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Abstract—Building density is considered as an environmental
parameter of great significance for urban management, and it can
also help us to understand how cities function. However, in de-
veloping countries, building density information is often lacking
or incomplete in a large number of cities. To address this prob-
lem, this paper presents a method for the quantitative estimation
of building density using a support vector regression model to es-
tablish the relationship between building density and the features
extracted from the image, including spectral, morphological, and
textural features. The importance and relevance of the different
features is investigated by a feature selection method named recur-
sive feature elimination. Tests performed on three representative
megacities in China confirm that the proposed method achieves
satisfactory results for building density estimation in terms of the
low root-mean-square errors (∼0.05) and visual effect. It is also
found that the combination of feature sets outperforms the single
feature set, indicating the need for simultaneous consideration of
all the categories of features. The knowledge of the most informa-
tive features provides an insight into selecting the most effective
parameters for building density mapping. The investigation of the
transferability between geographical regions confirms that the self-
training achieves the better performance compared to the transfer
training. The results with regard to the regression accuracy, fea-
ture selection, and the comparison with other methods indicate the
effectiveness of the multifeature approach when applied to building
density estimation.

Index Terms—Building density, feature selection, mathematical
morphology, remote sensing, support vector regression (SVR), tex-
ture analysis.

I. INTRODUCTION

A S THE world population and economy grow, the high rate
of urbanization is resulting in vast urban expansion and

some severe dilemmas, such as urban congestion, air pollution,
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and urban heat island [1], [2]. In this context, the geostatisti-
cal parameters of a city, e.g., urban extent, human settlements,
and urban building density [3]–[5], have become essential for
urban planning and environmental management. Building den-
sity, which indicates the ratio of the coverage of the buildings’
footprints to the size of the area of interest [6], [7], is a cru-
cial urban environmental parameter, which is more effective
at evaluating disaster risk than building/nonbuilding dichotomy
[6], [8]. Thus, building density has been the subject of great
attention from many stakeholders, such as urban planners and
real estate agents. However, in developing countries, building
density information is often incomplete or unavailable in many
cities [9], especially in the newly developed urban areas. More-
over, traditionally, building density information production re-
lies on field investigation and manual delineation, which is ex-
tremely time consuming, and is not conducive to data updating.
In view of this, the efficient generation and renewal of building
density information is urgently needed in the related research
community. Fortunately, high-resolution remote sensing data, as
an economical and commercially available information source,
have the promising potential to deal with such a task, consider-
ing their excellent ability to describe detailed urban land-cover
types.

In the related studies, active remote sensing data have been
utilized for building density mapping. The light detection and
ranging remote sensing technology, which is able to provide
accurate surface elevation measurement and directly extract
building footprints for precise calculation of building density,
is limited by the extraordinary cost of large-scale data collec-
tion and processing [9], [10]. Synthetic aperture radar images
can be used to estimate building density by considering their
polarization information [6] or textural features [11], but the
complex scattering mechanisms in urban areas may reduce the
estimation accuracy [12], and the building density parameter
may not be fully characterized when just using textural infor-
mation. With the improvement of remote sensors, optical very
high-resolution (VHR) remotely sensed imagery can provide us
with rich geospatial details, which opens up a new possibility
for building density estimation. To data, most of the previous
studies have focused on urban area extraction [13]–[17] or build-
ing detection [18], [19], leading to dichotomous classification,
with no quantitative or detailed building density information.
One simple method for building density estimation is based
on building detection. However, this procedure is completely
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dependent on the accuracy of the building extraction, and the
accurate detection of buildings remains a big challenge since a
number of urban structures can exhibit similar spectral proper-
ties, e.g., roads, soil, and other man-made urban facilities [20].
Moreover, due to the viewing angle of the imaging sensor, it is
often very difficult to obtain the real footprints of buildings in
urban areas from remote sensing imagery for accurate building
density estimation. As an alternative to the approaches based
on building detection, we simultaneously consider the spectral,
morphological, and textural features to build a regression model
to directly and accurately estimate the building density in this
study. The features obtained from the VHR imagery can provide
a sophisticated description of buildings and building clusters,
which leads to more accurate building density estimation.

The image spectrum, which serves as the fundamental at-
tribute of the image, has the ability to record the reflectance of
objects in different spectral bands. In general, buildings exhibit
relatively high signals in the visible bands [20], while vegeta-
tion shows high response values in the near-infrared band [21].
Therefore, spectral features, including multispectral bands as
well as spectral differences [22], have the potential to represent
both buildings and nonbuilding areas for building density es-
timation. Mathematical morphology, based on set theory, has
been successful in dealing with a number of problems in remote
sensing (e.g., classification and segmentation) [23]. Morpholog-
ical features are able to effectively capture the basic geometric
and structural characteristic of local buildings due to the fact that
buildings are generally bright structures and cast shadows pro-
ducing high local contrast [24]. The cooccurrence relationship
of buildings and shadows can be characterized by differential
morphological profiles (DMPs) [25], owing to their ability to
highlight both bright and dark structures. Accordingly, DMPs
have a great potential for building density estimation. Texture,
which is the term used to characterize the tonal variation in an
image, has played an important role in image processing and
interpretation. In this study, we consider textural measures de-
rived from the gray-level cooccurrence matrix (GLCM) [26],
which has been demonstrated to be very efficient for analyz-
ing the textural information of remote sensing imagery [27].
Textural features are capable of describing building clusters at
a macrolevel, since buildings and their complex surroundings,
e.g., roads, open spaces, and trees, produce high spatial hetero-
geneity [27], which implies that textural measures could also be
utilized to delineate building density. Overall, these three fea-
ture sets (i.e., spectral, morphological, and textural features) are
jointly considered, resulting in an integrated characterization of
building density.

In this study, the relationship between building density and
the multiple features extracted from the remote sensing imagery
is investigated. Support vector regression (SVR) is employed
to estimate the continuous parameter of building density in this
paper due to its great ability to handle complex and nonlin-
ear data distributions in high-dimensional feature spaces [28].
Considering that a large number of features may lead to infor-
mation redundancy, both feature selection and the analysis of
the relevance of the features are essential when encountering
such input spaces. In this study, the importance and relevance

of the features is assessed by a feature selection method named
“recursive feature elimination” (RFE) [29], a feature selection
algorithm designed for SVR, which calculates the changes in
the decision function as a criterion for the feature ranking, and
performs feature selection in the process of training [30]. Thus,
RFE tends to find features better suited to the predetermined
SVR model. Both the validity and transferability of the regres-
sion model are ascertained on representative images, and the
proposed method is also compared with other building density
estimation approaches.

The main contributions of this study lie in the following as-
pects: 1) building density, one of the most important urban en-
vironmental parameters, is effectively estimated using remote
sensing imagery, which can help us to understand how cities
function; 2) we propose a new framework, which simultaneously
considers the spectral, morphological, and textural features of
human settlements to comprehensively describe urban building
density; and 3) the impact of the features is extensively ana-
lyzed, giving an insight into the most informative and efficient
features on building density estimation.

The remainder of this paper is organized as follows.
Section II specifically describes the building density estimation
method. The datasets and experimental results are presented in
Section III and discussed in Section IV, followed by the conclu-
sion in Section V.

II. METHODOLOGY

The framework of the proposed method for building den-
sity estimation is illustrated in Fig. 1. First, three categories
of features, including spectral, morphological, and textural fea-
tures, are derived from high-resolution remote sensing imagery.
It is expected that their combination can effectively indicate the
building density. Subsequently, the regression model is trained
and built by measuring the relationship between these features
and reference building density values. Finally, the regression
model is used to predict the building density of the whole
image.

A. Input Features for Building Density Estimation

In this section, three categories of features (see Table I) are
taken into account to describe building density: 1) the spec-
tral features are used to record the reflectance of buildings and
nonbuildings; 2) the morphological features are employed to de-
lineate local building structures; and 3) the textural features are
considered to describe the tonal variations of building clusters.
Subsequently, the SVR model is used to build the relationship
between these feature sets and the building density. Note that
this framework is designed for images containing visible and
near-infrared bands.

1) Spectral Feature: The spectral feature is the fundamen-
tal property of remotely sensed imagery. In general, buildings
appear as bright structures with high reflectance in the visible
bands [27], and vegetation (nonbuilding) presents correspond-
ingly high values in the near-infrared band due to its biophysical
property [21]. Furthermore, the spectral difference [22] can pro-
vide us with enhanced information about the targets (e.g., the
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Fig. 1. Flowchart of the proposed method for building density estimation.

TABLE I
FEATURES USED IN THE MODEL

Feature type Feature name Feature description

Spectral Blue band Blue band of the image
Green band Green band of the image
Red band Red band of the image
NIR band Near-infrared band of the image

n(NIR−Red) n(NIR − Red) = N IR −R e d
N IR + R e d

n(NIR−Green) n(NIR − Green) = N IR −G re e n
N IR + G re e n

n(NIR−Blue) n(NIR − Blue) = N IR −B lu e
N IR + B lu e

n(Red−Green) n(Red − Green) = R e d−G re e n
R e d + G r e e n

n(Red−Blue) n(Red − Blue) = R e d−B lu e
R e d + B lu e

n(Green−Blue) n(Green − Blue) = G re e n−B lu e
G r e e n + B lu e

Morphological DMPW T H DMPW T H = {DMPW T H (s, dir) : sm in ≤ s ≤ sm a x , dir ∈ D}
DMPW T H (s, dir) = |WTH(s + Δs, dir) − WTH)s, dir)|

DMPB T H DMPB T H (s, dir) = |BTH(s + Δs, dir) − BTH)s, dir)|
DMPB T H = {DMPB T H (s, dir) : sm in ≤ s ≤ sm a x , dir ∈ D}

Textural Mean Average of gray level
Variance Gray-level variance

Homogeneity Homogeneity =
N∑

i = 1

N∑

j = 1

p ( i , j )
1 + ( i−j ) 2

Contrast Contrast =
N∑

i = 1

N∑

j = 1
p(i, j ) − (i − j )2

Dissimilarity Dissimilarity =
N∑

i = 1

N∑

j = 1
p(i, j ) · |i − j |

Entropy Entropy = −
N∑

i = 1

N∑

j = 1
p(i, j ) · log(p(i, j ))

Second moment Secondmoment =
N∑

i = 1

N∑

j = 1
p(i, j )2

Correlation Correlation =
N∑

i = 1

N∑

j = 1

( i ·j ) ·p ( i , j )−μ i ·μ j
σ i ·σ j

vegetation information can be enhanced by the difference be-
tween the near-infrared band and the red band). Thus, the mul-
tispectral bands as well as the spectral differences are employed
in this study since they have the ability to characterize both
building and nonbuilding areas for building density estimation.

2) Morphological Feature: Mathematical morphology has
been demonstrated to be an effective tool for the extraction
of the geometrical structures of objects [24], [30]. Opening
and closing are two commonly used operators, removing bright
(compared to the surroundings) and dark structures of an image,
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respectively. Top-hat transformation, which is defined as the
difference between an original image and its morphological
opening or closing, can be used to highlight the bright (white
top-hat) or dark (black top-hat) structures of an image.

The morphological feature is able to delineate the spectral–
structural characteristics of buildings (e.g., size, contrast) since
buildings are generally bright structures of a certain size, and
the spatially adjacent shadows lead to high local contrast [20].
DMPs of the white and black top-hat transformation have the
ability to represent bright and dark structures, respectively, and
can be used to describe the cooccurrence relationship between
buildings and their cast shadows. Consequently, DMPs of the
white and black top-hat transformation are considered due to
their great potential for building density estimation.

3) Textural Feature: Texture refers to the visual effect pro-
duced by tonal variations over relatively small areas [31]. With
the improvement of the spatial resolution of remote sensing im-
ages, spectral features have been found to be inadequate for the
discrimination of spectrally similar classes in high-resolution
imagery, such as buildings, roads, and parking lots. In this con-
text, the addition of the textural feature provides supplementary
information for the images. Thus, texture analysis is becoming
increasingly important in remote sensing image processing and
interpretation [31].

Urban areas are composed of diverse scene elements (e.g.,
buildings, roads, and open areas) with complex spatial patterns.
A variety of materials (such as concrete, asphalt, plastic, glass,
metal, etc.) are used to build houses, commercial buildings, and
recreational areas. Buildings and their surroundings, such as
trees, roads, public infrastructures, and open spaces, lead to tonal
variations in remote sensing images. The spatial heterogeneity,
as exhibited by urban areas and building clusters, can be exactly
characterized by texture information at the macrolevel. Thus,
textural features are taken into account since they have great
potential to describe building density. In this study, two first-
order and six second-order textural features are derived from the
GLCM [26], which is a popular statistical algorithm for texture
measurement. The textural measures are computed with the
window size corresponding to the spatial scale used to calculate
the building density.

Some representative features for a typical area with vari-
ous land-use types (e.g., park, residential area) are presented in
Fig. 2. It can be been seen that n(NIR−Red) (see the feature
description in Table I) denotes the vegetation component, and
vegetation is regarded as nonbuilding areas with low building
density. DMPWTH mainly represents the buildings with high
reflectance. The relatively dark open spaces between buildings
and shaded areas are highlighted in the DMPBTH feature im-
age. Thus, the local structures of individual buildings can be de-
scribed with the morphological features. Homogeneity shows the
low signals but Contrast has high response values for building
areas with a relatively high density, which implies that building
clusters exhibit heterogeneous textures in terms of visual effect.
Summing up, the features of DMPBTH , DMPWTH , and Con-
trast present a positive association with building density, while
n(NIR−Red) and Homogeneity are inversely correlated with
building density. The integration of these features, therefore,

has a great potential to achieve a better delineation of building
density.

In Table I, WTH and BTH are the white and black top hat by
reconstruction of the base image; s and dir represent the scale
and direction of a linear structural element (SE), respectively;
D denotes the set of directionality of the linear SE; i and j are
the gray levels in the windows; p(i,j) represents the (i,j)th entry
of the GLCM; N is the number of gray levels of the image; and
μ and σ are the mean and standard deviation, respectively. The
maximum of the visible bands for each pixel is computed as
the base image for derivation of the morphological and textural
features [27].

B. Support Vector Regression and Recursive Feature
Elimination

In this paper, we estimate the building density through the
multiple features derived from remotely sensed imagery. Re-
gression models have previously been applied to predict con-
tinuous parameters in environmental studies [2]. In general, a
regression model can be briefly written as

y = f(x) (1)

where x and y indicate the predictor variable and the associated
dependent variable, respectively; and f(·) denotes the regression
model, which is built and trained by measuring the relationship
between the two kinds of variables. Specifically, in this study, the
relationship between the reference building density (dependent
variable) and multiple features (predictor variables) extracted
from the images is established.

In this study, SVR [32] is employed to predict the building
density due to its remarkable ability to deal with complex
datasets, such as a nonlinear data distribution in a high-
dimensional space. The main idea behind SVR is to estimate
the dependence between pairs of predictor variables and a
dependent variable by fitting an optimal approximating hyper-
plane to a set of training samples. The hyperplane is defined by
an optimal linear function when it minimizes a cost function
considering a maximized margin that encloses the samples, and
a minimized error of approximation. The approximation is con-
trolled by a ε-insensitive loss function that directly influences
the width of the margin. The error of approximation, i.e., the
samples located outside of the margin, is measured using slack
variables. SVR shows a superior performance by implicitly map-
ping the original predictor variables into a higher dimensional
feature space, wherein the new data distribution enables a better
fitting of a linear combination. The standard form of SVR is

Minimize
1
2
‖w‖2 + C

∑

i

(ξi + ξi
∗)

subject to

⎧
⎨

⎩

k (w,xi) + b − yi ≤ ε + ξi

yi − k (w,xi) − b ≤ ε + ξi
∗

ξi, ξi
∗ ≥ 0

(2)

where ‖ · ‖, (·, ·), and k(·, ·) represent the Euclidean norm,
the inner product, and the kernel mapping, respectively; (w, b)
represents the regression coefficient and the bias term; and ε
measures the precision of the approximation term. For SVR, C
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Fig. 2. Example of building density and some representative features for a typical area (see Table I for the complete feature description).

determines the tradeoff between the flatness of the regression
model and the amount to which deviations larger than ε are
tolerated, ξi and ξi

∗ refer to the ith slack variables used to relax
the error of the approximation. In this study, SVR is carried out
with an open-source software package, LIBSVM [33], in which
the parameter settings, including the width of the Gaussian
kernel, as well as C and ε, are determined by a grid search in
conjunction with internal tenfold cross validation [34].

Considering that a large number of features may result in
information redundancy, feature ranking and selection should
be taken into account when dealing with such datasets. In the
proposed framework, RFE, a feature selection algorithm de-
signed for SVR, is able to find features that are better suited to
the predetermined SVR model. Thus, it is applied to assess the
importance of the multiple features whose selection criterion
is based on an analysis of the smallest change in cost function
[29]. In [29], the W2 quantity, a measure of the predictive ability
of the model, was proposed as follows:

W 2 = ‖w‖2 =
∑

i,j

(αi − α∗
i )(αj − α∗

j )k(xi, xj ) (3)

where α and α∗ are Lagrange multipliers.
By using this property and assuming that the set of support

vectors remains unchanged when eliminating the less informa-
tive features, it is possible to compute W 2

(−t) for the feature
subsets minus the considered feature t without retraining the
model. Successively, the resulting ranking criterion is

DW 2
t =

∣
∣
∣W 2 − W 2

(−t)

∣
∣
∣ . (4)

The input corresponding to the smallest difference DW 2
t is

removed. The procedure can be iterated to use RFE to generate
a feature ranking list [29].

III. EXPERIMENTS AND RESULTS

A. Datasets

In this study, optical high-resolution remote sensing images
derived from GeoEye-1 (GE-1) and WorldView-2 (WV-2) satel-
lites were used for the validation. Specifically, three test images
over three representative megacities in China were considered,
as shown in Fig. 3. The data have a spatial resolution of 2 m, with
image sizes of 6433 × 5409, 6327 × 4156, and 3288 × 3396
pixels for Shenzhen (WV-2), Wuhan (GE-1), and Hong Kong
(WV-2), respectively. These cities present a wide variety of lo-
cations, economic development levels, and urban landscapes.
The dense urban villages [35] in Wuhan and Shenzhen, as well
as the high-rise buildings in Hong Kong, pose great challenges
to the accurate estimation of building density.

In this study, the real building footprints for the building den-
sity estimation were obtained from Map World [36]. As the first
official free mapping service of China, Map World has gradually
become the main source of geographic information databases,
aiming to offer the most authoritative and comprehensive map-
ping services to the public. Compared to other open-source
maps, e.g., OpenStreetMap [37], Map World can provide more
detailed building coverage information for Chinese cities. The
reference building density was calculated as follows:

Building density =
Scoverage

Sland
(5)

where Scoverage represents the building coverage provided by the
Map World data, and Sland is the area considered. It can be seen
that the determination of Sland has an impact on the building
density estimation. Hence, in this experiment, the spatial unit
Sland was set as different sizes of square window, with edge
lengths of 100, 200, 300 m, etc.
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Fig. 3. Study areas and datasets. (a) Overview of the study areas. (b) Shenzhen. (c) Wuhan. (d) Hong Kong. (e) Example of building footprints obtained from
Map World.

B. General Results

Thanks to the reference data obtained from Map World for the
study areas, there were sufficient samples available for model
training and validation. The reference building density was cal-
culated at various spatial scales. Taking into account the spatial
unit of the building density estimation, the training samples
were randomly selected with a distance constraint [38] to en-
sure the spatial independence according to the spatial scale used
to estimate the building density. For instance, when the build-
ing density was to be estimated with a spatial scale of 200 m,
each training sample selected had to be at least 200 m away
from the other ones. In this case, the number of training samples
varied with the spatial scale. The other samples, accounting for
the overwhelming majority (>99%) of the total samples avail-
able, were used for the validation. The regression model was
generated by training samples in each image and tested with a

validation dataset of the same image. The root-mean-square er-
ror (RMSE) [2] was used to quantitatively assess the estimation
accuracy, where a lower RMSE indicates a better performance.
In the following, the results of the spatial scale of 200 m are pre-
sented unless noted otherwise, and the effect of the spatial scale
on building density estimation is discussed in Section IV-A.

Table II lists the training sample size and the accuracy of
the estimated building density. “All cities” denotes the overall
results of all the test sites. The small model errors (i.e., RMSE)
indicate that satisfactory accuracies are obtained for all the test
data. In the meantime, the performances of the estimated build-
ing densities derived by various combinations of feature sets
are also presented in Fig. 4. For simplification, in the figure,
“Spectral + Textural” means joint feeding of these two types of
features into the regression model. In general, all the cases show
similar tendencies, in that the combination of all the predictor
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TABLE II
TRAINING SAMPLE SIZE AND ACCURACY OF THE TEST CITIES AT THE SPATIAL

SCALE OF 200 M USING ALL FEATURES AND SELECTED FEATURES BY THE RFE
METHOD (SEE SECTION IV-D)

City # Training sample RMSE

All features Selected features

Shenzhen 1814 0.0514 0.0533
Wuhan 1886 0.0526 0.0544
Hong Kong 590 0.0551 0.0592
All cities 4290 0.0525 0.0546

Fig. 4. Regression performance of building density estimation for different
input feature sets.

features, i.e., “Spectral + Morphological + Textural,” achieves
the best regression performance, indicating that the simulta-
neous consideration of local building structures and building
cluster textures, as well as the spectral information, is the most
accurate way to estimate building density. Specifically, when
focusing on a single feature category, the spectral and textural
features show a very close performance, and they both are su-
perior to the morphological features. This is probably due to the
fact that the former two feature sets consist of predictors, such
as visible bands, n(NIR−Red), Homogeneity, and Contrast (see
Fig. 2), denoting both positive and negative associations with
building density, which leads to a more comprehensive char-
acterization of the building density. In addition, it can be seen
that the performance is significantly improved when two feature
categories are integrated. In fact, the combination of the textural
and spectral features (which ranks second among all the combi-
nations) achieves a satisfactory accuracy, which is close to the
result of “All features.”

The visual effects of the estimated building density for the
three study areas are further illustrated in Fig. 5. Note that
the large water bodies (e.g., lake and sea) are masked out in
black since these areas have no relevance to building density.
In general, it is noticeable that the estimated building density is
in close accordance with the reference data. Low-density areas

within the cities are mainly related to mountains, parks, squares,
and harbors [see Fig. 6(a) and (b)]. On the other hand, the
high-density areas are usually associated with central business
districts, urban villages [35], and traditional residential clusters
[see Fig. 6(c) and (d)]. In Wuhan, the high-density areas
concentrate in the top left part of the image, which corresponds
to the old town of the city with intensive low-rise buildings
[see Fig. 6(e)]. As for Hong Kong, it can be clearly seen that a
large continuous area in the left side of the image, which is a
famous commercial district, Mong Kok [see Fig. 6(f)], presents
high-density values. The densely built areas in Shenzhen show
a relatively dispersed distribution compared to Wuhan and
Hong Kong. On the whole, through a visual inspection, the
areas with low-/high-density values are visibly apparent and
uniform in both the reference data and estimated results.

IV. DISCUSSIONS

A. Effect of the Spatial Scale on Building Density Estimation

The window size for calculating building density is an impor-
tant parameter [8], which impacts both the prediction accuracy
and mapping detail. In this experiment, building densities with
different spatial scales (e.g., 100, 200, 300 m, etc.) were gen-
erated. We investigated the effect of the spatial scale in terms
of both accuracy and detail. For accuracy, the RMSEs between
the reference data and estimated building density at the differ-
ent spatial scales were evaluated. For the map detail, according
to [3], mutual information, one measure of information theory,
was employed, which is expressed as

I(X,Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(6)

where X and Y are two random variables; p(x, y) is the joint
probability distribution function of X and Y; and p(x) and p(y)
are the marginal probability distribution functions of X and Y,
respectively. This index is able to denote how much detail is
lost with the increase of the spatial scale, where a lower value
indicates less information preservation. Since there are two vari-
ables involved in the calculation of mutual information, we need
to choose a base image as a comparison to all the other images.
According to [3], the density at a 50-m scale was considered as
an alternative base image to compute the mutual information.
The interval of building density was set as 0.01. In this case, p(x)
or p(y) denotes the marginal probability of density values of one
image falling into each interval (e.g., 0−0.01, 0.01−0.02), and
p(x, y) represents the joint probability of density values of two
images falling into certain intervals.

As expected, the RMSE values tend to decline with the growth
of the spatial size [see Fig. 7(a)], but the results lose more
information at the larger spatial scales [see Fig. 7(b)]. Both
measures show the largest changes between the spatial scales
of 100 and 200 m. An apparent difficulty when deriving an
appropriate spatial scale is to balance the reduction of the model
error and the preservation of spatial details. According to [3],
by referring to the two quantitative criteria (i.e., RMSE and
mutual information), in this study, 200 m can be considered as
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Fig. 5. Reference building density (first row), estimated building density using all features (second row), and estimated building density using selected features
by the RFE method (third row, see Section IV-D) for: (a) Shenzhen, (b) Wuhan, and (c) Kong Hong. The spatial scale of the building density is 200 m.

a reasonable spatial scale for all the study cities for building
density mapping, since it achieves low RMSEs (∼0.05) and
preserves more detailed information. This selection of the spatial
scale, which is an acceptable tradeoff between the prediction
accuracy and mapping detail, is very close to the result reported
in [3].

B. Correlations Between Single Features and Building Density

The correlations between single features and the reference
building density, quantitatively assessed by correlation coeffi-
cients [6], are shown in Fig. 8. Among the spectral features,
four features containing the near-infrared band, indicating veg-
etation components, are inversely correlated to building density
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Fig. 6. Examples of different urban landscapes. True-color image (first row). Reference building density (second row). Estimated building density using all
features (third row). Estimated building density using selected features by the RFE method (last row, see Section IV-D). The spatial scale of building density is
200 m.

Fig. 7. Evaluation of the building density estimation with different spatial scales: (a) RMSE between the reference data and estimated building density, and (b)
mutual information compared to the 50-m spatial scale.

because of their representativeness for nonbuilding areas, while
the other features present a positive correlation with building
density, since buildings often have a relatively high reflectance
in the visible bands. With regard to the morphological features,
DMPWTH shows larger values, suggesting that the bright struc-
tures are more correlated with building density than the dark

structures represented by DMPBTH . DMPWTH is perceived as
a direct descriptor for local building structures, and DMPBTH is
used to characterize the shadow, which is an indirect approach to
imply the existence of buildings. Accordingly, the performance
of DMPWTH is more efficient than that of DMPBTH with re-
spect to describing building density. As for the textural features,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 8. Correlation coefficients between single features and building density.

Fig. 9. Some typical examples for morphological features used in this study.

most of the measures present a relatively high correlation with
building density, wherein the heterogeneous textural measures
(e.g., Contrast, Dissimilarity) are positively associated with the

Fig. 10. Accuracies of building density regression for various combinations
of morphological features.

building density, while the homogeneous textural features (e.g.,
Homogeneity, Second moment) present negative associations.
The different buildings, which are constructed with complex
and diverse materials, as well as their complicated surroundings
(e.g., roads, open spaces), lead to high regional tonal variations
in remote sensing images. Consequently, building clusters ex-
hibit evident heterogeneity in terms of visual effect.
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Fig. 11. Feature ranking by the RFE algorithm for: (a) Shenzhen, (b) Wuhan, and (c) Hong Kong. The red bars represent features ranking 1−5, the orange bars
represent features ranking 6−10, the green bars represent features ranking 11−15, and the black bars represent features ranking 16−20. (d) Overall feature ranking
result for the three cities, where the upper horizontal line denotes the maximum, the lower horizontal line denotes the minimum, and the black dot denotes the
average value.

TABLE III
TOP TEN FEATURES IN TERMS OF AVERAGE RANKING FOR THE THREE CITIES

Overall ranking Feature

1 DMPW T H

2 Dissimilarity
3 n(Green−Blue)
4 n(Red−Green)
5 Contrast
6 Mean
7 n(Red−Blue)
8 n(NIR−Red)
9 NIR band
10 Variance

C. Consideration of Shadows in High-Resolution Imagery

The shadows in high-resolution imagery should be taken into
consideration when estimating building density. The morpho-
logical features used in this study have ability to highlight both
bright (DMPWTH ) and dark (DMPBTH ) structures, which can
help us to characterize the cooccurrence relationship of build-
ings and shadows. DMPWTH mainly indicates the buildings

with high spectral reflectance, and the relative dark areas (e.g.,
shadows) are highlighted in the DMPBTH feature image. Some
typical examples are presented in Fig. 9. It can be observed that
in high-resolution imagery, the shadows can also indicate the
presence of buildings. In Fig. 10, it can be seen with the ad-
dition of DMPBTH , the estimated building density achieves a
more accurate performance (smaller RMSE) compared to only
using DMPWTH as an input feature for regression. As a sum-
mary, dark structures (e.g., shadows) characterized by DMPBTH
can help us to estimate building density, and, hence, we choose
DMPBTH as a member of candidate feature pool for subsequent
building density regression in this study.

D. Feature Ranking and Feature Subset Selection

The importance of the input variables for the building den-
sity estimation was measured by the RFE algorithm described
in Section II. The sequential feature ranking acquired by RFE
is shown in Fig. 11. The features ranked from 16 to 20 (i.e.,
the first five features removed by RFE) belong to the spec-
tral and textural feature sets for each city, which implies that a
strong redundancy may exist in these two categories of features.
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Fig. 12. Accuracy of the estimated building density obtained using feature subsets composed of different numbers of features. (a) RMSE. (b) Percentage increase
of RMSE.

TABLE IV
ACCURACY OF THE TEST CITIES WITH DIFFERENT FEATURE SELECTION

METHODS

City SVR-CFS LASSO

Shenzhen 0.0556 0.0569
Wuhan 0.0565 0.0594
Hong Kong 0.0639 0.0654

The top five features for each study area all come from differ-
ent feature sets, indicating the necessity for the simultaneous
involvement of spectral, morphological, and textural features.
The overall feature contribution result (i.e., the maximum, min-
imum, and mean values of the feature ranking) is also presented
in Fig. 11(d). The importance of features varies in the different
study areas, but some features remain relatively stable, such as
DMPWTH and DMPBTH . The visible bands and the homoge-
neous textures (e.g., Homogeneity, Second moment) make the
least contribution to building density estimation, which is prob-
ably due to the presence of other similar features, such as the
spectral difference in visible bands and n(NIR−Red). The top
ten features according to the average ranking of the three cities
are reported in Table III. DMPWTH , as a single feature, is of the
most importance due to its great ability to directly describe local
building structures. The heterogeneous textural measures, such
as Dissimilarity, Contrast, and Variance, play very important
roles in the regression model owing to their ability to character-
ize the heterogeneity of building clusters. Spectral features, in
the form of spectral differences between visible bands as well as
the NIR band, also make great contributions to building density

estimation since they can characterize the reflectance of both
buildings and nonbuildings.

According to the feature ranking sequence, the accuracies
(i.e., RMSE) using the feature subsets of different numbers of
features are shown in Fig. 12(a). It is clear that the RMSE
values tend to decline sharply at first and then become stable
after several informative features are involved in the regression,
which implies that information redundancy exists in our model,
and a satisfactory accuracy for building density estimation with
fewer but more important features could be achieved. A smaller
feature subset selection was obtained based on the following:

IncRMSE =
RMSE − RMSEmin

RMSEmin
× 100% (7)

where RMSEmin is the minimal RMSE value, and IncRMSE
is the percentage increase compared with RMSEmin .

In this study, the percentage growth of RMSE was set as less
than 10%, which is a slight degradation that does not signif-
icantly affect the performance [39]. Under this circumstance,
the feature set with the smallest size was selected as an ac-
ceptable approach for the reduction of feature redundancy [see
Fig. 12(b)]. Based on such a criterion, the number of remaining
features only accounts for about one-third of the initial dimen-
sionality of all the feature sets [see Fig. 12(b)]. By keeping only
six or seven features, the performances of the selected features
are very close to those of all features in terms of both quan-
titative comparison and visual effect (see Table II and Fig. 5),
which indicates the effectiveness of the feature selection using
the RFE method.

As comparisons, one of the filter-based methods named
“correlation-based feature selection” (CFS) [40] and another



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: URBAN BUILDING DENSITY ESTIMATION FROM HIGH-RESOLUTION IMAGERY USING MULTIPLE FEATURES AND SVR 13

Fig. 13. Results for a rural area of Harbin. (a) True-color image. (b) Reference building density. (c) Estimated building density using self-training. (d) Estimated
building density using transfer training (model trained in Wuhan).

TABLE V
ACCURACY OF BUILDING DENSITY ESTIMATION USING SELF-TRAINING (DIAGONAL LINE) AND TRANSFER TRAINING (OFF-DIAGONAL ELEMENTS)

regression analysis method called “least absolute shrinkage and
selection operator” (LASSO) [41] were also used. CFS can be
considered as a preprocessing step and is independent of the
choice of predictor. It aims to find the features that are highly
correlated with the dependent variable and uncorrelated with
each other. LASSO performs both variable selection and regu-
larization in order to enhance the prediction accuracy and inter-
pretability of the regression model. More details can be found
in [40] and [41]. The regression accuracies obtained with CFS
and LASSO are presented in Table IV, which are inferior to
those obtained with SVR-RFE. (see Table II for comparison).
The results show that SVR-RFE is an effective regression and
feature selection method in our case.

E. Trained Model for Transfer Between Geographical Regions

To investigate the geographical transferability between the
test cities, the regression model was trained based on one image
and applied to the other test sites [42]. Since the correlations
of some features with building density could be inconsistent
in different cities, the features which have a relatively high
relevance to building density in all the test sites were consid-
ered to have more potential transferability [43]. According to
Fig. 8 (all cities), the features whose correlation coefficients in
absolute values were larger than 0.4 [44], indicating a relatively
consistent distribution across the cities, were selected to test
the generalizability of the trained model for transfer between
geographical regions.

TABLE VI
ACCURACY OF BUILDING DENSITY ESTIMATION BASED ON BUILDING

DETECTION

City MBI MBI-pp

Shenzhen 0.0784 0.0755
Wuhan 0.0828 0.0796
Hong Kong 0.0774 0.0769

An additional QuickBird image of a rural area of Harbin with
a spatial resolution of 2.4 m (see Fig. 13) was also used. For
this image, we manually delineated the building roofs for the
reference building density calculation as the low-rise buildings
in the rural area of Harbin are not significantly affected by
the viewing angle. The diagonal elements in Table V represent
the RMSE values achieved by self-training (i.e., the regression
model is trained based on one image and applied to the same test
site). On the other hand, the off-diagonal elements record the
accuracy of the transfer-training model. It is demonstrated that in
all the cases, the self-training achieves the best results compared
to the transfer training, which can be easily understood due to
the differences (e.g., landscapes, sensors) between the test sites.

F. Comparison With Building Density Estimation Based on
Building Detection

The proposed framework for building density estimation was
also compared with approaches based on building detection.
Two recently developed methods were used for the building de-
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Fig. 14. Estimated building density based on building detection (MBI-pp).

tection: the original morphological building index (MBI) [20],
[24] and the MBI combined with a postprocessing procedure
(MBI-pp) [45]. MBI aims to describe the spectral–spatial char-
acteristic of buildings (e.g., brightness, size, contrast, and di-
rectionality) based on a set of morphological operations, and
MBI-pp improves the MBI detector by considering spectral,
shadow, and shape constraints. MBI-pp has previously been
compared with other state-of-the-art methods, such as mul-
tilabel partitioning [46] and GrabCut [47], which confirmed
that MBI-pp can achieve a comparable or even better perfor-
mance for building extraction. Therefore, in this study, as a
comparison with the proposed framework, MBI-pp and the orig-
inal MBI were used to detect the building structures and compute
the building density.

The results of the estimated building density based on build-
ing detection are presented in Table VI and Fig. 14. The
method proposed in this paper performs better (see Table II and
Fig. 5) than the approaches based on MBI and MBI-pp, which
are subject to complex threshold selection and are dependent
on the accuracy of the building identification. Moreover, due to
the viewing angle of the remote sensing images, both MBI and
MBI-pp have difficulty in extracting the real building footprints
in the urban areas, while the building density is defined as the
building coverage ratio within an area of interest and the refer-
ence building inventories obtained from Map World also refer
to the building footprints.

V. CONCLUSION

Building density is an essential urban environmental param-
eter and plays a key role in research into urban planning and
human behavior. However, at the present time, building density
information in China is either lacking or incomplete for a num-
ber of major cities. To address this problem, in this study, we
have proposed a method for quantitative building density esti-
mation using high-resolution satellite images (e.g., GeoEye-1,
WorldView-2), by combining spectral, morphological, and tex-
tural features. The spectral features are able to characterize the
reflectance of buildings and nonbuildings, the morphological
features have ability to delineate local building structures, and

the textural features are effective in describing building clusters.
The experiments undertaken using data from three representa-
tive megacities of China (Shenzhen, Wuhan, and Hong Kong)
achieved satisfactory results in terms of low RMSE values and
visual results. The combination of different feature sets outper-
formed the single feature category, suggesting that the simulta-
neous consideration of all categories of features is necessary for
building density estimation in different urban scenarios.

In the proposed framework, an SVR is used to construct
the model of building density estimation due to its good
generalization capability, particularly in high-dimensional
spaces. In order to investigate the importance of the different
features, the RFE algorithm is used to analyze the contribu-
tion of the different features to building density estimation. A
feature subset selection based on RFE takes account of both re-
gression accuracy and data redundancy reduction. The analysis
of the relevance of the input features provides an insight into the
most informative features, which may help other researchers
to select more appropriate and efficient features for building
density estimation. The investigation of the transferability be-
tween geographical regions also confirms that the self-training
achieves the better results compared to the transfer training due
to the differences (e.g., landscapes, sensors) between the test
sites. A more in-depth understanding of urban building density,
especially a better delineation for extremely high-density areas
that may be closely associated with population aggregation and
economic development, will be investigated in our future work.
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view on urban spatial structure: Urban density patterns of German city
regions,” ISPRS Int. J. Geoinf., vol. 5, no. 6, pp. 76–96, May 2016.

[6] M. Kajimoto and J. Susaki, “Urban density estimation from polarimetric
SAR images based on a POA correction method,” IEEE J. Sel. Topics
Appl. Earth Obs. Remote Sens., vol. 6, no. 3, pp. 1418–1429, Jun. 2013.
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