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ABSTRACT 

A column generation kernel technology based nonlinear 

regression classification method for hyperspectral image 

is proposed in this paper. The nonlinear extension for the 

collaborative representation regression is utilized in the 

joint collaboration model framework. The proposed 

algorithm is tested on two hyperspectral images. 

Experimental results suggest that the proposed nonlinear 

algorithm shows superior performance over other linear 

regression-based algorithms and the classical 

hyperspectral classifier SVM. 

Index Terms—column generation, collaborative 

representation, hyperspectral image classification, kernel  

 

1. INTRODUCTION 

Hyperspectral image (HSI), spanning the visible to 

infrared spectrum with hundreds of continuous narrow 

spectral bands, can facilitate discrimination of object 

types. Meanwhile, obstacles such as nonlinear 

correlations between the higher-order spectral inter-band 

and lack of available training samples etc, appear as 

spectral resolution and data dimensionality increase. In 

view of this, supervised classification of high 

dimensional data set with small sample set is still a 

difficult endeavor. 

In recent years, a novel collaborative linear regression 

approach for recognition has been introduced into 

high-dimensional classification tasks [1], where the 

usage of collaborative representation (CR) as an effective 

mechanism leads to state-of-the-art performance. The CR 

technique has also been applied to HSI classification [2], 

relying on the observation that hyperspectral test pixel 

can be approximately represented by a given dictionary 

constructed from training samples. With aid from the rest 

training samples, the CR-based classifier can work 

efficiently in the lack of sample case [1]. In view of this 

approach, we further extend nonlocal joint collaborative 

representation classification (NJCRC) [2] into a 

nonlinear version with a column generation (CG) kernel 

technology [3]. This method firstly maps the origin 

spectral space to a higher kernel space by directly taking 

the similar measures between spectral pixels as new 

feature, and then utilizes nonlocal joint collaborative 

regression model for kernel signal reconstruction and 

sequential pixel classification. Unlike the kernel trick 

used in various approaches [4], the CG-strategy is easy to 

implement and do not require the explicit inner product 

structure in the regression analytical solution.  
The remaining part of this paper is organized as follows. 
Details about the proposed KNJCRC algorithm are 

described in Section 2. Section 3 shows the experimental 

results conducted on several HSIs with the proposed 

algorithm and several state-of-the-art classification 

methods. Finally, Section 4 summarizes our work. 

 

2. CLASSIFICATION OF HSI USING 

COLLABORATIVE REPRESENTION 

In this section, we firstly briefly introduce the CR-based 

algorithms for HSI classification, and then extend the 

linear version algorithms into the column generation 

kernel space, in which these hyperspectral classes will be 

linearly separable.  

 

2.1. Collaborative representation classification 

For collaborative representation classification (CRC) [1], 

suppose we have M  distinct classes and 
i

N  

( 1, , )i M   training samples for each class. In the 

classical collaborative representation model, training 

samples from the thi class as columns of a 

sub-dictionary ,1 ,2 ,, , i
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collaborative dictionary B NA   with 
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is constructed by combining all the sub-dictionaries 

  1, ,m m M
A  . Thus, an unknown test pixel Bs  can 

be written as a collaborative linear combination of all of 

the training samples as 

1

M B
i i j jj j i 

      ,
A A A s       (1) 

where   is a small constant for noise of the signal. The 

collaborative coefficient vector   can be obtained by 

solving the following optimization problem: 

 2 2
  ˆ argmin As


    (2) 

The classification rule for CRC via regularized least 

squares which referred to as CRC-RLS [1] is denoted : 

2 21, ,
ˆ ˆ( ) /i i ii M

class


 arg min A


s s    (3) 

 

2.2. Nonlocal joint collaborative representation 

classification 

For hyperspectral data, pixels in a small neighborhood 

with similar spectrum can be represented in a same 

low-dimensional feature subspace by different compact 

coefficients. In a spatial patch centered at spatial position

c , we nonlocally select K  most similar pixel with the 

central pixel cs  by KNN method [5], and these K  

pixel can be stacked as  
1 K

B K

K

 S , , s s . It is 

believed that these K  pixels share a “common 

collaboration pattern” as they are selected by the measure 

of the correlations between the central test pixel cs  , not 

the spatial distance. In this context, the joint signal 

matrix can be represented as: 

 1 2 1 2
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K K K
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where KΨ  is a set of all the coefficient vectors , ( )K iΨ  

is the thi subset of KΨ and Σ is the random noise 

matrix corresponding to the joint signal matrix. By the 

CR-based approach, (4) can be calculated as  

 2 2

F F
K

K K K K  ˆ S Aargmin


    (5) 

The label of the center pixel cs  is determined by the 

following classification rule: 

 
1 K F Fc i K i K ii M

class


  ( ) ( ), ,

ˆ ˆS A /( ) arg min


 s  (6) 

where iA
 

is a sub-part of  A
 

in class i , and K i( )̂  

denotes the corresponding portion of the recovered 

collaborative coefficients in the i th class. 

 

2.3. Column generation kernel technology 

Column generation is widely used in linear programming 

since the 1950s. The kernel mapping used in this paper, 

which is similar to a simplified column generation 

strategy for CG-Boost [3] in multiple kernel leaning, 

directly take the signal in kernel space as feature [5] .  

For the kernel function, the real-value function 

: B B     is defined as the inner product: 

 , ( ), ( )i j i j  x x x x , where ( ) x  is a function of 

spectral vector x . In this paper, we utilize the RBF 

kernel: 

    , exp ,i j i j  x x x x  (7) 

where 0   controlling the width of the RBF kernel, 

and  define a “distance” between andi jx x . The 

chi-square distance  2 ,i j x x , which can reflect the 

relative difference between corresponding spectral 

sub-region are used in this paper. 

    2, exp , /i j i j   x x x x  (8) 

where   is set to the mean value of pairwise chi-square 

distance and is adaptive to the training set .  

In this paper, denote Bs  as the data point of interest 

and Ns  as its representation in the feature space. 

The kernel collaborative representation of test pixel s  

in terms of all training pixels ia ’s can be formulated as  
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where the columns of   A  are the representation of 

training samples in the feature space, and   is 

assumed to be a 1N   kernel representation vector.  

2.4. Kernel nonlocal collaborative representation 

classification via column generation technology 

For the nonlocal joint representation model, we can also 

extend the B K
K

S   into the feature space. We first 

map all the pixels in the spatial window sized 

 T T K into the kernel feature space, then calculate 

the correlation between every kernel signal in the 

neighborhood window and the test kernel signal c
s , and 

finally sort all kernel signals in the order of descending 

correlation. We select the first K  ones from all the T  

kernel signals and consider them also share a “common 

collaborative pattern” in the feature space. The nonlocal 

kernel joint signal matrix can be represented in the kernel 

feature space as: 
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where K
Ψ  is the kernel collaborative coefficient matrix, 

and the function (6) can be extended as : 

  2 2

FF
K

K K K K 


     ˆ Sargmin A


    (11)

Once the coefficient matrix ˆ
K  is obtained, the 

classification rule is denoted as: 

 
2 2

, ,1, ,

ˆ ˆ( ) /c K i K i K ii M F F
class 


   arg min S A


 s (12)

where  i A  is a sub-part of   A  in class i , and 

,
ˆ

K i
  denotes the portion of the recovered kernel 

collaborative coefficients corresponding to the entire 

training samples in the i th class. 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we demonstrate the effectiveness of the 

proposed algorithm on two hyperspectral images. The 

classical classifier SVMs with RBF kernel [4], JSRC [7] 

and NJCRC [2] are used as benchmarks in this paper.  

The first hyperspectral image in this paper was gathered 

by AVIRIS sensor over the Indian Pines test site in 

North-western Indiana and consists of  pixels and 224 

spectral reflectance bands in the wavelength range 0.4–

2.510^(-6) meters. We have also reduced the number 

of bands to 200 with 24 water absorption bands being 

removed. The false color image is visually shown in 

Figure 1(a). This image contains 10 ground truth classes 

which can be visually shown in Figure 1(b). In this 

experiment, we randomly sample 60 pixels of the data in 

each class as the training samples and the remaining as 

the test samples, and the detailed information is shown in 

Table 1. The classification accuracy for each class using 

different classifiers is also shown in Table 1 and the 

classification maps are shown in Figure 1(c)-(f). The 

residual and optimal tolerance parameters for each 

greedy algorithm mentioned above are default. The 

optimal parameters for the KNJCRC are 1 7e   , 

81T  and 50K  , for the NJCRC are 1 5e   , 

81T  and 55K  , where the corresponding optimal 

neighboring size for JSRC is 25T  . Besides, the 

parameters for SVM are obtained by 10 fold 

cross-validation. It is shown from Table 1 that by 

mapping the original spectral feature into a higher kernel 

feature space, the proposed algorithm outperforms the 

other classification algorithms, and is superior to its 

linear version algorithm.   

The second hyperspectral image used in this paper is the 

115-band ROSIS image Centre of Pavia of size 776485, 

for which we use only 102 bands with the 13 water 

absorption bands removed. The false color image can be 

visually shown in Figure 2(a). There are 9 classes of 

interests as shown by the ground truth map in Figure 2(b), 

in this experiment, we randomly sample 20 pixels per 

class of the data as the training samples and the 

remaining as the test samples, and the detailed is shown 

in Table 2 which contains the classification accuracy for 

each class using various and the classification maps are 

shown in Figure 2(c)-(f). It is observed that we can draw 

the same conclusion with the first experiment. 

 

4. CONCLISIONS 

In this paper,  we propose a new HSI classification 

technique based on collaborative representation in a 

nonlinear feature space induced by column generation 

kernel method. The nonlocal contextual correlation is 

incorporated to constrain the dominated representation 

through the joint collaboration representation. The kernel 

technique in this paper is different from the conventional 

kernel mapping in RKHS feature space by kernel trick. 

The column generation directly treats the similar 

443



measures bet

conventional 

feature vecto

product oper

clearly sugg

competitive c

focus on mor

which automa

improve the c

 

[1] L. Zhang, M

Representatio

preprint arXi

[2] J. Li, H. Zh

Classification

Locality-adap

submitted 

[3] J. Bi, T. Z

methods for

Discovery i

international

2004, pp. 521

[4]  C.I. Chang, 

and classifica

[5] X. Yuan, X.

Joint Sparse R

[6] H. Zhang, 

Discriminativ

Recognition,

and Pattern R

[7] Y. Chen, N.

Classification

Trans. Geos

2011. 

 

(a) 

(d) 
Figure 1.Classific
(R:57 G:27 B:17
KNJCRC 
 

tween spectra

kernel metho

or as implicit

ration. The e

gest the pro

classification 

re brilliant con

atic obtain the

classification p

5. REFE
M.Yang, X. Feng

on based Classi

Xiv:1204.2358, 201

hang, L. Zhang 

n by Nonlocal J

ptive Dictionary,”

Zhang and K.P. B

r mixture of ke

in Data: Procee

l conference on K

1-526. 

"Hyperspectral im

ation", Springer U

 Liu, and S. Yan

Representation,” I

A.C. Berg, M. 

ve Nearest Neigh

”in Proc. IEEE C

Recognition, 2006

. M. Nasrabadi, 

n Using Dictionar

ci. Remote Sens.,

 

 

cation results of In
7) (b) ground trut

al pixels as fe

od often repl

t kernel featu

extensive exp

oposed metho

results. Our f

ntextual inform

e joint signal 

performance. 

ERENCES 
, Y. Ma, and D.

ification for Fac

2. 

and Y. Huang., 

oint Collaborative

” IEEE Trans. G

Bennett., “Colum

ernels,” in Confe

edings of the t

Knowledge discov

maging: Technique

Us, vol. 1, 2003. 

n, “Visual Classifi

IEEE Trans. Image

Maire, and J. 

hbor Classification

Computer Society 

, pp. 2126–2136. 

and T. D. Tran, 

ry-Based Sparse 

 vol. 49, no. 10,

 
(b)

 
(e) 

ndian Pines image
th (c) SVM, (d) 

feature, while 

aces the orig

ure by the in

erimental res

od can achi

further work 

mation extrac

matrix to fur

. Zhang,“Collabor

ce Recognition,”A

“Hyperspectral Im

e Representation 

Geosci. Remote S

mn-generation boo

erence on Knowl

tenth ACM SIGK

very and data mi

es for spectral dete

ication with Multi

e Process., to appe

Malik, “SVM-K

n for Visual Cate

Conf.Computer V

“Hyperspectral Im

Representation,” I

, pp. 3973–3985, 

(c)

(f)
e: (a) false color i
JSRC, (e) NJCR

the 

ginal 

nner 

sults 

ieve 

will 

ction 

rther 

rative 

Arxiv 

mage 

with 

Sens., 

osting 

wledge 

GKDD 

ining, 

ection 

i-task 

ear. 

KNN: 

egory 

Vision 

mage 

IEEE 

 Oct. 

image 
RC, (f) 

T

C

K

 

Figur
imag
(f) K
 

Ta

Cl

2
3
4
5
6
7
8
9

O
Ka

 

This

Rese

201

Chin

LIE

Table 1. Classificat
t

Class Train

1 60
2 60
3 60
4 60
5 60
6 60
7 60
8 60
9 60
10 60
OA 600 Kappa

(a)

(d)
re 2.Classification

ge, (R:102, G:56 ,B
KNJCRC 

able 2. Classificatio
t

lass Train T
1 20 5
2 20 3
3 20 9
4 20 2
5 20 1
6 20 4
7 20 7
8 20 3
9 20 1

OA
180 29

appa

6. A

s work was s

earch Program

1CB707105, by

na under Gr

SMARS Specia

tion accuracy(%) f
test set using differ

Test SVM 

1368 0.6923 
770 0.7792 
423 0.9125 
670 0.9418 
418 0.9952 
912 0.7160 
2395 0.5908 
533 0.7992 
1205 0.9245 
326 0.7178 

9020 0.7563 
0.7203 

(b) 

(e) 
n results of Cent
B:31), (b) ground t

on accuracy(%) fo
test set using diffe

Test SVM
5290 0.9809 
3486 0.8448 
958 0.9614 
2120 0.8542 

069 0.8877 
4869 0.8316 
7267 0.8563 
3102 0.9700 

599 0.9950 

9940
0.8967 
0.8793 

ACKNOWLE

supported in p

m of China (

y the National N

ants 6120134

al Research Fun

for the Indiana Pin
erent classifiers 

JSRC NJCR

0.8509 0.939
0.9091 0.941
0.9409 0.917
0.9970 0.997

1 1 
0.7971 0.974
0.6731 0.777
0.8180 0.968
0.9593 0.974
0.9479 1 
0.8412 0.914
0.8177 0.901

 

 

tre of Pavia imag
truth (c) SVM, (d)

or the Centre of Pa
erent classifiers 

JSRC NJC
1 1

0.8890 0.93
0.9676 0.89
0.9443 0.51
0.9476 1
0.7989 0.98
0.9180 0.96
0.9923 1
0.9287 0.74
0.9225 0.92
0.9092 0.91

EDGEMENTS

part by the N

(973 Program)

Natural Science

42 and 40930

nding. 

ne image on the 

RC KNJCRC

93 0.8882
6 0.9948

73 0.9456
70 0.9910

1
48 0.9276
79 0.8342
81 0.9306
43 0.9876

0.9969
49 0.9222

8 0.9100

(c)

(f)
ge: (a) false colo
) JSRC, (e)NJCRC

avia image on the 

CRC KNJCRC
1 1
317 0.8964
904 0.9259
170 0.9920
1 0.9355
881 0.9499
622 0.9040
1 0.9997
448 0.7967
292 0.9400
162 0.9295

S 

National Basic

) under Grant

e Foundation of

0532 and by

or 
C, 

c 

t 

f 

y 

444


