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Abstract Using more than three million Landsat satellite images, this research developed the first global impervious surface
area (GISA) dataset from 1972 to 2019. Based on 120,777 independent and random reference sites from 270 cities all over the
world, the omission error, commission error, and F-score of GISA are 5.16%, 0.82%, and 0.954, respectively. Compared to the
existing global datasets, the merits of GISA include: (1) It provided the global ISA maps before the year of 1985, and showed the
longest time span (1972–2019) and the highest accuracy (in terms of a large number of randomly selected and third-party
validation sample sets); (2) it presented a new global ISA mapping method including a semi-automatic global sample collection,
a locally adaptive classification strategy, and a spatio-temporal post-processing procedure; and (3) it extracted ISA from the
whole global land area (not from an urban mask) and hence reduced the underestimation. Moreover, on the basis of GISA, the
long time series global urban expansion pattern (GUEP) has been calculated for the first time, and the pattern of continents and
representative countries were analyzed. The two new datasets (GISA and GUEP) produced in this study can contribute to further
understanding on the human’s utilization and reformation to nature during the past half century, and can be freely download from
http://irsip.whu.edu.cn/resources/dataweb.php.
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1. Introduction

For half a century, human’s activities drastically altered the
climate, environment, and ecosystem of the Earth, which
restricted the sustainable development and affected the hu-
man well-being (Mbow et al., 2017; Kuang, 2019). Im-
pervious surface areas (ISA), i.e., artificial structures with
impermeable characteristics, mainly including roofs, paved
surfaces, roads, and hardened grounds, are the most affected

regions. The dynamic of ISA is a critical indicator for un-
derstanding the urban land change and assessing the influ-
ence of human on nature (Seto et al., 2012). Since ISA
expansion can prevent rainwater from seeping, block surface
evapotranspiration (Krayenhoff et al., 2018), increase sur-
face runoff (Weng, 2001), and affect the biodiversity and
ecosystem services (Seto et al., 2012), many global organi-
zations have paid increasing attention to monitoring ISA
dynamics. For examples, in addition to a new chapter con-
cerning the urban mitigation of climate change in Inter-
governmental Panel on Climate Change (IPCC) Fifth
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Assessment Reports (Seto et al., 2014), its Seventh Reports
further approved a Special Report on Cities and Climate
Change (IPCC, 2016). Moreover, the United Nations (UN)
Convention on Biodiversity Cities and Biodiversity Outlook
emphasized the critical role of urban land expansion in al-
tering ecosystem services and biodiversity (Campbell et al.,
2012), and UN Sustainable Development Goal (SDG) also
laid stress on urban land change (https://sdg-tracker.org/ci-
ties). Thus, a global ISA product documenting long time
series change at fine spatio-temporal resolution is of great
research significance.
Satellite remote sensing observations are primary data

source for global ISA monitoring. With the progress of sa-
tellite image acquisition and interpretation technologies, the
spatial-temporal granularity of the global products has been
remarkably improved, e.g., from static to multi-temporal
records, and from coarse (≥1 km) to fine (~30 m) spatial
scales. For instance, the Joint Research Centre (JRC) of
European Union comprehensively exploited SPOT-4 (Sa-
tellite Pour l’ Observation de la Terre -4, spatial resolution:
1.15 km) images and compiled a harmonized global land
cover classification for the year 2000 (GLC2000) (Bartho-
lomé and Belward, 2005). Food and Agriculture Organiza-
tion of the United Nations (FAO) combined multi-source
medium-resolution satellite remote sensing data with a pixel
resolution of 250–300 m to create a global land cover data-
base (GLC-SHARE) (Latham et al., 2014) with spatial re-
solution of 30 arc-seconds for the year 2012. In recent years,
European Space Agency (ESA) published two 300 m global
archives (GlobCover for short) in the year of 2005 (Bicheron
et al., 2006) and 2009 (Bontemps et al., 2011), as well as its
improved version (CCI-LC for short) (ESA, 2017), based on
300 m Medium Resolution Imaging Spectrometer (MERIS),
1 km SPOT vegetation Proba-V, and 1 km Advanced Very
High Resolution Radiometer (AVHRR) during 1992 and
2018. Meanwhile, National Aeronautics and Space Admin-
istration (NASA) released the annual global land cover
products for 2001–2018 with spatial resolution of 250 m
(Sulla-Menashe et al., 2019), on the basis of Moderate Re-
solution Imaging Spectroradiometer (MODIS) images. More
recently, German Aerospace Center (DLR) produced the
global built-up product with the finest resolution in the year
of 2014 (GUF for short, spatial resolution: 12 m) (Esch et al.,
2017), derived from ~180,000 TerraSAR-X/TanDEM-X re-
mote sensing images. In summary, the advantages of the
coarse-resolution products lie in their rich image sources,
relatively light computational burden, frequent revisit, which
are beneficial to the long time series dynamic monitoring and
the intra-year phenological information characterization (Xu
et al., 2020). However, the deficiencies of the coarse-re-
solution products lie in the omission of small-sized ISA
(Sulla-Menashe et al., 2019) and the mixed pixel problems
(Yang et al., 2017). On the other hand, the fine-resolution

products can delineate detailed land cover, but suffer from
heavy computational cost (Schneider, 2012) and in-
sufficiency of time-series information (Liu et al., 2019b).
Notably, in recent years, with the application and develop-
ment of cloud computing platforms (e.g., Google earth en-
gine, GEE), the storage and computing capacity has been
greatly improved, which signifies the arrival of the era of
global mapping with high spatial resolution.
In this context, the Landsat satellites, which began to acquire

images from 1972 with fine spatial resolution and frequent
revisit, are the most appropriate platform for large-scale ISA
monitoring (Ran and Li, 2015; Wulder et al., 2016; Gong et al.,
2019). On the basis of Landsat images, the earliest global ISA
product is Global Human Settlement Layer (GHSL) (Pesaresi
et al., 2015), consisting of four periods with spatial resolution
of 38 m: 1975, 1990, 2000 and 2014. Recently, Liu et al.
(2020) produced an annual urban area dataset (called global
annual urban dynamics, GAUD) with a resolution of 30 m
from 1985 to 2015; meanwhile, Gong et al. (2020) produced
global artificial impervious areas (GAIA), to quantify annual
urban ISA dynamic from 1985 to 2018. More recently, JRC
released a new version of GHSL, where a global ISA prob-
ability grid for year 2018 was reported (Corbane et al., 2020).
Nevertheless, currently, although there have been several
global 30 m ISA datasets available, the differences between
these products exist, due to their distinct sample collection,
classification, post-processing, and accuracy assessment
methods, leading to large discrepancies in the global/regional
ISA estimation. In particular, the current two 30 m global an-
nual ISA datasets, GAIA and GAUD, do not provide the global
ISA information before the year of 1985, owing to the Landsat
data deficiency. Therefore, the long time-series and high spa-
tio-temporal resolution global ISA mapping is still a great
challenge, and it is worthwhile to further developing new
technologies and products to improve the accuracy, expand the
time span, and finally strengthen our knowledge on the global
ISA dynamics. Therefore, the first objective of this study is to
develop the global ISA dataset from 1972 to 2019 (GISA),
using more than three million Landsat satellite images.
Furthermore, on the basis of GISA, we are able to analyze

the time-series pattern of global urban expansion. The ex-
pansion pattern can reflect the spatio-temporal characteristics
and change rules of urban growth, which is of great sig-
nificance to urban management and planning. Previous works
mainly focused on several developed cities (e.g., https://www.
c40.org/networks), regional areas (Krayenhoff et al., 2018; Xu
et al., 2019b), or countries (Schneider and Mertes, 2014;
Huang et al., 2019; Li et al., 2020). However, as indicated by
Reba and Seto (2020), current research ignored the small-
medium cities and Global South, which are the fastest grow-
ing areas in the past decades and will be the urbanization
hotspots for decades to come (United Nations, 2018). In ad-
dition, most of the current studies only used several cross-
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section records (e.g., every five or ten years) to analyze the
long-term urban expansion pattern (Schneider and Mertes,
2014; Krayenhoff et al., 2018; Xu et al., 2019b). Therefore,
the existing urban expansion pattern analysis is not sufficient.
In this context, the second objective of this research is to
analyze the urban expansion in a high-frequency manner,
based on our long-time series global ISA product.

2. Materials and methods

With the platform of Google Earth Engine (GEE),
30,872,690 Landsat images with less than 80% cloud cover
from Jan 1972 to Nov 2019 were fed into a machine learning
workflow to produce our GISA (global impervious surface
area) dataset. Considering the spatiotemporal coverage of
available Landsat archives (Appendix Figure S1, https://link.
springer.com), the images acquired from 1972 to 1977, and
1978 to 1984 were combined to map the global ISA product
at the first and second period, respectively, and since 1985,
the annual product was generated using the Landsat images
available. On the basis of the GISA maps, spatial pattern of
global urban expansion are further analyzed.

2.1 Global ISA mapping

In general, we designed a distributed mapping framework
(Figure 1): first, the global land surface was divided into
1221 hexagons with a side length of 2°, then, for each
hexagon in each period, a random forest classifier locally
trained with the obtained samples was used to classify the
land surface into ISA and non-ISA. Finally, a spatio-tem-
poral post-processing approach was conducted for the time-
series global maps throughout the 48 years
For each hexagon, the mapping algorithm mainly consists

of the following three blocks.

(1) Training sample generation. The ISA/non-ISA samples
were picked from the overlapping regions of a set of existing
global mapping products, and were further screened by a
series of spectral-spatial-temporal rules. Please note that
some of the obtained ISA sample sets were checked visually
to ensure their quality. The technique details are provided in
Appendix Text S1.
(2) Feature extraction and classification. For each hexagon

in each mapping period, a random forest classifier was
trained with the obtained samples, and the elevation and
slope calculated from Digital Elevation Model (DEM) data
and the time-series spectral characteristics from Landsat
images were stacked as input feature. Considering the quality
of DEM data, we used DEM data from Shuttle Radar To-
pographic Mission for regions with latitude above 58°N, and
DEM data from Global Multi-resolution Terrain Elevation
Data 2010 (GMTD2010) for regions with latitude below
58°N. The spectral characteristics included all the spectral
reflectance and the normalized difference spectral indices (in
their 20%, 50% and 80% percentiles) as well as their multi-
temporal standard deviations, as suggested by related studies
(Sulla-Menashe et al., 2019; Li et al., 2020).
(3) Post-processing. The night-time night data were first

used to suppress the false alarms of ISA in the arid regions,
and subsequently, a series of post-processing steps, including
gap filling, spatio-temporal filtering, and time-series rea-
soning, were proposed to further refine the mapping results
(see Appendix Text S2 for the post-processing technique
details).

2.2 ISA mapping accuracy assessment

It is an extremely challenging task to assess the accuracy of
global high-resolution ISA product in such a dense and large
time span. In this study, we used three validation sets, including
(1) a stratified randomly selected 120,777 sample set from 270

Figure 1 Flowchart of the global ISA mapping framework.
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global cities, (2) 88,822 random samples selected from a high
spatial resolution (2 m) built-up dataset over global 45 urban-
suburban areas (Liu et al., 2019a), and (3) 56,703 settlement
points in Global Rural-Urban Mapping Project (Balk et al.,
2006). Please note that the time between the reference datasets
and the corresponding GISA product is consistent.
(1) Stratified random sampling in 270 global cities. We

randomly selected global ISA/non-ISA validation points for
the year of 1972, 1978, 1985, 1990, 1995, 2000, 2005, 2010,
2015, and 2018. The selected points were interpreted in
terms of the high-resolution images from Google™ Earth as
well as Landsat images. The selection and interpretation of
validation samples were independent to the ISA mapping.
For each year, 27 cities across the world were randomly
selected in terms of their population and biomes, including 7
cities with population larger than 5 million, 10 cities with
population ranging from 1 to 5 million, and 10 cities with
population smaller than 1 million. According to Olofsson et
al. (2014), we collected 10,000–15,000 random points for
each year, and the number of validation points in each city
was proportional to its city area. In total, 120,777 validation
points were generated. Omission error (OE), Commission
error (CE), and F-score (harmonic mean of user accuracy and
producer accuracy) of the ISA based on the 120,777 points
were used to assess the accuracy of the ISA products. The
spatial distribution of the 270 cities as well as their F-scores
are provided in Appendix Figure S2.
(2) Validation on a high spatial resolution product of 45

global cities. A high spatial resolution product, based on the
ZY-3 multi-view satellite images in 45 global cities covering
both urban and suburban areas (Liu et al., 2019a), were also
used to assess the accuracy of GISA product. The built-up
areas extracted from ZY-3 images were adopted as a vali-
dation set since they have a relatively high spatial resolution
(2 m) and meanwhile their multi-view imaging mode is ef-
fective in describing the vertical characteristics of urban
structures. Specifically, an ISA sample point was chosen
when more than 80% pixels in its 30 m×30 m neighbor are
built-up pixels, and a non-ISA point was identified only
when all the pixels in its 30 m×30 m neighbor are covered by
natural lands. Similarly, for each city, the number of vali-
dation points is proportional to its urban area. Finally, each
point was visually checked based on ZY-3 images. In this
way, 9,477 ISA and 79,345 non-ISA points were generated.
(3) Validation on the Global Rural-Urban Mapping Project

(GRUMP). In addition, we used the settlement points from
GRUMP (Balk et al., 2006) to assess the ISA products. The
evaluation method is the same as Gong et al. (2020), i.e.
multi-scale buffers with diameters of 30, 100, 250, 500, and
1000 m were used to calculate the proportion of the ISA
within each buffer zone, and a pixel is correctly identified as
an ISA when more than 20% pixels in its buffer zone are
covered by ISA. In this way, the accuracy of the ISA pro-

ducts can be assessed by counting the numbers of recognized
points in a multi-scale manner, and more identified points
signify better performance.

2.3 Urban expansion pattern analysis

2.3.1 Urban ISA extraction
In order to analyze the urban expansion pattern, according to
Zhou et al. (2014), we first extract urban ISA from GISA
map via the following steps:
Step 1. A built-up intensity map is calculated through a 1

km×1 km sliding window, and a 50% threshold is used to
divide the intensity map into high- and low-intensity built-up
land.
Step 2. To include the scattered but spatially adjacent high-

intensity built-up parcels into the urban area, a buffer dis-
tance of 2 km is used to aggregate these parcels and form the
boundary of urban area. Please note that the parameters, such
as window size (1 km), threshold of built-up intensity (50%),
and aggregation distance (2 km) are determined according to
Zhou et al. (2014).

2.3.2 Urban expansion types
According to Camagni et al. (2002), there are three types of
urban growth pattern: leap-frogging, infilling, and edge-ex-
pansion. The urban growth type (E) of a newly developed
patch (P) was calculated by the following equation (Huang et
al., 2019):

E
N
C= , (1)p

where Np is boundary length of P, C is common boundary
length between P and the existing ISAs. The growth type is
identified as leapfrogging when E=0, infilling when E>0.5,
and edge-expansion when 0<E≤0.5. Generally, the con-
struction of new towns and the transformation from rural
settlements to urban built-up are the main causes of leap-
frogging patches. Infilling patches mainly correspond to the
intensive utilization of urban land, and edge-expansion pat-
ches usually appear in the urban fringe areas, reflecting the
urban sprawl.
Considering the shortage of valid observations for the

Landsat images before 1985 (Appendix Figure S3), we cal-
culated and analyzed the global urban expansion pattern
since 1986. In addition, we calculated the expansion pattern
every two years, considering the urban expansion rate and
computational cost.

3. Results and discussions

3.1 Global impervious surface area (GISA) mapping

As seen from the right column of Table 1, using the vali-
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dation points from the 270 cities, OE, CE and F-score of ISA
is 5.16%, 0.82% and 0.954, respectively. Based on the high
spatial resolution validation points from ZY-3 built-up pro-
duct (see the left column of Table 1), these accuracy metrics
are 14.12%, 14.25% and 0.854, respectively. It can be said
that our developed GISA dataset shows desirable perfor-
mance on both reference sets. In order to further show the
superiority of our GISA dataset on the rural ISA mapping,
the existing fine-resolution (30 m) global products in 1990
and 2015 are compared in Table 2. It can be seen that GISA
reaches the highest F-score in both urban and rural regions.
Moreover, the area of the rural ISA identified by GISA is
also larger than GAIA and GAUD, which, to some extent,
reflects a smaller omission of GISA.
According to GISA, the global ISA extent has been in-

creased by 3.23–3.29 times in the past 48 years, i.e., from
190,775.42 km2 (95% Confident interval (CI):
[189,891.90 km2, 191,658.93 km2]) to 813,228.11 km2 (95%
CI: [811,945.156 km2, 814,511.063 km2]) from 1972 to
2019. In the past 48 years, the global average annual ex-
pansion rate of ISA is 3.13% (95% CI: [3.12%, 3.15%]),
among which Asia is the largest (4.24%), followed by Africa
(4.07%), and Europe (2.62%) and North America (2.04%), in
sequence. Figure 2 demonstrates the spatial pattern of ISA
expansion from 1972 (Figure 2a) to 2019 (Figure 2b). In
1972, ISA was mainly distributed in North America
(35.74%, 95% CI: [35.58%, 35.91%]), Europe (27.46%,
95% CI: [27.32%, 28.58%]) and Asia (26.16%, 95% CI:
[26.04%, 26.28%]). Europe exceeded North America in

1984, and was overtaken by Asia in 1988 (30.97%, 95% CI:
[30.90%, 31.04%]). In general, except for Asia and Africa,
the ISA expansion in other continents gradually slowed
down since 1990s.
Observing the long time-series dynamics, GISA dataset is

generally consistent to the existing global products (Figure
3). Although GHSL provides the ISA map in 1970s, it
contains only five cross-section records (1975, 1990, 2000,
2014, and 2018), which seems not sufficient to continuously
monitor ISA dynamics during the past half century. On the
other hand, GAIA and GAUD provide annual ISA maps
from 1985, but their ISAs are underestimated to some extent
before 1990s, owing to the data missing of Landsat archives
in the early periods (Appendix Figure S1). In contrast, our
GISA dataset provides two ISA maps during 1972 and 1984
(Appendix Figure S1), which can be used to fill the gaps of
products in 1980s by the spatio-temporal post-processing
method. Taking Xi’an (a Chinese major city, Appendix
Figure S4) as an example, as there is lack of observation data
in East Asia from 1985 to 1987 (Appendix Figure S1), the
ISA of Xi’an during this period is unavailable in GAIA and
GAUD, but can be delineated by GISA by courtesy of the
gap filling algorithm. As shown in Figure 3, at the global
scale, the ISA area derived from GISA is slightly larger than
that from GAIA and GAUD. A possible reason is that the
ISA extent of GAIA and GAUD were constrained by a
predefined urban mask (Gong et al., 2020; Liu et al., 2020),
but GISA does not have such limitation since it extracted
ISA from the whole global land area. Moreover, only GAIA

Table 1 Accuracy comparison between existing global 30 m ISA products

ZY-3 high-resolution reference set validation points based on 270 cities

GAIA ISA non-ISA Precision GAIA ISA Non-ISA Precision

ISA 29912 7237 80.52% ISA 12765 638 95.24%

non-ISA 6033 69006 91.96% Non-ISA 2640 77024 96.69%

Recall 83.22% 90.51% Recall 82.86% 99.18%

OE of ISA 16.78% CE of ISA 19.48% OE of ISA 17.14% CE of ISA 4.76%

F-score of ISA 0.818 OA 88.17% F-score of ISA 0.886 OA 96.48%

GAUD ISA non-ISA Precision GAUD ISA Non-ISA Precision

ISA 29722 5389 84.65% ISA 14339 820 94.59%

non-ISA 6223 70854 91.93% Non-ISA 1132 76842 98.55%

Recall 82.69% 92.93% Recall 92.68% 98.94%

OE of ISA 17.31% CE of ISA 15.35% OE of ISA 7.32% CE of ISA 5.41%

F-score of ISA 0.837 OA 89.65% F-score of ISA 0.936 OA 97.90%

GISA ISA non-ISA Precision GISA ISA Non-ISA Precision

ISA 30583 5081 85.75% ISA 14734 314 97.91%

non-ISA 5362 71162 92.99% Non-ISA 671 77348 99.14%

Recall 85.08% 93.34% Recall 95.64% 99.60%

OE of ISA 14.92% CE of ISA 14.25% OE of ISA 4.36% CE of ISA 2.09%

F-score of ISA 0.854 OA 90.69% F-score of ISA 0.968 OA 98.94%
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Table 2 Comparison among existing fine-resolution (30 m) global ISA products, where accuracy was assessed on the random validation points of 54 global
cities in 1990 and 2015 which were manually interpreted using Google™ Earth and Landsat images

Year Region Metric GHSL GAIA GAUD GISA

1990

Urban
F-score 0.7989 0.7636 0.8646 0.9274

Size (105 km2) 2.0277 1.3364 1.6688 2.0149

Rural
F-score 0.8923 0.8074 0.8949 0.9299

Size (105 km2) 3.2913 1.9513 2.0974 2.3294

2015

Urban
F-score 0.9527 0.9372 0.9696 0.9882

Size (105 km2) 2.6305 2.7033 2.5606 2.7477

Rural
F-score 0.9573 0.9699 0.9878 0.9913

Size (105 km2) 5.1182 4.6907 4.1050 4.7887

Figure 2 The spatial pattern of ISA in 1972 (a) and 2019 (b). Each pixel indicates the impervious area within the 0.3°×0.3° spatial extent.
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and GISA continued to monitor ISA dynamics after 2016,
and only GISA provides the newest global ISA map in 2019.
In addition, based on the third-party validation sets, i.e.,
GRUMP settlement points (Figure 4) and ZY-3 high-re-
solution built-up product (Table 1), GISA is superior to
GAIA and GAUD. In terms of the random validation points
from 270 global cities, the overall accuracy of GISA is also
better (Table 1).
The missing of Landsat archives (especially in the early

stages) can influence the applicability and reliability of the
long time-series ISA products. In general, the valid ob-
servations of Landsat gradually become more, and from
1999 the annual global land surface can be covered suffi-
ciently (Appendix Figure S1). Appendix Figure S3 shows the
data missing rate (DR) and product missing rate (PR) of
GISA. DR or PR in a certain period indicates the area per-
centage of missing Landsat data or missing mapping results
compared to the global ISA extent in 2019, respectively. As
seen in Appendix Figure S3, there was a large amount of data
absence during 1985 and 1989, most of which appeared in
Asia, Australia, and Africa (Appendix Figure S1). Worse,
some areas, such as Siberia and the Gulf of Guinea, had very
scarce Landsat observations before 1999 (Appendix Figure
S1). To deal with this issue, GISA dataset provides two early
global ISA maps (i.e., 1972–1977 and 1978–1984) based on
the multi-year Landsat image composition. Therefore, the
information missing of the ISA product in the early stages
(e.g., before 1999) can be effectively addressed by the pro-
posed gap filling and spatio-temporal post-processing algo-

rithms. Appendix Figure S3 shows that the PR of GISA is
significantly lower than its DR. Notably, some validation
points from the 270 cities were located in the areas without
valid observations, and hence, after the post-processing, the
F-score of GISA was increased from 0.92 to 0.95 after the
missing data were effectively filled.

3.2 Global urban expansion pattern

Since 1986, we calculated the proportion of urban expansion
types of each continent for every two years (Figure 5). To

Figure 3 Comparison of ISA expansion among existing fine-resolution (30 m) global products at the continental and global scale. Australia and Oceania
are combined with Asia. GHSL, global human settlement layer; GAIA, global artificial impervious areas; GAUD, global annual urban dynamics; GISA,
global impervious surface areas.

Figure 4 Comparison of detected settlement points between the existing
global 30 m ISA products. More detections of the settlement points signify
better mapping accuracy.
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further analyze the patterns of different countries, we list the
top ten countries in a descending order in terms of the pro-
portion of each expansion pattern (Appendix Table S2).
On a global scale, edge expansion is the primary pattern in

the recent 30 years. Except for Oceania (with non-significant
increase) and North America (with fluctuations after 2008),
the proportions of edge expansion in most continents show
linear growth, indicating that urban sprawl (i.e., edge ex-
pansion) is widespread and accelerating. On the whole, the
proportion of edge-expansion in North America is highest,
possibly owing to the low density urban sprawl happened in
this region (Bae and Richardson, 2017). From the temporal
perspective, Africa and Asia not only have the fastest urba-
nization speed in recent decades (United Nations, 2018), but
are the major areas with accelerated urban sprawl (Figure 5).
Taking two representative countries in Asia, Cambodia and
Laos, as examples (Appendix Table S2), in the past 30 years,
these two low-income countries have reached low-middle
income level, and the economic development is accompanied
with rapid expansion of the built-up area along the main

traffic roads, leading to the increasing housing demand for
the fast-growing urban residents. However, as the local
governments rely heavily on the land finance as their rev-
enue, the fast-rising land prices prevent the inner-urban de-
velopment, and aggravate the peri-urbanization in a rapid
pace (Figure 6a and 6b). At the same time, a number of
African countries are also included in the top ten edge-ex-
pansion countries (Appendix Table S2). Compared with the
European, American and Asian metropolis that are gradually
transitioned to smart growth, the growth of African cities is
still dominated by accelerated extensive expansion (Figure
6c–6e) (Xu et al., 2019a).
Generally, Eurasia and Oceana have the largest proportions

for leapfrogging, which fall and then rise, showing a U-shape
(Figure 5). The leapfrogging expansion is derived from two
sources: (1) the transformation from rural settlements to
urban built-up, and (2) the construction of new towns and
urban organic decentralization1). In the past three decades,
the primary driving force of urbanization in Asia was the
massive population migration from rural to urban areas. The

Figure 5 Urban expansion patterns at continental and global scales.

1) Organic decentralization refers to the construction of semi-independent towns near large cities which have some urban functions in order to control the
expansion of the large cities.
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land construction enlarged the urban extent, with a lot of
rural land incorporated into the urban areas. For instance,
Turkmenistan has the largest proportion of leapfrogging
(38.16%, see Appendix Table S2), and Figure 7a presents the
urban expansion process in Ashgabat (capital of Turkmeni-
stan) as well as its adjacent Alha state. As seen from these
figures, most of the leapfrogging parcels are derived from the
transformation from rural settlements to urban areas (e.g.,
Figure 7b and 7c), with a small amount of infrastructure
construction around the rural areas (e.g., Figure 7d). On the
other hand, in Europe and Oceania, the major sources of
leapfrogging parcels are different from Asia. By the 1980s,
the urbanization level in most European and Oceanian
countries was stably high. For historical reasons, e.g., the
city-state system, a large number of Europe and Oceania
cities are with small and medium sizes and compact pattern.
For many European large cities, a large amount of green
open space was constructed around the urban areas (e.g., the
Metropolitan Green Belt (Mace et al., 2016)) to prevent the
expansion of urban extent. At the same time, urban decen-
tralization and New Town construction were promoted to
mitigate the burden of intra-urban redevelopment, and
achieve the harmonious development between old and new
urban regions. Thus, the urban development in Europe and

Oceania presented a large proportion of leapfrogging ex-
pansion during the past three decades. For instance, Finland,
a representative country with the leapfrogging expansion
pattern, is one of the earliest countries that practiced the
organic decentralization (see Appendix Table S2, and Figure
7e, respectively).
The proportion of infilling expansion pattern gradually

decreases from a global perspective, in spite of several
fluctuations in Europe and North America (Figure 5). When
a city develops to a certain degree, its urban land supply
becomes saturated, and this city will necessarily enter the
stage of redevelopment, in order to integrate, renew and re-
allocate urban resources. Thus, infilling parcels mainly ap-
pear in highly urbanized countries (e.g., Japan in Appendix
Table S2), or countries with high urban primacy2) (e.g.,
Nepal in Appendix Table S2). For instance, from 1950s to
1970s, in Japan, the population, economic activities and ur-
ban functions were aggregated to Tokyo, Osaka and Nagoya
megalopolitan areas, forming the phenomenon of “over
dense” in megalopolis and “too sparse” in rural areas (Figure
8). Therefore, in recent years, a series of regulations (e.g.,
setting rigid urban boundary) on urban development and
construction have been formulated by the Japanese govern-
ment to limit the over-expansion, control the urban size, and

Figure 6 Urban expansion process of typical large cities in Asia and Africa. (a) Phnom Penh, capital of Cambodia, (b) Vientiane, capital of Laos, (c) Accra,
capital of Ghana, (d) Bujumbura, capital of Burundi, and (e) Benguela, capital of Angola. In each sub-figure, the true-color remote sensing image is overlaid
with urban ISA.

2) Urban primacy indicates to what extent development is concentrated in a few cities (population, economic activities, services, etc.) in a country.
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increase land value. Thus, urban renewal and infilling be-
come the primary type of Japan urban land development.
Taking another instance, owing to the high urban primacy of
Nepal, the spatial expansion pattern of this country is mainly
represented by its Capital City, Kathmandu. As seen in
Figure 9a, as surrounded by mountains, the space for external
expansion of Kathmandu is limited, and hence, the massive
old city redevelopment and infilling development led to
destruction of ancient buildings and construction of crowded
new built-up areas (Figure 9b and 9c). Likewise, many Latin
American countries (listed as typical infilling countries in
Appendix Table S2) were also characterized by high urba-
nization level and high urban primacy (Atienza and Aroca,
2013), and hence presented considerable infilling parcels in
recent 30 years.

4. Conclusion

Using 30, 872, 69 Landsat images, this research generated
the first global impervious surface area (GISA) product from
1972 to 2019. Furthermore, on the basis of GISA, we also
produced the first global urban expansion pattern (GUEP)
dataset. These new global products are essential for our
further understanding on human’s utilization and alteration
to the natural environments during the past half century.
Compared with the existing global ISA products, although

their overall trend is consistent, to some degree, they are
distinct in delineating ISA dynamics at the regional or global
scale, which is possibly attributed to their different defini-
tions, data sources, methods and samples. Moreover, it
should be kept in mind that it is extremely challenging to

Figure 7 Urban expansion process in Ashgabat and its adjacent Alha state (a) and Southern Finland (e). (b) and (c) zoom-in images: the rural ISA
incorporated into urban in recent years; (d) zoom-in image: the infrastructure (i.e., airport) construction around the urban core.
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map the global ISA with a fine spatial resolution and long
time-series. Objectively, each product has both pros and cons
in different regions and periods. In this regard, more third-
party validation sets are imperative to conduct a compre-
hensive assessment on the existing products. Meanwhile,
integration and optimization of existing products deserve
further research, in order to advance and clarify our knowl-
edge on the global ISA dynamics gradually. After a century
of rapid development, cities all over the world are in different
urbanization stages, and, in such context, our GUEP dataset
provides a comprehensive, timely, spatial-temporal con-
tinuous data for monitoring global urban expansion in recent
30 years. The two global products can be freely download
from http://irsip.whu.edu.cn/resources/dataweb.php.
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