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ABSTRACT 

With regard to the specific role of each pixel within a spatial 

parcel of a hyperspectral image (HSI), we propose a novel 

superpixel-oriented sparse representation classification method 

with a multi-task learning approach. The proposed algorithm 

exploits the class-level sparsity prior for multiple-feature fusion, 

and also the correlation and distinctiveness of pixels in a spatial 

local region. Compared with the state-of-the-art hyperspectral 

classifiers, the superiority of the spatial prior utilization, the 

multiple-feature fusion, and the computational efficiency are 

maintained at the same time in the proposed method. The 

proposed classification framework was tested on two HSIs. The 

experimental results suggest that the proposed algorithm 

performs better than the other representation-based classification 

algorithms and some popular hyperspectral multiple-feature 

classifiers. 
 

Index Terms—Joint sparsity, multi-task learning, superpixel 

representation, hyperspectral image classification 
 

1. INTRODUCTION 
 
Hyperspectral images (HSIs), spanning the visible to infrared 

spectrum with hundreds of contiguous and narrow spectral bands, 

are favored by subtle discriminative spectral characteristics, as 

well as spatial information. With such fine discriminative 

information, supervised classification, which labels each pixel in 

the image with a given training set from each class, is an 

important task for the subsequent processing and analysis. 

The framework of supervised classification consists of two 

procedures: discriminative feature extraction and classifier 

design. For the first issue, techniques in both the spectral and 

spatial domains have been studied in recent years, and it is 

believed that there is no optimal single feature for the various 

classification tasks [1]. Therefore, some multiple-feature HSI 

classifiers have been proposed to combine the complementary 

features and enhance the discriminability with state-of-the-art 

performance. When constructing an HSI classifier, the lack of 

training samples, the Hughes phenomenon, and the high 

computational burden caused by the “curse of high 

dimensionality” are inevitable obstacles [2]. 

Considering the above problems, we propose a superpixel-

oriented multi-task joint sparse representation classification 

(SMTJSRC) algorithm for HSIs, which exploits the joint sparsity 

prior information for multiple-feature fusion, and the correlation 

and distinctiveness of pixels in a spatial local region. The 

algorithm is implemented in the following steps, as shown in Fig. 

1. Firstly, several complementary features of the HSI are 

constructed. Secondly, superpixels, which can be regarded as 

small local regions with an adaptive shape and size, are acquired 

by partitioning the whole HSI scene. Thirdly, the multiple-

feature joint sparse linear regression model is extended in a set-

to-set collaborative representation (CR) manner to obtain the 

coding coefficient vector for the subsequent classification 

decision. The proposed method aims at enhancing the 

discrimination of superpixels by combining the complementary 

information of different features and highlighting the major 

patterns of pixels within a spatial similar region in a multi-task 

learning (MTL) fusion to achieve an improved classification 

performance. 
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Fig. 1. Schematic illustration of the proposed work. Multiple modalities of the 

features are first extracted for the whole hyperspectral scene. A dictionary set and 

a superpixel set both containing multiple features are constructed. Each 

coefficient vector is represented as a linear combination of the corresponding 

training feature dictionary. To preserve the invariant similarities between various 

features, a multi-task joint sparsity norm, which enforces the joint selection of a 

few common classes of training samples to represent a test superpixel over each 

feature and each instance, is introduced. Meanwhile, the practical instance of the 

convex hull can be simultaneously learned with the bounded coefficient (known 

as the pixel weight in this framework). Finally, the classification decision is 

made according to the reconstruction error of each individual class. 
 

2. PROPOSED FRAMEWORK 
 
2.1. Superpixel Segmentation and Distance Definition 

A superpixel in a scene can be defined as a pure perceptual 

uniform parcel. The superpixel segmentation method utilized 
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here is based on graph partitioning and the entropy rate [3], and 

has an efficient computational complexity approximated as 

 logO V V , where V  refers to the number of pixels in the scene. 

The only free parameter T  (the number of superpixels) controls 

the segmentation scale of the scene. The first principal 

component (PC) of the HSI, which maintains the most important 

information of the whole scene, is utilized as the base image for 

the superpixel segmentation. 
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Fig. 2. The procedure of the superpixel segmentation and the hull-based 

superpixel-to-superpixel distance.  
 

As shown in Fig. 2, a parcel belonging to the grass class can be 

clustered as a superpixel, and denoted as  1, , ,Y i gy y y , 

where  d

iy , d  is the dimension of the feature, and g  is the 

number of pixels in the parcel. The hull of set Y  is defined as 

    Y i iH a y . Usually, 1ia  is required to be bounded: 

   | 1, 0i i i iH a a a     Y y

 
 (1) 

In the same scene, another superpixel belonging to the building 

class can also be denoted as a sample set  1, , ,i lZ z z z , 

where  d

iz , and l  is the number of pixels in the building 

superpixel. The distance between two superpixels is defined by 

modeling each set as a convex set: 
2
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 (2) 

For HSI classification, it is believed that the over-segmentation 

procedure usually ensures that there is no intersection between 

superpixels of different classes. Therefore, (2) denotes the 

distance between two support hyperplanes, which is equivalent to 

the distance measured by support vector machine (SVM) [1]. 

That is to say, minimizing the distance can be transformed into 

maximizing the margin between the two convex hulls. 
 
2.2. Superpixel Collaborative Representation 

The superiority of the recent popular CR-based hyperspectral 

classifiers [4, 5] is due to the utilization of the similar training 

samples from different classes to represent the test pixel. In view 

of this, it is natural to inherit such a mechanism in the following 

superpixel-oriented framework. 

Suppose we have M distinct classes, then we set 
D id N

i
 

1, ,i M  as the thi sub-dictionary, whose columns are the iN  

training samples from the thi class, where iN N , and 

each iD can model a convex set for a specific class. The 

collaborative dictionary D , which is made up of all the sub-

dictionaries iD , 1, ,i M , and is concatenated as a uniform 

convex set, maps each hyperspectral pixel into a high-

dimensional space corresponding to the dictionary. To classify 

the unlabeled superpixel Y , we model each of Y  and D  as a 

hull, i.e., Y da  and D db , where a  and b  are 

coefficient vectors. The CR model of the convex hull of the 

superpixel Y can then be expressed as: 

1 1 i i M M
   Y D D D = Da b b b b 

 (3) 

where ib
 
represents the coefficient sub-vector over the thi  sub-

dictionary iD , and   is the random noise. 
 
2.3. The Multi-task Learning Algorithm for Superpixel-

Oriented Collaborative Representation Classification 

Since none of the feature descriptors has the optimal 

discriminative power for all classes, the MTL approach can 

further fuse the complementary discriminative abilities of 

different features by the simultaneous use of the specific learned 

convex hull of each feature. 

Considering each feature as a modality, (3) can be extended as: 
1 1 1 1 1 1 1 1 1 1 1

1 1

1 1
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 (4) 

where the convex sets of kY
 
are extracted from the different 

perspectives of the unlabeled hyperspectral superpixel, their 

corresponding sub-dictionaries kD
 
are constructed with the 

features of the same training samples, and K  is the number of 

modalities. ka , kb , and k ( 1, ,k K ) are the pixel weight set, 

collaborative coefficient set, and random noise set, respectively. 

To make the representation step stable, the MTL-based 

framework also utilizes regularizations as: 
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To combine the discriminative abilities of the multiple features 

for classification, a joint learning procedure is utilized for (5) by 

imposing a class-level sparsity-inducing term on kb , 1, ,k K . 

Similar to the motivation behind CR-based classifiers, it is useful 

to jointly select a few common classes of training samples to 

represent a test convex hull over each feature. That is to say, the 

desired representation vectors for the multiple features should 

share certain class-level sparsity patterns. Given the optimal 

superpixel convex hull 
k kY a , the CR coefficient vector 

kb can 

be rewritten as 1 , ,k k k

M=   
  

b b b , in which 
k

ib  consists of the 

components of 
kb restricted on class i . We stack all the CR 

vectors together, and 1, , K

i i i=   B b b  denotes the representation 

coefficients associated with class i  across the different features. 

Inspired by the sparsity constraint utilized in sparse 

representation classification (SRC) [5] and the role of the 

multiple features, the class-level joint sparsity-inducing term, 

which applies the 0 -norm across the 2 -norm of iB , can be 

shown as 1
0

 , , MF F
  B B , and relaxed as 1

1
 , , MF F
  B B . 

Considering the homogeneities and the similarities of the pixels 

within a parcel, the 2 -norm regularization is available to make 

the problem stable, and with a light computational complexity. 

We can rewrite the regularized MTL model in (5) as its 

Lagrangian formulation: 
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(6) 

where 1 1, , ,  , ,K K       A Ba a b b ,   and   are positive 

constants to balance the data fidelity term and the regularizations, 
k , 1, ,k K  is the Lagrange multiplier set, ,  is the inner 

product, and e  is a row vector whose elements are 1. As a 

convex optimization problem with two variables, (6) can be 

solved by alternating the optimization with the two 

corresponding sub-problems, until the solutions converge to a 

minimum. 

For the first sub-problem, we optimize A  by fixing B , and the 

optimization of (6) becomes: 

 
2 2

2 2
,  + , 1k k k k k k k k kL      Y Da a b a ea

 (7) 

There is a closed-form solution to (7): 

  12 1k

k k    Qep e e , 10.5k k

k k    Qa p e
  (8) 

where  
1

k k

k 


 Q Y Y  and 
k k

k kQ Yp x . 

For the second sub-problem, we optimize B  by fixing A , and 

the optimization of (6) becomes: 
2

1,22
min

K
k k k

k

 B D Bs b  s. t. 
k k kYs a

  (9) 

The problem of (9) is known as the multi-task joint covariate 

selection model in sparse learning, and can be efficiently solved 

within several iterations by the accelerated proximal gradient 

(APG) method [6]. As discussed in [7], the alternating 

minimization approach for such a general convex problem will 

converge to the correct solution, as both sub-problems are 

convex. As in the MTL approaches [4], the label of the unlabeled 

superpixel is then determined by the minimal total residual: 

 
2

1 21
class

K k k k k

i iki M 
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, ,
Y arg min Y Aa b  

 (10) 

The computational burden for the proposed SMTJSRC algorithm 

is as follows. The running time for the first sub-problem is 

 2

maxO Kd , where maxd  is the maximum of the dimension of the 

multiple features, as Q  and its inverse can be pre-computed. The 

second sub-problem takes   1 max2 1O L Kd , where 1L  is the 

average iteration times utilized to solve (9). It is also notable that 

the computational load of (10) is negligible in the superpixel 

MTL procedure. Finally, 2L  is the average iteration times for the 

alternating optimization of the second sub-problem, and the 

computational complexity for labeling the whole hyperspectral 

scene is    2

2 1 max max2 1 logO TL L Kd Kd V V   . 
 

3. EXPERIMENTS AND ANALYSIS 
 

3.1. Data Sets 

The first HSI scene was gathered by the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) sensor in June 

12, 1992, over the Indian Pines test site in North-Western 

Indiana, and consists of 145 145 pixels and 224 spectral 

reflectance bands in the wavelength range 0.4–2.0 m . We used 

the 200 available bands in following procedure. The spatial 

resolution for this image is about 20 m. This image contains 10 

ground-truth classes, and the numbers of the reference data and 

the corresponding visual map are shown in Table II and Fig. 3(b), 

respectively. 

The second scene was acquired by the Reflective Optics Systems 

Imaging Spectrometer (ROSIS) sensor over Pavia University, 

northern Italy. We selected 103 of the bands and cut a patch sized 

610 340 . The geometric resolution of this image is 1.3 m. This 

image contains nine reference classes, and the numbers of the 

reference data and the corresponding visual map are shown in 

Table III and Fig. 4(b), respectively. 
 

3.2. Experimental Setting 

For the multiple-feature extraction, we utilized three meaningful 

features: the spectral value feature, the Gabor texture feature, and 

the differential morphological profile (DMP) feature. The 

discriminative and complementary nature of these three features 

for HSI classification has been detailed in Li et al. [4]. 
 

TABLE I 
CLASSIFICATION APPROACHES IN THE COMPARISON 

SVM-
VS 

1) SVM with RBF kernel 
SVM-
CK [8] 

1) SVM with RBF kernel 
2) Nonlinear 2) Nonlinear 
3) Vector stacking (VS) 3) Composite kernel (CK) 

GCK-
MLR 
[8] 

1) MLR 
MNFL 

[9] 

1)Regularization-free MLR 
2) Nonlinear 2) Nonlinear  
3) Generalized CK (GCK) 3) Vector stacking (VS) 

SRC-
MTL 
[4] 

1) CR 

JCRC-
MTL 
[4] 

1) CR 
2) Linear 2) Linear 

3) Multiple task learning: 

Class-level sparsity prior 

3) Multiple task learning: 
a. Similarity for labeling 
b. Dissimilarities across features 
c. Spatial homogeneity 

 
Based on these multiple features, a number of the state-of-the-art 

multiple-feature classification algorithms were taken as 

benchmarks, as illustrated in Table I in detail. In this table, the 

first line of each item refers to the basic classification principle, 

the second line categories the classifier as linear or not, and the 

last line represents the manner with which the classifier combines 

the multiple features. 

For each dataset, we randomly selected 30 pixels for each class 

as the training samples, and the rest as the test samples from the 

reference data to validate the performances. Each parameter was 

selected by cross-validation from a reasonable range. The 

classification accuracies were averaged over 10 runs for each 

classifier to reduce the possible bias induced by the random 

sampling. All the experiments, except for the SVM-related work 

(accelerated by C++), were carried out using MATLAB on a PC 

with one 3.10 GHz processer and 8.0 Gb of RAM. 
 

3.3. Experimental Results 

The thematic maps of the various classifiers are visually shown 

in Figs. 3–4. In the quantitative evaluation tables, the average 

accuracy for each class, the average overall accuracy (OA), and 

the average kappa coefficient ( ) with their standard deviations 

for the different classifiers are shown in sequence. In addition, 

the average running times for the labeling of the whole scene are 

shown in the bottom line of the quantitative evaluation tables. 

For the homogenous Indian Pines image, the inferior accuracy of 

SRC-MTL, which is even a bit weaker than the direct feature 

stacking approach (VS), suggests the limitations of the pixel-

oriented methods without contextual information. For such an 

image with subtle spectral differences between classes, the 

spatial prior can effectively stabilize the signal and alleviate the 

“salt-and-pepper” phenomenon, as both the quantitative 

evaluation and the thematic map indicate. For the two classifiers 

with spatial information, it can be observed from Fig. 3 that 

JCRC-MTL suffers from the “over-smoothing” problem at the 

optimal neighboring size, while the proposed SMTJSRC method 

can effectively preserve the edge information in most cases. 
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For the second hyperspectral dataset with a high spatial 

resolution, the shape and texture features are more meaningful, 

and can effectively improve the classification result. Based on 

the complementary multiple features, different learning methods 

for utilizing these features significantly affect the discriminability. 

Firstly, the VS-based classifiers are inferior to the others, and the 

proposed MTL mechanism shows the best performance, which is 

consistent with the classification results of the Indian Pines 

image. Secondly, utilizing the contextual information with a 

regular pattern (i.e., stacking neighboring pixels to the test pixel 

together with an equal weight) is still useful, as each parcel in the 

scene covers tens of pixels at least. The tuned optimal 

neighboring size of JCRC-MTL for classifying the Pavia 

University image is small, and the “over-smoothing” problem is 

not significant. Therefore, JCRC-MTL is significantly superior to 

SRC-MTL in this image. All in all, it can be seen that the 

proposed spatial prior related SMTJSRC algorithm shows a 

superior performance. 
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Fig. 3. Classification results for the Indian Pines image: (a) false-color image (R: 57, 

G: 27, B: 17), (b) reference set, (c) SVM-VS, (d) SVM-CK, (e) GCK-MLR, (f) 

MNFL, (g) SRC-MTL, (h) JCRC-MTL, and (i) SMTJSRC. 
 

TABLE II 

REFERENCE INFORMATION, CLASSIFICATION ACCURACY (%), AND RUNNING TIME (SECONDS) FOR THE 

INDIAN PINES IMAGE WITH THE TEST SET 

CLASS 

              Name         Num. 
SVM-

VS 

SVM-

CK 

GCK-

MLR 

MNF

L 

SRC-

MTL 

JCRC

-MTL 

SMTJ

SRC 

Corn-notill 1428  84.08 85.33 84.82 82.55 78.21 85.77 88.44 

Corn-mintill 830  94.09 95.14 93.60 91.86 92.23 94.13 99.05 

Grass-pasture 483  88.48 93.36 91.81 91.30 87.79 91.79 87.97 

Grass-trees 730  93.57 99.53 99.14 98.47 99.63 99.69 100.0 

Hay-windrowed 478  99.53 99.96 99.80 99.46 99.98 100 99.84 

Soybean-notill 972  83.48 86.94 87.39 83.97 82.98 85.89 87.20 

Soybean-mintill 2455  84.16 85.14 87.81 85.93 85.42 89.56 92.45 

Soybean-clean 593  91.37 91.60 91.85 91.67 93.85 98.53 99.13 

Woods 1265  96.33 98.60 98.97 97.72 96.54 99.75 98.11 

Bldg-grass-trees 386  96.43 96.83 98.76 96.26 98.15 99.27 98.15 

OA 
89.10

±1.84 

91.02

±1.65 

91.58

±1.60 

89.89

±1.55 

89.03

±1.77 

92.65

±0.77 

93.96

±0.60 

  
87.39

±2.08 

89.60

±1.89 

90.25

±1.82 

88.29

±1.78 

87.32

±2.01 

91.48

±0.90 
92.99

±0.70 

Time 2.1 14 1.8 0.7 50.5 407.8 3.33 

 
For the running time comparison, it can be seen that MNFL is the 

fastest, and SVM-VS, SVM-CK, GCK-MLR, and the proposed 

SMTJSRC are comparable but a bit slower than the former, and 

the other two classifiers are the slowest. Here, it can be 

concluded that the proposed SMTJSRC is much more efficient 

than the other two MTL-based classifiers, with a superior 

classification accuracy at the same time. 
 

4. CONCLUSION 
 
In this paper, we have proposed an efficient superpixel-oriented 

multi-task joint sparse representation classification algorithm for 

hyperspectral imagery. Therein, an HSI superpixel is represented 

by an adaptive combination of the pixels in a parcel, and class-

level sparsity is utilized to simultaneously integrate the multiple 

features into a uniform classification framework. The main 

advantage of the proposed SMTJSRC is that the superiorities of 

the multiple-feature fusion strategy, the spatial prior utilization, 

and the light computational complexity can be maintained at the 

same time. The extensive experimental results clearly indicate 

that the proposed method is computationally efficient and 

achieves a competitive classification performance. 
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Fig. 4. Classification results for the Pavia University image: (a) false-color 

image (R: 102, G: 56, B: 31), (b) reference set, (c) SVM-VS, (d) SVM-CK, (e) 

GCK-MLR, (f) MNFL, (g) SRC-MTL, (h) JCRC-MTL, and (i) SMTJSRC. 
 

TABLE III 

REFERENCE INFORMATION, CLASSIFICATION ACCURACY (%), AND RUNNING TIME (SECONDS) FOR THE 

PAVIA UNIVERSITY IMAGE WITH THE TEST SET 
CLASS 

        Name          Num. 

SVM-

VS 

SVM-

CK 

GCK-

MLR 

MNF

L 

SRC-

MTL 

JCRC-

MTL 

SMTJ

SRC 

Asphalt 6631 93.74 93.66 95.05 93.96 91.22 97.65 96.69 

Meadows 18649 79.71 86.51 87.88 84.81 90.32 93.41 95.79 

Gravel 2099 95.77 95.67 97.55 96.17 96.49 97.96 98.66 

Trees 3064 96.43 96.29 96.72 97.12 98.67 96.80 92.44 

Metal sheet 1345 99.76 99.55 99.56 99.81 99.98 100 99.24 

Bare soil 5029 92.28 94.58 94.65 94.95 94.79 98.69 99.59 

Bitumen 1330 95.35 97.45 97.14 97.78 97.18 99.69 98.66 

Brick 3682 94.72 96.65 97.87 97.28 97.23 98.93 98.93 

Asphalt 6631 98.76 98.85 98.69 97.04 99.30 98.57 93.54 

OA 
88.14

±2.05 

91.63

±1.70 

92.67

±2.04 

91.09

±1.94 

93.18

±1.65 

96.13 

±1.33 

96.49

±0.90 

  
84.78

±2.57 

89.18

±2.12 

90.49

±2.57 

88.52

±2.42 

91.12

±2.07 

94.94 

±1.70 

95.39

±1.16 

Time 14.8 13 35.20 4.1 368.3 2944.2 31.63 
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