel s, by KNN method [5], and these K
pixel can be stacked as S, :[sl,...,sk]e]RBXK. It is
believed that these K pixels share a ‘“common
collaboration pattern” as they are selected by the measure
of the correlations between the central test pixel s, , not
the spatial distance. In this context, the joint signal
matrix can be represented as:

Sy =Is; s, .5 1=Alq @, ...a, |+ 2

M (C)
=AYt A Y TE= A +2
where W, is a set of all the coefficient vectors , Wy,
is the ith subset of ¥, and X is the random noise
matrix corresponding to the joint signal matrix. By the

CR-based approach, (4) can be calculated as

¥, —arg n‘;‘m {"SK - A¥, [, + 2 } ()
K

The label of the center pixel s, is determined by the

following classification rule:

/

class(s,) = ar; g,:l.mlb{ S, - Ai\i‘K([) |\ill<(i)"ﬁ } ©

F

where A, is a sub-part of A in class 7, and ‘i’K(i)
denotes the corresponding portion of the recovered
collaborative coefficients in the i th class.

2.3. Column generation kernel technology

Column generation is widely used in linear programming
since the 1950s. The kernel mapping used in this paper,
which is similar to a simplified column generation
strategy for CG-Boost [3] in multiple kernel leaning,
directly take the signal in kernel space as feature [5] .

For the kernel function, the real-value function
K:®xF >R is defined as the inner product:
K(xl.,xj) = <¢(x,.),¢(xj)> , where ¢(x) is a function of
spectral vector x. In this paper, we utilize the RBF
kernel:

o) -ealplnz) o

where y >0 controlling the width of the RBF kernel,
and p define a “distance” between x;andx; . The
chi-square distance )(Z(x,.,xj) , which can reflect the
relative difference between corresponding spectral

sub-region are used in this paper.
K(xl.,xj)=exp(—;(2(xl.,xj)/,u) ®)

where u 1is set to the mean value of pairwise chi-square
distance and is adaptive to the training set .

In this paper, denote s e K as the data point of interest
and s'eR' as its representation in the feature space.
The kernel collaborative representation of test pixel s

in terms of all training pixels &, ’s can be formulated as
s'=[x(a,,s) ---K(aN,s)]T
x(a,a)-x(a,a,)

= : [ef "'O!X;]T

| ———)

k(ay,a)-x(ay,ay) a

(O]




where the columns of K(A) are the representation of
training samples in the feature space, and a' is
assumed to bea N x1 kernel representation vector.

2.4. Kernel nonlocal collaborative representation

classification via column generation technology

For the nonlocal joint representation model, we can also
extend the S, € Z*% into the feature space. We first
map all the pixels in the spatial window sized
T (T >K ) into the kernel feature space, then calculate
the correlation between every kernel signal in the
neighborhood window and the test kernel signal s: , and
finally sort all kernel signals in the order of descending
correlation. We select the first K ones from all the T
kernel signals and consider them also share a “common
collaborative pattern” in the feature space. The nonlocal
kernel joint signal matrix can be represented in the kernel

feature space as:

(10)

Wi

where W' is the kernel collaborative coefficient matrix,

and the function (6) can be extended as :

¥ = argn;zn{IISk ~x(A) e[+ all (1

Once the coefficient matrix W, is obtained, the
classification rule is denoted as:

S (A%, /|

PO
\PK,IF

class(s,) = arg ;llninw (12)

where «(A,) is a sub-part of x(A) in class i, and
\i]!

«; denotes the portion of the recovered kernel

collaborative coefficients corresponding to the entire
training samples in the i th class.

3. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we demonstrate the effectiveness of the
proposed algorithm on two hyperspectral images. The
classical classifier SVMs with RBF kernel [4], JSRC [7]
and NJCRC [2] are used as benchmarks in this paper.

The first hyperspectral image in this paper was gathered
by AVIRIS sensor over the Indian Pines test site in
North-western Indiana and consists of pixels and 224
spectral reflectance bands in the wavelength range 0.4—
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2.5%x10"(-6) meters. We have also reduced the number
of bands to 200 with 24 water absorption bands being
removed. The false color image is visually shown in
Figure 1(a). This image contains 10 ground truth classes
which can be visually shown in Figure 1(b). In this
experiment, we randomly sample 60 pixels of the data in
each class as the training samples and the remaining as
the test samples, and the detailed information is shown in
Table 1. The classification accuracy for each class using
different classifiers is also shown in Table 1 and the
classification maps are shown in Figure 1(c)-(f). The
residual and optimal tolerance parameters for each
greedy algorithm mentioned above are default. The
optimal parameters for the KNJCRC are A=1e-7,
T =8land K =50, for the NJCRC are A=1e-35,
T =8land K =55, where the corresponding optimal
neighboring size for JSRC is 7 =25 . Besides, the
SVM are 10 fold
cross-validation. It is shown from Table 1 that by

parameters  for obtained by
mapping the original spectral feature into a higher kernel
feature space, the proposed algorithm outperforms the
other classification algorithms, and is superior to its
linear version algorithm.

The second hyperspectral image used in this paper is the
115-band ROSIS image Centre of Pavia of size 776 x 485,
for which we use only 102 bands with the 13 water
absorption bands removed. The false color image can be
visually shown in Figure 2(a). There are 9 classes of
interests as shown by the ground truth map in Figure 2(b),
in this experiment, we randomly sample 20 pixels per
class of the data as the training samples and the
remaining as the test samples, and the detailed is shown
in Table 2 which contains the classification accuracy for
each class using various and the classification maps are
shown in Figure 2(c)-(f). It is observed that we can draw
the same conclusion with the first experiment.

4. CONCLISIONS
In this paper, we propose a new HSI classification
technique based on collaborative representation in a
nonlinear feature space induced by column generation
kernel method. The nonlocal contextual correlation is
incorporated to constrain the dominated representation
through the joint collaboration representation. The kernel
technique in this paper is different from the conventional
kernel mapping in RKHS feature space by kernel trick.

The column generation directly treats the similar



measures between spectral pixels as feature, while the
conventional kernel method often replaces the original
feature vector as implicit kernel feature by the inner
product operation. The extensive experimental results
clearly suggest the proposed method can achieve
competitive classification results. Our further work will
focus on more brilliant contextual information extraction
which automatic obtain the joint signal matrix to further

improve the classification performance.
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(d) (e)
Figure 1.Classification results of Indian Pines image: (a) false color image
(R:57 G:27 B:17) (b) ground truth (¢) SVM, (d) JSRC, (e) NJCRC, (f)
KNJCRC

Table 1. Classification accuracy(%) for the Indiana Pine image on the
test set using different classifiers

Class | Train  Test SVM JSRC  NJCRC KNIJCRC

1 60 1368 | 0.6923  0.8509  0.9393 0.8882
2 60 770 | 0.7792  0.9091  0.9416 0.9948
3 60 423 | 09125  0.9409 09173 0.9456
4 60 670 | 0.9418  0.9970  0.9970 0.9910
5 60 418 | 0.9952 1 1 1
6
7
8

60 912 | 0.7160  0.7971  0.9748 0.9276
60 2395 | 0.5908 0.6731  0.7779 0.8342
60 533 | 0.7992  0.8180  0.9681 0.9306

9 60 1205 | 09245 09593 09743  0.9876
10 | 60 326 | 07178 09479 1 0.9969
OA 0.7563 08412 09149 0.9222
Kappa | %90 90201 57203 08177 0.9018  0.9100

(b)

(d) (e) ()
Figure 2.Classification results of Centre of Pavia image: (a) false color
image, (R:102, G:56 ,B:31), (b) ground truth (c) SVM, (d) JSRC, (¢)NJCRC,
(f) KNJCRC

Table 2. Classification accuracy(%) for the Centre of Pavia image on the
test set using different classifiers

Class | Traim _ Test | SVM__ JSRC _ NJCRC _ KNJCRC
I 20 5290 | 0.9809 1 1 1
2 20 3486 | 08448  0.8890 09317  0.8964
3 20 958 | 09614 09676  0.8904 09259
3 20 2120 | 08542 09443 05170  0.9920
5 20 1069 | 08877 09476 1 0.9355
6 20 4869 | 08316 07989  0.9881 09499
7 20 7267 | 08563 09180 09622 09040
8 2 3102 | 09700 09923 1 0.9997
9 20 1599 | 0.9950 09287 07448 07967
OA 08067 09225 09292 0.9400
Kappa | %0 29940 | 0'e703 09092 09162 0.9295
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