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In recent years, the availability of high-resolution imagery has enabled more detailed observation of the
Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spa-
tial details for the classification of such high-resolution data. To this aim, we propose the edge-
preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up
of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via vari-
able splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary charac-
teristics. To better characterize complex scenes of remote sensing images, relearning based on landscape
metrics is proposed, which iteratively quantizes both the landscape composition and spatial configura-
tion by the use of the initial classification results. In addition, a novel tri-training strategy is proposed
to solve the over-smoothing effect of relearning by means of automatic selection of training samples with
low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly
combines the strengths of relearning and tri-training via the classification certainties calculated by the
probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased
evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-
edge test samples. The experimental results obtained with four multispectral high-resolution images
confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Recently, in pace with the rapid development of space imaging
techniques, the spatial resolution of remotely sensed imagery has
become increasingly high. On the one hand, high-resolution remo-
tely sensed imagery has led to an increased availability of spatial
details and structural information of geospatial objects, which
can be attributed to the improved observation capacity. However,
on the other hand, the higher spatial resolution does not naturally
mean more accurate interpretation of remote sensing data,
because the increase of the intra-class variance and decrease of
the inter-class variance in the spectral feature space result in mis-
classification between spectrally similar classes (Alshehhi et al.,
2017; Ma et al., 2015, 2017; Myint et al., 2011). Per-pixel classifi-
cation using spectral information alone is generally subject to the
salt-and-pepper effect. Taking into account the aforementioned
two aspects, there are two important requirements for the classifi-
cation of high-resolution imagery: (1) enhancement of the class
separability; and (2) fine delineation of the detailed and structural
information of geospatial objects.

It is widely acknowledged that incorporating geometrical and
spatial information can reduce classification uncertainty. Specifi-
cally, a large number of studies have addressed spectral-spatial
joint feature calculation and classification. The commonly used
spatial features include the gray-level co-occurrence matrix
(GLCM) (Huang et al., 2014a; Pesaresi et al., 2009; Pu and Landry,
2012), wavelet transform (WT) (Cheng et al., 2015; Myint, 2004;
Prabhakar and Geetha, 2017), the pixel shape index (PSI) (Zhang
et al., 2006), and morphological profiles (Huang et al., 2016;
Pesaresi and Benediktsson, 2002). The spatial feature calculation
strategies can be viewed as a form of preprocessing prior to classi-
fication, which improve the class separability through the addition
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of spatial features. However, on the other hand, classification post-
processing (CPP) methods, which improve the classification accu-
racy by refining the initial result in a more succinct way, have
not received much attention. The traditional CPP optimization
techniques such as the majority filter (Stuckens et al., 2000; Tan
et al., 2015), Markov random fields (MRFs) (Rodriguez-Cuenca
et al., 2012; Song et al., 2017), and object-based voting (Huang
and Zhang, 2013) have a limited ability to improve the classifica-
tion accuracy, due to the fact that the class separability in the fea-
ture space is not enhanced. Recently, relearning based on the
primitive co-occurrence matrix (PCM) (called relearning-PCM)
was developed for learning a supervised model from the spatial
features extracted from the initial classification (Huang et al.,
2014c). Geiss and Taubenbock (2015) then extended the relearning
framework into an object-based image analysis framework. In this
framework, multiple class-related features are derived from a tri-
plet obtained by multiscale segmentation, and are then fed into
the classifier to refine the classification model.

It has been demonstrated that the aforementioned relearning
methods have the potential to achieve comparable or better classi-
fication results than the state-of-the-art spectral-spatial classifica-
tion algorithms. Although relearning methods are effective at
smoothing the classification results, it is unavoidable that detailed
structures and edges are gradually blurred in the iterative process,
i.e., the over-smoothing effect in edge regions. In fact, for very high
resolution (VHR) data, geographical objects are homogenous clus-
ters of pixels, but in the edge areas between these objects, the
many mixed pixels that occur due to the finite ground spatial res-
olution can result in inefficient shape recognition and misclassifi-
cation (Gamba et al., 2007). Moreover, spatial features refer to
the contextual correlation of neighboring pixels, and more neigh-
borhood information about other land-cover classes is taken into
account when calculating spatial features for edge pixels. The
spatial feature pattern of edge pixels of an object will differ from
that of a homogenous area, which may lead to edge issues, i.e.,
low classification certainty for edge areas. Consequently, detailed
structures and edges can be over-smoothed.

In order to preserve the edge details, Solaiman et al. (1995)
introduced edge features into an information fusion method for
the CPP of Landsat Thematic Mapper (TM) images. In Smits and
Dellepiane (1997) and Zhao et al. (2015), an MRF model with an
adaptive neighborhood was proposed, in which edge pixels,
detected through edge extraction, benefit the classification pro-
cess, without blurring the border details for synthetic aperture
radar (SAR) data. Gamba et al. (2007) improved urban area map-
ping by incorporating boundary information into a spatially aware
classifier for VHR images. Specifically, the boundary and non-
boundary pixels are separately classified using different mapping
techniques, according to their respective natures, and the two
mapping results are integrated through a decision fusion process.
In Rodriguez-Cuenca et al. (2012), a spatial contextual post-
classification method based on the imposed directional informa-
tion was developed for preserving linear objects in multispectral
imagery. By summarizing the existing literature, however, it
should be recognized that all the above-mentioned methods
address the edge issues by taking advantage of an edge detector.
As a result, their effectiveness is highly reliant on the edge-
detection quality. In addition, few studies have simultaneously
focused on increasing class separability and preserving edge
details.

Based on the above analysis, we propose the edge-preservation
multi-classifier relearning framework (EMRF), aiming to simulta-
neously improve the classification accuracy and preserve detailed
edges and structures. In EMRF, the key points are highlighted from
the following aspects.
(1) In order to enhance the separability between spectrally sim-
ilar classes, and then improve the classification result,
relearning by iterative learning is adopted in EMRF. It should
be noted that relearning-PCM describes the contextual
occurrence of the class labels of pixels in a window or neigh-
borhood by characterizing the spatial content of the labeling
space at the pixel level. With regard to object-based relearn-
ing (OBR), spatial-hierarchical features are derived using a
triplet of hierarchical segmentation and, therefore, this
method depicts the spatial correlation of class labels at the
object level. In the proposed approach, landscape metrics
are embedded into the relearning model, considering that
landscape features can effectively quantify the spatial
configuration of the labeling space at the class level
(McGarigal et al., 2002).

In this context, we deploy relearning features via landscape
metrics, which are derived from the initial classification results
(referred to as relearning-landscape in the following text), aiming
to iteratively quantify both the landscape composition and spatial
configuration and refine the classification model. In addition, the
traditional relearning based on a single classifier is extended to a
multi-classifier system as this can exploit the strengths of the
individual classifiers and obtain an enhanced performance
(Woźniak et al., 2014). Relearning-landscape has the task of not
only smoothing the salt-and-pepper effect, but also further
enhancing the class separability.

(2) In order to alleviate the edge issues of relearning, a
tri-training method is exploited, which works in a semi-
supervised manner (Zhou and Li, 2005). In a multi-
classifier tri-training system, some of the classifiers will
perform poorly, with low classification certainty, while
others will yield complementary and reliable results
(Woźniak et al., 2014). Under this circumstance, unlabeled
samples are selected for the classifiers with low certainty,
since these samples are more informative and useful in
refining the classifier (Foody and Mathur, 2006). With the
aid of these selected training samples, the classification
model can be iteratively optimized, and it is more likely that
edge pixels will be accurately identified (Tuia et al., 2011). In
order to guarantee the reliability of the unlabeled samples,
the following conditions should be met: (1) all three classi-
fiers give consistent decisions; and (2) at least one reliable
classifier (i.e., with high classification certainty) exists.

(3) It should be mentioned that tri-training suffers from salt-
and-pepper noise in homogenous regions because incorrect
labels may be added to the training set during the semi-
supervised learning (Tan et al., 2016). Therefore, the pro-
posed EMRF method aims at increasing the class separability
by the relearning-landscape technique, while at the same
time preserving edge details through the tri-training. Specif-
ically, the classification certainty is used to discriminate
between edge and non-edge regions in the image, based
on the consideration that the certainty values of non-edge
areas are generally higher than those of edge regions. The
relearning-landscape module is then used to classify non-
edge pixels, considering its ability to reduce the salt-and-
pepper effect, and the tri-training module is used to identify
the class labels of edge pixels, considering its better ability
to achieve reliable results for inter-region borders.

In order to evaluate the proposed framework, four multispectral
high-resolution data sets were used. When performing the
accuracy assessment, both edge and non-edge test samples were
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individually used for testing the classification performance for
edge and non-edge regions.

The rest of this paper is organized as follows. Section 2
describes the proposed EMRF method in detail. Section 3 intro-
duces the multisource data sets and parameter settings. Section 4
presents the experimental results. A further discussion about the
proposed framework is provided in Section 5. Finally, we draw
our conclusions in Section 6.
2. Methodology

2.1. Relearning-landscape

Relearning has been proven to be an effective CPP method
(Geiss and Taubenbock, 2015; Huang et al., 2014c). A supervised
classification model is iteratively learned from the spatial features
which are derived from the initial classification map, and the clas-
sification map is gradually optimized and updated according to the
feedback provided by the relearned features.

In this study, to better characterize the complex scenes of
remote sensing images, we deployed landscape features as the
relearning features for the classification of remotely sensed ima-
gery. Landscape metrics can effectively quantify the spatial struc-
tures in terms of both composition and configuration, such as
area, edge, shape, and aggregation (Fang et al., 2016; Oort et al.,
2004). Eight commonly used landscape metrics were investigated
in this study (Table 1). We refer the reader to Li et al. (2011b)
and McGarigal et al. (2002) for further details about these land-
scape metrics.

The flowchart of the proposed relearning-landscape module is
shown in Fig. 1. Its calculation is described in the following steps.

Step1: Initialization. Remotely sensed imagery is fed into a clas-
sifier, resulting in the initial classification map.
Step2: Landscape feature calculation. To calculate the landscape
features of a pixel located at x in the classified map, we extract
the contextual label information in a window (of size = w),
whose central pixel is x. The landscape feature with metric m
of class i for pixel x can then be expressed as hiðx;w;mÞ and,
therefore, all metrics for class i are denoted as:

hiðx;wÞ ¼ ½hiðx;w;1Þ; . . . ;hiðx;w;mÞ; . . . ;hiðx;w;MÞ� ð1Þ
whereM is the number of landscape metrics. Examples of landscape
features extracted from QuickBird images of a local region of
Table 1
Landscape pattern metrics used for the relearning.

Landscape metrics Calculation Description
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Wuhan, China, are provided in Fig. 2. Subsequently, the landscape
features for all the land-cover classes hðx;wÞ can be written as:

hðx;wÞ ¼ ½h1ðx;wÞ; . . . ;hiðx;wÞ; . . . ;hnðx;wÞ� ð2Þ

where n is the number of land-cover classes.

Step3: Relearning. The landscape features are then used as the
input for relearning, and they are iteratively updated according
to the current classification result, until the relearning stops. At
thesametime, theclassificationmodel canbegraduallyoptimized
according to the feedback provided by the landscape features.

Relearning-landscape can take into account the arrangement
and contextual information of the land-cover classes from the
labeling space, and can thus reduce the salt-and-pepper noise in
the classification map. However, this procedure may blur the clas-
sification results in edge regions. This phenomenon can be attribu-
ted to the fact that the spatial pattern in an edge area differs from
that in a homogenous area, since neighborhood information with
respect to other land-cover classes is taken into account when
extracting contextual information for edge pixels. In this situation,
spatial details and edges can be over-smoothed.
2.2. Tri-training

Tri-training is an effective semi-supervised learning algorithm
(Tan et al., 2016; Zhou and Li, 2005). Three classifiers are
initially learned from the original training set, and are then iter-
atively refined using unlabeled examples in the tri-training
process.

In this paper, we propose a novel tri-training method for alle-
viating edge issues by means of automatic selection of informa-
tive training samples, based on the following considerations.
Firstly, the three tri-training classifiers can collaboratively select
training samples with low classification certainties, which are
mainly distributed near the edge areas, and hence are informa-
tive for the classification (Foody and Mathur, 2006; Mellor and
Boukir, 2017). With the aid of these newly selected training
samples, the classifiers are enhanced iteratively, and it is more
likely that edge pixels are accurately identified (Tuia et al.,
2011). It is important that the classifiers considered in the tri-
training module should be diverse, and their performance should
be complementary. The flowchart of the tri-training module is
described as follows.
Performance

h i
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h i Area distribution of different land-cover classes

h i
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The percentage of total landscape area comprised by the
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cover class
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r patch, and n is the
n the landscape
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Spatial fragmentation of land-cover patches, but with
different sensitivities to NP



Fig. 1. Flowchart of the relearning-landscape module.

Spectral image 
Landscape feature 

(mean patch size, MPS) 

Fig. 2. Demonstration of landscape features (mean patch size, MPS) of buildings,
with the window size = 9.

60 X. Han et al. / ISPRS Journal of Photogrammetry and Remote Sensing 138 (2018) 57–73
Step 1: Multi-classifier system classification. The three classifiers
(denoted as C1, C2, and C3) are initially trained. The spectral
information is fed into the respective classifiers, resulting in
the crisp (class label) and soft (probability) outputs for each
classifier. Classification certainty maps are then derived from
the probabilistic output of the classifiers, respectively (Grimm
et al., 2008; Wang et al., 2017; Zhang and Seto, 2011):

SðxÞ ¼
XK�1

k¼1

½p̂kðxÞ � p̂kþ1ðxÞ� � 1k ð3Þ

where S(x) is the classification certainty for pixel x, p̂1ðxÞ; . . . ;
p̂kðxÞ; . . . ; p̂KðxÞ represent the multi-class probabilistic outputs in
descending order, and K is the number of information classes. A lar-
ger value of S(x) foreshadows a more reliable classification of pixel
x. After this step, the label results and certainty maps of the
multiple classifiers are used for the subsequent analysis.

Step 2: Automatic training sample selection. The main objective of
this step is to select informative unlabeled samples to improve
the discriminative ability of the corresponding classification
model. For any classifier, candidate samples are first selected
if the other two classifiers agree on the labeling of these sam-
ples. Then, from the candidate samples, we choose pixels with
certainty values lower than a threshold Trimin, and at the same
time with one of the other two certainty values larger than
Trimax. The chosen samples are then added to the training sets
of the current classifier. More details of this step are shown in
Fig. 3. In this way, two thresholds are used for the sample
selection in tri-training: Trimax is used to guarantee that there
is at least one reliable classifier among the three classifiers,
while Trimin is used to determine which classifier requires the
newly selected training samples.

Please note that the correctness of the newly selected samples
is guaranteed by the conditions that not only are consistent
decisions on labels made by the three classifiers, but at least one
reliable classifier in the multi-classifier system also exists.

Step 3: Redundancy reduction of training samples. The resulting
samples from step 2 may be spatially clustered and highly cor-
related. In order to reduce the redundancy and decrease the
computational complexity, the connected components are
labeled and only the central pixels in each component are
retained to construct the new training sets. Subsequently, the
training samples are iteratively updated until tri-training stops.

It should be mentioned that, although tri-training can be used
to mitigate the over-smoothing effect, it is subject to salt-and-
pepper noise in homogenous regions of objects due to the
introduction of incorrect labels into the training sets (Tan et al.,
2016; Zhou and Li, 2005).
2.3. The proposed edge-preservation multi-classifier relearning
framework (EMRF)

In order to simultaneously increase the class separability and
preserve edge details, EMRF, which is composed of the
relearning-landscape and tri-training modules, is proposed. The
basic idea of EMRF is to adopt relearning-landscape in non-edge
pixels, aiming to smooth the classification in the homogeneous
regions and, on the other hand, to impose the tri-training module
in the edge pixels, aiming to preserve edges and details. The pro-
posed EMRF is presented in Fig. 4, and is described as follows.

Step 1: Multi-classifier system initialization. The main objective of
this step is to obtain the initial classification results by the use
of the multiple classifiers. To this aim, spectral information is
fed into the multi-classifier system, resulting in the class label
and certainty map for each classifier. The reliable pixels (xr) are
defined as the ones that all the classifiers give the same label to,
and the residual pixels are defined as unreliable (xun). The labels
of the reliable pixels can be determined bymajority voting (MV):

CðxrÞ ¼ argmaxk¼f1;...;KgVxðkÞ

with VxðkÞ ¼
XF

f¼1

IðC f ðxÞ ¼ kÞ; ð4Þ



Fig. 3. Demonstration of the sample selection in step 2 of the tri-training module: Trimax is set to 0.90 and Trimin is set to 0.30. The leftmost column denotes the certainty maps
for the C1, C2, and C3 classifiers, respectively. The middle column represents the pooling results for each pixel in the image. Max (min)-pooling is used to select the maximum
(minimum) from certainty values of the three classifiers for each pixel. Specifically, samples marked in cyan have certainty values less than Trimin (0.30), while the certainty
values of pixels marked in orange are larger than Trimax (0.90). The last column represents the samples which are selected as the final training sets for the C1, C2, and C3
classifiers, respectively. For example, the sample labeled ‘C1’ is added to the new training set of the C1 classifier. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. The proposed edge-preservation multi-classifier relearning framework (EMRF), in which C1, C2, and C3 represent the three classifiers.
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where CðxrÞ is the class label of reliable pixel x, VxðkÞ is the number
of votes that pixel x receives for class k, I(.) represents the indicator

function, and C f ðxÞ is the class label of classifier f. The unreliable
pixels are classified according to the certainty measure (defined in
Eq. (3)).

CðxunÞ ¼ Cðxf̂ Þ with f̂ ¼ argmaxf¼f1;...;FgSf ðxÞ ð5Þ

where CðxunÞ is the class label of unreliable pixel x, Sf ðxÞ is the

classification certainty of classifier f for pixel x, and f̂ is the optimal
classifier that has the largest certainty measure. In this way, the
multiple classifiers are fused by minimizing the classification uncer-
tainty (Huang and Zhang, 2013). An initial classification map is
obtained, from which the landscape features can be derived.
Step 2: Relearning-landscape. Spectral information concatenated
with the landscape features is fed into the multi-classifier sys-
tem for reclassification. Step 1 is then repeated and enhanced
by considering the generated landscape metrics. Actually, this
process can be viewed as multi-classifier relearning-
landscape. In the meantime, new training samples can be gen-
erated for each classifier by implementing the tri-training
method in this procedure (as described in Section 2.2).
Step 3: Reclassification of the unreliable pixels. Only unreliable
pixels generated in Step 2 are considered for further refinement,
in order to raise the efficiency of the proposed method.
Specifically, a moving window is centered at each unreliable
pixel, and the landscape features are iteratively updated for this
pixel, based on the current classification result. In this way, the
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procedure in Step 2 is iteratively implemented by updating the
relearning-landscape and tri-training modules. In particular,
these unreliable pixels are divided into relatively high and
low certainty values (in terms of a threshold TEMRF), and are
identified according to the following rules.
Rule1: The pixels with high certainty are often found in the
non-edge areas, and hence are classified by the updated
relearning model, since relearning can effectively identify the
non-edge areas.
Rule 2: The pixels with low certainty are classified through the
tri-training classification, which is good at identifying edge pix-
els by selecting informative samples near the boundary regions
(Foody and Mathur, 2006; Tan et al., 2016; Zhou and Li, 2005).

In summary, in this step, the threshold TEMRF is used to deter-
mine the two groups of pixels that will be further processed by
the relearning-landscape and tri-training modules, respectively. A
smaller value signifies that only a small number of unreliable pix-
els are fed into the tri-training module, which can smooth the clas-
sification result but blur the details and edges. In turn, a large value
means that more details and edges can be preserved, but salt-and-
pepper noise may exist.

Step 4: Iteration. The classification result in Step 2 can be itera-
tively updated by the output in Step 3, until the loop termination.
(a) nahuWBQ

(c) nahuW1-EG

Fig. 5. The test data sets and their reference maps: (a) QB Wuha
It should be underlined that, in the EMRF method, the
relearning-landscape and tri-training modules work in a collabora-
tive manner. To be specific, relearning-landscape can increase class
separability between land-cover classes, and help tri-training to
acquire more reliable and informative training samples. With the
newly selected training samples, the classification model is sub-
stantially improved and, therefore, a more reliable classification
map can be generated and subsequently used for updating the
landscape features in the relearning-landscape module. Therefore,
the proposed EMRF benefits from the collaboration of relearning-
landscape and tri-training.
3. Data sets and experimental setup

3.1. Data sets

To validate the effectiveness of the proposed framework, exper-
iments were conducted on four multispectral remote sensing
images: GeoEye-1 Wuhan (GE-1), QuickBird Wuhan (QB),
WorldView-2 Hainan (WV-2), and ZY-3 Wuhan (ZY-3). In these
data sets, seven land-cover classes are considered—buildings,
roads, trees, grass, water, soil, and shadow—since they are the basic
elements in urban areas (Huang et al., 2014b; Luo and Zhang,
2014). The characteristics of the four data sets are listed below:
)b( WV-2 Hainan 

)d( ZY-3 Wuhan 

n; (b) WV-2 Hainan; (c) GE-1 Wuhan; and (d) ZY-3 Wuhan.
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(1) QB: This data set contains 1123 � 748 pixels, with four spec-
tral bands at a 2.4-m spatial resolution (Fig. 5(a)). This image
covers a campus scene, including regular buildings with
heterogeneous roofs, forests, meadows, etc.

(2) WV-2: The second data set is WorldView-2 high spatial res-
olution (HSR) data (eight multispectral bands with a 2-m
spatial resolution). This image covers a suburban area in
the Hainan province of China, with the size of 600 � 520 pix-
els (Fig. 5(b)).

(3) GE-1: The third image is made up of 908 � 607 pixels, with
four spectral bands and a 2-m spatial resolution, showing a
typical urban landscape with dense residential areas, a lot
of bare land for construction, and sparse vegetation (Fig. 5
(c)). It should be mentioned that there is no water in this
data set, resulting in six land-cover classes.
(a) BQ

(c) 1-EG

Fig. 6. Edge samples used in this study: (a)
(4) ZY-3: The last data set was also acquired over the city of
Wuhan by ZY-3, which is China’s first civilian high-
resolution mapping satellite. This image contains 651 �
499 pixels, with a spatial resolution of 5.8 m and four spec-
tral bands (Fig. 5(d)).

3.2. Reference maps

The reference maps shown in Fig. 5 were delineated manually
according to the field investigation and our prior knowledge of
the study areas. In order to separately assess the classification per-
formance for edge pixels, we divided the reference map into edge
and non-edge samples (see Fig. 6 and Table 2) and, therefore, the
edge and non-edge classification accuracies of the proposed
framework could be calculated. Specifically, the identification of
)b( WV-2 

)d( ZY-3 

QB; (b) WV-2; (c) GE-1; and (d) ZY-3.



Table 2
Number of reference samples (in pixels) for the four high-resolution data sets.

Class QB WV-2 GE-1 ZY-3

Non-edge Edge Non-edge Edge Non-edge Edge Non-edge Edge

Buildings 9914 19,027 4628 7000 12,363 7761 6631 15,797
Roads 3623 4605 2774 2632 2794 443 10,309 3732
Trees 15,175 26,355 11,753 2383 4469 951 4502 7924
Grass 8338 11,795 6947 520 4036 112 2498 1798
Water 16,664 165 11,084 175 – – 3583 721
Soil 2940 4439 13,248 8991 17,753 546 3249 1978
Shadow 3451 17,804 1167 310 1187 193 2644 11,082
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edge pixels was achieved by the use of a standard Canny edge
detector, with a standard deviation of

ffiffiffi
2

p
(Bao et al., 2005). The

identified edges were widened by one pixel to form buffer areas.
In this way, the test samples located in the buffer areas are called
‘‘edge samples”, while the rest are defined as ‘‘non-edge samples”
in the following.

3.3. Experimental parameters

The parameter settings used in the experiments are listed
below, and the parameter sensitivity analysis is discussed in
Section 5.3.

3.3.1. Relearning-landscape

� Window size: In order to simultaneously capture the details
and characterize the neighborhood extent (e.g., the spatial pat-
tern and arrangement of the land-cover classes), a window size
of 9 � 9 pixels was used.

3.3.2. Tri-training

� Sample selection thresholds: Trimin and Trimax were set as 0.3 and
0.9, respectively, considering the tradeoff between computa-
tional burden and the performance of the classification model.

3.3.3. EMRF

� Certainty threshold (as described in step 3 of Section 2.3): was
set as 0.8, aiming at smoothing the salt-and-pepper effect and at
the same time preserving the edge details.

3.3.4. Classification

� Classifier: It is important that the classifiers in EMRF should be
diverse, and their performance should be complementary. Three
classifierswereused to implement theproposed framework: sup-
port vectormachine (SVM), random forest (RF), and sparsemulti-
nomial logistic regression via variable splitting and augmented
Lagrangian (LORSAL). A description of these classifiers follows.
(1) Support vector machine (SVM). SVM is a supervised non-

parametric statistical learning technique, which is not con-
strained to prior assumptions on the distribution of the
input data. Due to its ability to deal with large input spaces
and produce sparse solutions, SVM has been widely used for
the classification of remotely sensed imagery (Fauvel et al.,
2008; Melgani and Bruzzone, 2004; Mountrakis et al., 2011).
The parameters of SVM were set as kernel = radial basis
function (RBF), penalty coefficient = 100, and RBF band-
width = 1=n (where n is the dimension of the input features)
(Huang et al., 2014b).

(2) Random forest (RF). RF is a classifier constructed from an
ensemble of classification and regression trees (CART),
which uses the majority vote of its constituent terminal
nodes to predict the class of a given observation. RF can
handle a high-dimensional feature space with less computa-
tion, and it is insensitive to noise in training samples (Belgiu
and Drăguţ, 2016). For the RF classifier, 200 trees were con-
structed, considering the tradeoff between computational
burden and classification accuracy (Huang et al., 2016). A
random subset of

ffiffiffi
n

p
features was used for RF at each node,

where n is the number of features (Wade et al., 2016).
(3) Sparse multinomial logistic regression via variable splitting

and augmented Lagrangian (LORSAL). As a discriminative
classifier, multinomial logistic regression (MLR) directly
models the class posterior densities instead of the joint
probability distributions. To interpret high-dimensional
data sets, the LORSAL algorithm has been proposed to
replace the difficult non-smooth convex problem of MLR.
The LORSAL-based sparse classifier (called the LORSAL clas-
sifier) has been proven to be effective for the classification
of remotely sensed imagery, even with a limited number
of training samples (Li et al., 2011a). With regard to the
parameters in the LORSAL method, the empirical parameter
settings were used (Li et al., 2015).

� Training: 50 training samples per class are randomly selected
from the reference maps, and the rest are used for validation
(Schindler, 2012).

� Accuracy assessment: the overall accuracy (OA) was computed
from the confusion matrix for the quantitative assessment.

4. Results

The experimental results obtained with the QB, WV-2, GE-1,
and ZY-3 data sets are presented in Figs. 7 and 8. In the experi-
ments, individual use of the multi-classifier relearning-landscape
and tri-training modules was considered for a comparative analy-
sis. The general comments regarding the results are summarized as
follows:

(1) Relearning-landscape obtains better results than tri-training
in terms of non-edge accuracy, which indicates that land-
scape features have the potential to enhance the class sepa-
rability (Fig. 7). Furthermore, this phenomenon can also be
confirmed by Fig. 8, where relearning-landscape achieves
higher overall accuracies than tri-training in the WV-2, GE-
1, and ZY-3 experiments. However, its edge accuracy is rela-
tively low due to the over-smoothing effect. For instance,
after five iterations, its edge accuracies are 84.0%, 85.9%,
89.3%, and 80.8%, for QB, WV-2, GE-1, and ZY-3, respectively,
which are lower than those obtained by tri-training, which
are 89.0%, 93.7%, 93.2%, and 86.9%, respectively.

(2) Concerning the edge regions, tri-training outperforms
relearning-landscape in all the cases. However, it can also
be seen that tri-training has the lowest non-edge accuracy,
due to the introduction of incorrect labels into the training
sets (Tan et al., 2016; Zhou and Li, 2005), as previously men-
tioned. For instance, after five iterations, its non-edge accu-
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Fig. 7. Edge and non-edge accuracies of relearning-landscape, tri-training, and EMRF for: (a) QB; (b) WV-2; (c) GE-1; and (d) ZY-3. Note that the solid lines represent the non-
edge accuracy curves, with the vertical y-axis on the left, while the dashed lines represent the edge accuracy, with the vertical y-axis on the right. The x-axis represents the
iteration number.
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racies are 89.7%, 92.9%, and 82.7% for QB, GE-1, and ZY-3,
respectively, which are lower than those obtained by
relearning, which are 97.6%, 95.6%, and 92.8%, respectively
(Fig. 7).

(3) EMRF achieves the highest non-edge and edge accuracies in
nearly all the cases. This can be attributed to the fact that
EMRF takes both class separability enhancement and edge-
detail preservation into account, by courtesy of the collabo-
ration between relearning and tri-training. Moreover, in
terms of the overall accuracy based on both edge and non-
edge samples, EMRF obtains the most accurate results in
all the experiments (Fig. 8). Specifically, after five iterations,
the OA values are 94.6%, 98.8%, 96.5%, and 94.0% for QB, WV-
2, GE-1, and ZY-3, respectively (Tables 3–6). Compared to
relearning-landscape and tri-training, the accuracy improve-
ments achieved by EMRF are 2.0–8.8%, which confirms the
efficacy of the proposed EMRF.

(4) To allow a visual inspection, the classification maps obtained
with the different data sets are displayed in Fig. 9. With
respect to the spectral-based classification, misclassifica-
tions between the spectrally similar classes such as roads,
buildings, and soil are obvious, and salt-and-pepper noise
can be clearly observed (Fig. 9(a)). The classification map
of relearning-landscape appears clear, showing the effi-
ciency of reducing the salt-and-pepper noise (Fig. 9(b)).
However, it should be mentioned that the efficiency of
relearning-landscape can be attributed to the fact that this
method is able to learn the intrinsic spatial configuration
from the raw classification, and it can provide sufficient dis-
criminative information for the spectrally similar classes.
Nevertheless, the detailed structures and edges of the classi-
fication map obtained with relearning-landscape are
blurred, due to the over-smoothing effect. Edges and details
are preserved in the classification map obtained with the tri-
training method, but homogenous regions are subject to
salt-and-pepper noise (Fig. 9(c)). The objects in the classifi-
cation map obtained with EMRF show homogeneous sur-
faces, and the boundaries between adjacent objects are
clear (Fig. 9(d)).

5. Discussion

This section includes the landscape feature analysis, a compar-
ison study, and the parameter sensitivity analysis, followed by an
evaluation of the proposed EMRF method.

5.1. Landscape feature analysis

Eight commonly used landscape metrics were investigated in
the relearning-landscape module. Each landscape metric was indi-
vidually calculated for relearning and classification, aiming to
investigate their role in the classification. The general results with
the different landscape features are presented in Fig. 10. The accu-
racies are consistently high in all cases. For example, the OA of
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Fig. 8. Overall accuracies of relearning-landscape, tri-training, and EMRF for: (a) QB; (b) WV-2; (c) GE-1; and (d) ZY-3, based on both edge and non-edge samples.

Table 3
Confusion matrix obtained by the proposed EMRF method (after five iterations) for the QB data set (UA = user’s accuracy, PA = producer’s accuracy, and OA = overall accuracy).

Classified data Reference data Total UA (%)

Buildings Roads Trees Grass Water Soil Shadow

Buildings 24,677 328 96 474 5 52 339 25,971 95.0
Roads 1681 7826 31 156 0 9 130 9833 79.6
Trees 11 1 40,422 278 0 135 278 41,125 98.3
Grass 3 1 722 18,961 0 25 0 19,712 96.2
Water 0 5 0 0 16,774 0 1 16,780 100.0
Soil 2388 12 0 214 0 7108 56 9778 72.7
Shadow 131 5 209 0 0 0 20,401 20,746 98.3
Total 28,891 8178 41,480 20,083 16,779 7329 21,205
PA(%) 85.4 95.7 97.5 94.4 100.0 97.0 96.2

OA = 94.6%
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relearning with the largest patch index (LPI) is above 95.7% in the
WV-2 data set. Only 3–4 iterations are needed for relearning-
landscape to achieve a stable status. It can be seen that edge den-
sity (ED), LPI, and mean patch size (MPS) show excellent perfor-
mances in terms of accuracy among the different landscape
metrics. This indicates that the three metrics can effectively char-
acterize different land-cover classes in the urban scenes. Specifi-
cally, both LPI and MPS describe the spatial structure from area
aspects (see Table 1), while ED reflects the distribution of the land
cover classes from edge aspect. In this study, the three metrics
were combined to deploy the relearning features, aiming to
describe the different aspects of the landscape structures.

On the other hand, however, it should be mentioned that MPS,
LPI, and ED show different performances for different image
scenes. For instance, the highest accuracy is achieved by ED in
the QB, GE-1, and ZY-3 datasets (Fig. 10(a), (c), and (d)), which
exhibit typical urban characteristics, with dense buildings, sparse
vegetation, and bare land. Considering that there are more edges
and details in these urban scenes, ED can effectively quantify the
landscape structures. However, the WV-2 data set represents a



Table 6
Confusion matrix obtained by the proposed EMRF method (after five iterations) for the ZY-3 data set (UA = user’s accuracy, PA = producer’s accuracy, and OA = overall accuracy).

Classified data Reference data Total UA (%)

Roads Grass Soil Buildings Trees Shadow Water

Roads 11,940 0 57 464 2 7 0 12,470 95.8
Grass 123 4118 42 168 223 1 23 4698 87.7
Soil 119 6 4940 292 0 0 0 5357 92.2
Buildings 1791 28 138 21,203 103 243 12 23,518 90.2
Trees 0 94 0 14 11,729 13 17 11,867 98.8
Shadow 18 0 0 237 292 13,412 29 13,988 95.9
Water 0 0 0 0 27 0 4173 4200 99.4
Total 13,991 4246 5177 22,378 12,376 13,676 4254
PA (%) 85.3 97.0 95.4 94.8 94.8 98.1 98.1

ZY-3: OA = 94.0%

Table 4
Confusion matrix obtained by the proposed EMRF method (after five iterations) for the WV-2 data set (UA = user’s accuracy, PA = producer’s accuracy, and OA = overall accuracy).

Classified data Reference data Total UA (%)

Buildings Roads Soil Grass Shadow Trees Water

Buildings 10,916 80 10 1 5 1 0 11,013 99.1
Roads 482 5274 0 4 0 1 0 5761 91.6
Soil 31 1 22,179 1 0 0 0 22,212 99.9
Grass 4 0 0 7411 0 7 0 7422 99.9
Shadow 138 0 0 0 1419 93 0 1650 86.0
Trees 7 1 0 0 3 13,984 0 13,995 99.9
Water 0 0 0 0 0 0 11,209 11,209 100.0
Total 11,578 5356 22,189 7417 1427 14,086 11,209
PA (%) 94.3 98.5 100.0 99.9 99.4 99.3 100.0

OA = 98.8%

Table 5
Confusion matrix obtained by the proposed EMRF method (after five iterations) for the GE-1 data set (UA = user’s accuracy, PA = producer’s accuracy, and OA = overall accuracy).

Classified data Reference data Total UA (%)

Roads Grass Buildings Soil Shadow Trees

Roads 2914 0 1363 7 18 0 4302 67.7
Grass 0 4096 0 0 0 0 4096 100.0
Buildings 220 2 18,536 7 12 0 18,777 98.7
Soil 0 0 71 18,235 0 0 18,306 99.6
Shadow 53 0 93 0 1300 0 1446 89.9
Trees 0 0 11 0 0 5370 5381 99.8
Total 3187 4098 20,074 18,249 1330 5370
PA (%) 91.4 100.0 92.3 99.9 97.7 100.0

OA = 96.5%

X. Han et al. / ISPRS Journal of Photogrammetry and Remote Sensing 138 (2018) 57–73 67
suburban landscape in Hainan Island, with a lot of grassland, small
buildings, water bodies, and a golf course, and this data set pos-
sesses less-fragmented spatial patterns. LPI can quantify the per-
centage of total landscape area comprised by the largest land-
cover class, indicating the dominant land-cover patch and frag-
mentation of the landscape (Fang et al., 2016; Han et al., 2017).
This can partly explain why LPI obtains the highest accuracy in
the WV-2 experiment (Fig. 10(b)).

5.2. Comparisons

5.2.1. Comparisons between relearning-landscape and other
relearning methods

In order to verify the effectiveness of relearning-landscape, its
performance was compared with conventional relearning based
on the primitive co-occurrence matrix (relearning-PCM) (Huang
et al., 2014c) and object-based relearning (OBR) (Geiss and
Taubenbock, 2015).

The experimental results show that relearning-landscape
obtains a better performance than relearning-PCM and OBR, which
shows that landscape metrics are more appropriate for represent-
ing the structures and arrangement in the relearning procedure
(Fig. 11).

5.2.2. Additional experiments with the proposed EMRF method
Additional experiments were conducted in order to further ver-

ify the effectiveness of the proposed EMRF method. To this aim, the
initial classification was implemented with a set of state-of-the-art
algorithms: the spectral-spatial approach based on the gray-level
co-occurrence matrix (GLCM) (Pesaresi et al., 2009), spectral-
spatial classification using differential morphological profiles
(DMP) (Benediktsson et al., 2003), and multi-index learning (MIL)
(Huang et al., 2014b). Subsequently, the initial classification results
were used as the input of the proposed EMRF for further refine-
ment. When the initial classification was conducted with
spectral-spatial classification based on the GLCM, it is referred to
as ‘‘EMRF-GLCM”.

The experimental results are reported in Table 7, where it can
be clearly observed that the proposed EMRF method can signifi-
cantly raise the classification accuracies for the different input
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Fig. 9. Classification maps obtained with the different data sets by: (a) raw spectral-based classification; (b) relearning-landscape; (c) tri-training; and (d) EMRF (after five
iterations).
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Fig. 10. Analysis of relearning with different landscape features: (a) QB; (b) WV-2; (c) GE-1; and (d) ZY-3.

Fig. 11. Comparison between different relearning algorithms: the primitive co-
occurrence matrix (relearning-PCM), object-based relearning (OBR), and the
proposed relearning-landscape.
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features. Specifically, the accuracy improvements achieved by
EMRF are 14.6%, 7.9%, and 7.2% when compared with the GLCM,
DMP, and MIL methods in the WV-2 experiment.
5.3. Parameter analysis

5.3.1. Effects of different window sizes on relearning-landscape
The window size is an important parameter for calculating the

landscape metrics. A small size is inadequate to characterize the
neighborhood extent, while a large size may fail to preserve the
details. Therefore, we took the QB data set as an example, and
investigated the relationship between window size and classifica-
tion performance. The results are shown in Fig. 12, with three land-
scape metrics (MPS, LPI and ED) (see Table 1) used in the
experiments. It can be observed that a window of 9 � 9 pixels is
appropriate for describing the landscape features, depending on
the spatial resolution and the characteristics of the information
classes in the images.

5.3.2. Sample selection threshold for tri-training
The parameter sensitivity analysis for tri-training with the QB

data set is given in Fig. 13. It can be observed that tri-training
methods with Trimax in a range of 0.6–1.0 and Trimin in a range of
0–0.5 can lead to similar and stable performances. For instance,
the maximum OA is 89.7% when Trimin and Trimax are set as 0.1
and 0.9, respectively, and the minimum OA is 89.4% when Trimin

and Trimax are set as 0.5 and 0.6, respectively.
Actually, according to step 2 in the tri-training module, we

choose candidate samples with certainty values lower than a
threshold Trimin, and at the same time with one of the other two
certainty values larger than Trimax. When Trimin is high or Trimax is
low, there will be more candidate samples to be selected by tri-
training. This undoubtedly leads to a higher computational cost.



Fig. 14. Relationship between edge and non-edge accuracies with the certainty
threshold TEMRF (as described in step 3 of Section 2.3).

Fig. 12. Analysis of the effect of different window sizes on the classification
accuracy (OA), with the horizontal and vertical axes being the iteration number and
the obtained OA values with different window sizes, respectively.

Fig. 13. Analysis of the parameter sensitivity with the QB data set for the tri-
training module.

Table 7
Classification accuracies (%) of several of the state-of-the-art spectral-spatial classification algorithms, as well as their refinements using the proposed EMRF method. For instance,
‘‘EMRF-GLCM” represents GLCM-based spectral-spatial classification refined by EMRF.

Data set GLCM EMRF-GLCM DMP EMRF-DMP MIL EMRF-MIL

QB 91.9 96.3 91.1 96.8 92.1 97.0
WV-2 83.5 98.1 91.3 99.2 91.9 99.1
GE-1 81.5 95.6 86.9 95.4 90.4 96.8
ZY-3 83.4 92.9 81.9 93.2 82.7 93.7
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In turn, if Trimin is low or Trimax is high, there will be insufficient
samples to improve the classification model. Therefore, in this
study, Trimin and Trimax were set as 0.3 and 0.9, respectively, consid-
ering the tradeoff between computational burden and performance
of the classification model.
Fig. 15. (a) Difference between the classification results obtained with and without
the tri-training module in EMRF, as indicated by the foreground pixels. (b) Edge
areas in the image.
5.3.3. Certainty threshold for EMRF
This subsection describes how the certainty threshold for EMRF

influences the classification performance. The certainty threshold
TEMRF is adopted to determine the proportion of pixels that will
be further processed by the relearning-landscape or tri-training
module (as described in step 3 of EMRF). A smaller value signifies
that a small number of pixels are fed into the tri-training model,
while more pixels are classified by relearning.

Fig. 14 shows the relationship between edge and non-edge
accuracies with the certainty threshold TEMRF. With the increase
of TEMRF, it can be seen that the edge accuracies increase, while
the non-edge accuracies first remain stable, and are then with a
slight decline. This phenomenon can be attributed to the fact that,
with the increase of threshold TEMRF, more edge pixels are classified
by tri-training, resulting in a substantial increase of edge accura-
cies. On the other hand, non-edge pixels are classified by
relearning-landscape, which guarantees relatively high and stable
non-edge accuracies. However, when threshold TEMRF continues
to increase (e.g., above 0.8 in this experiment), the non-edge accu-
racies become lower, since more pixels, including non-edge ones,
are processed by tri-training, which can lead to salt-and-pepper
noise in the classification. In order to obtain homogenous object
surfaces and, at the same time, preserve edges and details in the
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classification map, the certainty threshold TEMRF was set to 0.8 in
this study.

5.4. Evaluation of the proposed EMRF method

5.4.1. Role of the tri-training module in EMRF
The role of the tri-training module in the EMRF method was

analyzed using the QB data set. We compared the differences
between the classification results obtained with and without the
tri-training module in EMRF. In the case of EMRF without tri-
training, unreliable pixels are iteratively reclassified by the
relearning-landscape module in each round. Striking differences
between the classification maps of EMRF with and without the
tri-training module can be observed in Fig. 15(a). For the compar-
Certainty map Iterations = 1

(a)

0.720 (0.285) 0.8

(b)

0.776 (0.272) 0.8

(c)

0.872 (0.191) 0.9

Fig. 16. Certainty maps of: (a) relearning; (b) tri-training; and (c) EMRF, after 1, 3, and
certainty map.
ison, the boundary buffer zone obtained by the Canny edge detec-
tor is shown in Fig. 15(b). Through an overlay analysis, it can be
found that 57.4% of the differences in Fig. 15(a) are within the edge
zones. It is therefore shown that the tri-training module is mainly
used for the interpretation of pixels located in edge regions, and
this method has the potential to achieve reliable classification
results for edge pixels (Fig. 7).

5.4.2. Certainty analysis of EMRF
In order to analyze the mechanism of the proposed EMRF, a

classification certainty analysis was conducted. Here, we take
the SVM classifier of EMRF as an example, and certainty maps
of the SVM classifier in terms of relearning-landscape, tri-
training, and EMRF, are shown in Fig. 16. The first noteworthy
3 5 

27 (0.228) 0.837 (0.224)

61 (0.221) 0.886 (0.196)

20 (0.135) 0.923 (0.130)

5 iterations. The mean value (standard deviation) is marked at the bottom of each
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observation from the results is that the certainty is substantially
increased from iterations 1 to 5, regardless of the method used.
For example, the certainty value of EMRF significantly increases
from 0.872 to 0.923, with a lower standard deviation (from
0.191 to 0.130). This is understandable since the information
about the spatial structure inherent in remotely sensed data is
gradually delineated by the landscape features. Moreover, in
each round, the highest certainty is achieved by EMRF. For
instance, after the third iteration, the certainty values are
0.827, 0.861, and 0.920, with the standard deviations being
0.228, 0.221, and 0.135, for relearning, tri-training, and EMRF,
respectively. Based on Figs. 7 and 16, it can be inferred that
the increase in the certainty results in the increase in the classi-
fication accuracy.
6. Conclusions

This study was inspired by the fact that, as the spatial resolution
of remotely sensed imagery is becoming increasingly high, it is dif-
ficult to simultaneously improve the class separability in the fea-
ture space and preserve edge details. In this context, the
objective of this paper was to propose the edge-preservation
multi-classifier relearning framework (EMRF) for the classification
of high-resolution remotely sensed imagery.

In EMRF, relearning based on landscape features (relearning-
landscape) is proposed to enhance the discriminative ability for
land-cover classes, which is more appropriate for depicting the
complex characteristics of remote sensing images. In order to mit-
igate the over-smoothing effect caused by the spatial features of
relearning, a novel tri-training method is adopted, where unla-
beled samples are exploited. EMRF flexibly combines the respec-
tive strengths of the relearning-landscape and tri-training
modules, by taking advantage of their collaborative nature. To be
specific, relearning-landscape can increase the class separability,
and hence help tri-training acquire more informative and reliable
training samples. With the aid of these newly selected training
samples, the classification model can be substantially improved
and, therefore, a more reliable classification map can be generated
and subsequently used for updating the landscape features of
relearning-landscape. In order to achieve an unbiased accuracy
assessment, both edge and non-edge test samples were separately
used for testing the classification performance. The experimental
results obtained with four multispectral high-resolution data sets
demonstrate that EMRF is not only able to significantly increase
the classification accuracy and enhance the discriminative ability,
but it can also preserve edges and details.
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