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1. Introduction

With the rich spectral information, which spans the visible to
infrared spectrum in hundreds of continuous narrow spectral
bands, hyperspectral imaging has rapidly become an effective
remote sensing technology for analyzing a variety of materials
(Nidamanuri and Zbell, 2011; Plaza et al., 2009; Zhang et al.,
2012a). Among the various applications, pixel classification aiming
at categorizing pixels in a scene into a specific class has been an
important task for the subsequent analysis and processing
(Senthil et al., 2010; Zheng et al., 2013). To date, various classifica-
tion techniques have been proposed. Zhong and Wang (2010) for-
mulated a conditional random field (CRF) model (Lafferty et al.,
2001) which utilizes the strong dependencies across spatial and
spectral neighbors for the classification of hyperspectral images
(HSIs). A novel classification framework based on spectral unmix-
ing concepts was introduced by Dópido et al. (2012). Li et al.
(2012) constructed a multinomial logistic regression based classi-
fication with a new family of generalized composite kernels when
combining the spectral and the spatial information contained in
hyperspectral data.

In real analysis scenarios, the supervised classification of such a
high-dimensional dataset is still a difficult task. For example, the
Hughes phenomenon appears as the dimensionality increases,
and the collection of labeled training samples is generally difficult,
expensive, and time-consuming. Another challenge is that the
high-dimensional feature for an HSI often tends to be linearly
inseparable. Therefore, many different techniques have been
developed to deal with these obstacles. Among the various meth-
ods, support vector machines (SVM) with kernel tricks (Boser
et al., 1992; Vapnik, 1999; Melgani and Bruzzone, 2004), which
maps the original feature space into a higher dimensional kernel
feature space to deal with the nonlinear problem, exploits the par-
tial meaningful training samples as support vectors to construct an
optimal separating nonlinear hyperplane. In this context, SVM,
which aims at discriminating two different materials, has shown
an excellent performance in supervised HSI classification. Tsang
et al. (2006) presented a core vector machine (CVM) method which
can optimize both the time and space complexities of the standard
SVM algorithm for a large-scale dataset. Fauvel et al. (2008) incor-
porated the spatial information into a spectral-only SVM classifier
by the fusion of the morphological information and the original
hyperspectral data. Demir and Erturk (2010) utilized the empirical
mode decomposition (EMD) of HSIs to increase the classification
accuracy when using an SVM-based classification (Gualtieri and
Cromp, 1999; Melgani and Bruzzone, 2004).

In recent years, a novel collaborative linear regression approach
for object recognition has been introduced into high-dimensional
classification tasks (Zhang et al., 2012b; Waqas et al., 2012; Yang
et al., 2012), where the use of collaborative representation (CR) often
leads to high computational efficiency and a desirable performance.
The CR technique has also been applied to HSI classification (Li et al.,
2013a,b), relying on the observation that the hyperspectral test pixel
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can be approximately represented by a given dictionary constructed
from training samples. In the CR-based classification procedure, the
training samples belonging to the same class contribute most to the
test pixel in the linear representation, while the rest of the training
samples act as collaborative assistants. Compared with the conven-
tional SVM-based classifier, the CR-based classifier works from a
reconstruction point of view and is more suitable for a multi-class
classification task, while the SVM-based classifier is essentially a
binary classifier. Moreover, the CR-based classifier can conduct clas-
sification tasks with a dictionary constructed from training samples,
without an explicit learning stage; however, the sparse support vec-
tor for discriminating hyperplane construction must be trained
before classifying the test data in the SVM classifier. With the aid
of the rest of the training samples, the CR-based classifier can also
work effectively in the case of a lack of samples (Zhang et al.,
2012b; Li et al., 2013c).

In an HSI scene, it is natural that the pixels in a homogeneous
region consist of similar materials (i.e. pixels with high spectral
correlation) and can be used to improve the classification perfor-
mance. Previous studies have shown the importance of incorporat-
ing the spatial neighborhood information into the classification
(Fauvel et al., 2008). Several methods have been implemented by
either combining the contextual and spectral information in the
classification stage or post-processing, with the decisions obtained
from individual pixels by spatial filtering. For the CR-based
approaches, Waqas et al. (2012) presented a neighboring smooth
constraint classification scheme, and Chen et al. (2011) applied
the joint sparsity model (JSM) (Duarte et al., 2005) with contextual
information for HSI classification. In addition, Zhang et al. (2013)
proposed to utilize the nonlocal neighborhood information in the
JSM classification model.

Since a hyperspectral dataset is not linearly separable, the linear
regression based models cannot cope well with the nonlinear clas-
sification problem. Recently, a number of methods have been pro-
posed to deal with this limitation. Qian et al. (2012) mixed several
linear sub-models constructed in the corresponding partial input
feature space with a final output classifier for the nonlinear task.
Li et al. (2013d) developed a new framework for generalized com-
posite kernel machines for HSI classification. Among these tech-
niques, the kernel methods (Kwon and Nasrabadi, 2006) that
implicitly exploit the high-order structure of the given data that
cannot be captured by a linear version are often utilized and can
show a significant improvement (Chen et al., 2013).

In this paper, we propose a kernel nonlocal joint collaboration
model via a column-generation (CG) technique (Bi et al., 2004;
Yuan et al., 2012) for HSI classification. This method first maps
the original spectral space to a higher implicit kernel space by
directly taking the similarity measures between spectral pixels as
a feature, and then utilizes a nonlocal joint collaborative regression
model for the kernel signal reconstruction and the subsequent
pixel classification. After the explicit kernel dictionary and the
explicit kernel signal are obtained, the linear model can be directly
extended to a kernel version. Unlike the kernel trick used in vari-
ous other approaches (Chen et al., 2013; Kwon and Nasrabadi,
2006), the CG strategy is easy to implement and does not require
the explicit inner product structure in the regression analysis solu-
tion. We also develop two kinds of specific radial basis function
(RBF) kernels for measuring the similarities, which are proved to
be effective in the experiment section. The proposed method is
aimed at dealing with the nonlinear phenomenon in HSI classifica-
tion and achieving an improved performance. Experiments with
several different hyperspectral datasets that have been widely
used as public evaluation data confirm the effectiveness of the
two proposed kernel algorithms.

The remaining parts of this paper are organized as follows. Sec-
tion 2 introduces the nonlocal joint collaborative representation
classification method. Section 3 defines the kernel joint collabora-
tion model via column generation and proposes two specific RBF
kernels for hyperspectral imagery. The experimental results of
the proposed classification algorithms with two hyperspectral
datasets are given in Section 4. Finally, Section 5 summarizes the
paper, with a discussion on the findings and our ideas for extend-
ing the work.

2. Nonlocal joint collaborative representation classification

In this section, we first review the classical collaborative repre-
sentation classification (CRC), and we then introduce a joint collab-
oration model which can be considered as a matrix-oriented
extended version. Finally, we incorporate the discriminated spatial
neighborhood information in the matrix-oriented extended ver-
sion by constructing a nonlocal joint signal matrix, which consists
of the highly correlated pixels in the neighboring window of the
test pixel.

2.1. Classical collaborative representation classification

In this paper, every hyperspectral pixel can be denoted as a
B-dimensional vector, where B refers to the number of bands of
the HSI. For classification, suppose we have M distinct classes
and Ni (i = 1,. . ., M) training samples for each class. In the classical
collaboration model, training samples from the ith class act as
columns of a sub-dictionary Ai ¼ ai;1; ai;2; . . . ai;Ni

� �
2 RB�Ni . The

collaborative dictionary A 2 RB�N with N ¼
PM

i¼1Ni is then
constructed by combining all the sub-dictionaries {Am}m=1,. . .,M.
Thus, a test pixel s 2 RB which belongs to the jth class can be
written as a collaborative linear combination of all of the training
samples as:

s ¼ Aaþ e ¼ A1a1 þ . . .þ Ajaj þ . . .þ AMaM þ e

¼ Ajaj þ
XM

k¼1;k–j

Akak þ e 2 RB ð1Þ

where the whole space constitutes a dominant low-dimensional
subspace spanned by Aj, and a complementary subspace set
spanned by the rest of the training samples, which can be consid-
ered as an external collaborative partner to the dominant subspace.
a 2 RN is a coefficient vector and e is random noise. For high-dimen-
sional data classification, Zhang et al. (2012b) suggested that the
‘2-norm regularization could ensure a stable and discriminative
representation coefficient for (1) to reconstruct the test pixel. In
an HSI with Gaussian noise, the collaborative coefficient vector a
can be easily obtained by solving the following optimization
problem:

â ¼ arg min
a
ks� Aak2 þ kkak2

� �
ð2Þ

where k makes a tradeoff between the data fidelity term and the
penalty constraint term. For the classification, âi is the coding
vector associated with class i, and the ‘2-norm kâik2 also brings
some discriminative information. The classification rule for CRC
via regularized least squares, which is also referred to as CRC_RLS
(Zhang et al., 2012b), is denoted as:

classðsÞ ¼ arg min
i¼1;...;M

ks� Aiâik2=kâik2 ð3Þ
2.2. Joint collaboration model (JCM)

Considering the spatial consistency of the HSI, pixels in a spatial
neighborhood can be simultaneously represented to assist with the
classification of the center test pixel in the spatial window. In view
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of this, let S ¼ fstgt¼1;...;T be T pixels in a spatial neighborhood cen-
tered at test pixel s1. These pixels can then be represented by:

S ¼ ½s1 s2 . . . sT � ¼ ½Aa1 þ e1 Aa2 þ e2 . . . AaT þ eT �

¼ A½a1a2 . . .aT �|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
W

þ R ¼ AjWj þ
XM

k¼1;k–j

AkWl þ R ð4Þ

where W is the set of all the coefficient vectors {at}t=1,. . .,T, and Wj is
a sub-set of W, which corresponds to all the pixels in the neighbor-
ing window. It is assumed that all the neighboring pixels share the
same low-dimensional dominant subspace Aj with different coeffi-
cients. R is the model noise matrix corresponding to the joint signal
matrix. In this way, the labeling process can be denoted as:

classðs1Þ ¼ arg min
j¼1;...;M

kS� AjŴðjÞkF=kŴðjÞkF

n o
ð5Þ

where Aj is a sub-part of A corresponding to class j, ŴðjÞ denotes the
corresponding portion of the recovered collaborative coefficients of
the jth class, and �k kF denotes the Frobenius norm.

2.3. Nonlocal joint collaborative representation classification (NJCRC)

While similar pixels tend to be clustered in an image spatial
neighborhood, there will still be pixels with low correlation in
heterogeneous areas, especially around the image edges. In order
to address this problem, we select a large neighborhood window
centered at test pixel s1, with a size of

ffiffiffi
T
p
�

ffiffiffi
T
p

, and consider that
only the K � 1ðK 6 TÞ neighboring pixels which are similar to s1

should be stacked into the nonlocal joint signal matrix SK 2 RB�K ,
while the other pixels in the neighborhood window should be
discarded. Here, we use the K-NN (K-nearest neighbors) method
(Keller et al., 1985) to construct the joint signal sub-matrix, as
follows. We select the first K neighboring pixels, referred to as
{sk}k=1,. . .,K, from all the T pixels, which are reordered by the spectral
correlation between the host pixel with sk, and we stack them as a
new nonlocal joint signal matrix SK. It is believed that these K
pixels {sk}k=1,. . .,K share a ‘‘common collaboration pattern’’
(Li et al., 2013a) as they are selected by the measure of the corre-
lations between the central test pixels1, not the spatial distance.

In this way, the nonlocal version of (4) can be extended by solv-
ing the following joint collaborative recovery via a Frobenius norm
optimization problem:

ŴK ¼ arg min
WK

fkSK � AWKk2
F þ kkWKk2

Fg ð6Þ

where WK refers to the coefficient matrix corresponding to the
nonlocal joint signal matrix. The classification rule should also be
modified as follows:

classðs1Þ ¼ arg min
j¼1;...;M

kSK � AjŴKðjÞkF=kŴKðjÞkF

n o
ð7Þ

where Aj is a sub-part of A corresponding to class j, and ŴKðjÞ
denotes the corresponding portion of the recovered collaborative
coefficients of the ith class.

3. Kernel collaborative representation via column generation

In this section, we first introduce the kernel function and the
two distance measurements for the RBF kernel, and we then map
the HSI into a kernel feature space, in which the classes are
assumed to be linearly separable.

3.1. Kernel function

Although spanning the visible to infrared spectrum in hundreds
of continuous narrow spectral bands, HSIs are well known to be
linearly inseparable, and should not be represented as fixed-size
spectral feature vectors. The kernel method (Li et al., 2013d), a
commonly used approach to deal with such nonlinear problems,
is to assume that we have some way of measuring the similarity
between pixels that does not require them to be preprocessed into
a feature vector format (Murphy, 2012). We consider the similarity
measurement as a real-value function of two arguments denoted
as a pair of pixels. The real-value function j : RB � RB#R is defined
as the inner product:

jðxi;xjÞ ¼ h/ðxiÞ;/ðxjÞi ð8Þ

where xi is the spectral pixel at location i in an HSI, and xj is the one
at location j./(x) is a function of the spectral vector. Commonly used
kernels include the RBF kernel (Suykens and Vandewalle, 1999), the
linear kernel (Yang et al., 2009), the string kernel (Leslie et al.,
2002), and so on. As the feature space of the RBF kernel has an infi-
nite number of dimensions, and the value of the RBF kernel
decreases with distance, and ranges between [0, 1], it can be readily
interpreted as a similarity measure (Philippe et al., 2004). We utilize
the RBF kernel j(xi, xj) = exp(�c � dist(xi, xj)), with c > 0 controlling
the width of the RBF kernel, where dist(xi, xj) is the distance
measurement.

Zhang et al. (2007) noted that different RBF kernel functions can
be fixed with a specific distance measurement dist(xi, xj). The first
distance measurement used in this paper is the Euclidean distance,
and this kernel function, which is denoted as ‘‘KE’’, can be rewritten
as:

jðxi;xjÞ ¼ exp � xi � xj

�� ��2
2=r

	 

ð9Þ

where r = 1/c. This Euclidean distance focuses on the absolute
difference between a pixel pair. Another generalized RBF kernel
function is constructed with the chi-squared distance:

v2ðxi; xjÞ ¼ 1
2

PB
b¼1

ðxiðbÞ�xjðbÞÞ
2

xiðbÞþxjðbÞ
, which can reflect the relative difference

between corresponding spectral sub-regions. The second kernel
function, which is denoted as ‘‘KC’’, can be represented as:

jðxi;xjÞ ¼ exp �v2ðxi;xjÞ=l
� �

ð10Þ

where l is set to the mean value of the pairwise chi-squared dis-
tance and is adaptive to the training set.

3.2. The column-generation technique

Column generation (Nash and Sofer, 1996) has been widely
used in linear programming since the 1950s. The kernel mapping
in this paper, which directly takes the signal in the kernel space
as a feature (Yuan et al., 2012), is similar to the simplified col-
umn-generation strategy for CG-Boost in multiple kernel leaning
(Bi et al., 2004; Gehler and Nowozin, 2009).

Denote s 2 RB as the data point of interest and s0 2 RN as its rep-
resentation in the kernel feature space. The kernel collaborative
representation of test pixel s in terms of all the training pixels
can then be formulated as:

s0 ¼ ½jða1;sÞ�� �j aN ;sð Þ�T ¼

jða1;a1Þ���jða1;aNÞ
..
.

jðaN ;a1Þ���jðaN ;aNÞ

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jðAÞ

½a01 �� �a0N �
T

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
a0

¼jðAÞa0
ð11Þ

where the columns of j(A) are the representation of the training
samples in the feature space , and a0 is assumed to be a N � 1 kernel
representation vector.

For the nonlocal joint representation model, we can also extend
the nonlocal joint signal matrix SK 2 RB�K into the kernel feature
space. We first map all the T pixels into the kernel feature space,
then select the first K signals in the kernel space with the K-NN
approach, as described in Section 2.3, and we finally stack these
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K signals as S0K , considering that they share a ‘‘common collabora-
tive pattern’’ in the feature space. In this way, the nonlocal kernel
joint signal matrix can be collaboratively represented in the kernel
feature space as:

S0K ¼ ½s0ð1Þ � � �s0ðKÞ� ¼

jða1;a1Þ � � �jða1;aNÞ
..
.

jðaN ;a1Þ � � �jðaN ;aNÞ

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
jðAÞ

a01;ð1Þ � � �a01;ðKÞ
..
.

a0N;ð1Þ � � �a0N;ðKÞ

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W0K

¼jðAÞW0K

ð12Þ

where W0K is the kernel collaborative coefficient matrix, and the
function (6) can be extended as :

Ŵ0K ¼ arg min
W0K

fkS0K � jðAÞW0Kk
2
F þ kkW0Kk

2
Fg ð13Þ

The solution of (13) can be easily and analytically derived as:

Ŵ0K ¼ ðjðAÞ
TjðAÞ þ k � IÞ

�1
jðAÞT S0K ð14Þ

Once the coefficient matrix Ŵ0K is obtained, the classification rule,
which is analogous to (7), is denoted as:

classðs1Þ ¼ arg min
j¼1;...;M

kS0K � jðAjÞŴ0K;jk
2
F=kŴ0K;jk

2
F ð15Þ

where j(Aj) is a sub-part of j(A) in class j, and Ŵ0K;j denotes the
portion of the recovered kernel collaborative coefficients
corresponding to the entire training samples in the jth class.

3.3. Computational complexity analysis

Suppose the size of dictionary A is B � N, the neighborhood size
is T, and the amount of all the test pixels is n. The computational
complexity of the proposed algorithms consists of three parts, as
follows. First, the original spectral feature is mapped into the fea-
ture space. Second, the K-NN approach is introduced to select the
nonlocal kernel feature signal, the computational complexity of
which is O(T(T � 1)/2). Although the dominant computational cost
of the algorithms comes from the closed-form solution of the cod-
ing coefficient matrix, as shown in Eq. (14), we also find that the
projection matrix P ¼ ðjðAÞTjðAÞ þ k � IÞ

�1
jðAÞT can be computed

offline, which can accelerate the computation of the coding, and
the second term S0 2 RN�K is acquired in the CG way, which costs
O(KN). In view of this, the final complexity for the whole hyper-
spectral dataset is O(n(KN + KN2)), where K 6 T is the number of
neighboring pixels which are similar to the test pixel in the kernel
feature space.

3.4. Procedure of the proposed kernel algorithm

By incorporating the nonlocal spatial structure information, the
implementation details of the proposed kernel NJCRC algorithm
are summarized in Table 1.

4. Experiments and discussion

4.1. Experimental design and datasets

The goal of the experiments is to investigate the effectiveness of
the proposed algorithms in the classification of hyperspectral
datasets. The classifications of standard SVM and SVM-NS (which
combine the spectral and contextual neighborhood information
by stacking) with the RBF kernel in the conventional reproducing
kernel Hilbert space (RKHS) (Melgani and Bruzzone, 2004; Plaza
et al., 2009), SRC (Wright et al., 2009) with an improved ‘1-norm
algorithm named Lasso (Tibshirani, 2011), and JSRC with a greedy
pursuit algorithm (referred to as SOMP in Tropp et al. (2006)) are
used as benchmarks in this paper. Moreover, we also compare
the proposed nonlinear CR-based algorithms on two specific kernel
functions with the corresponding linear versions, including CRC,
JCRC, and NJCRC. The parameters for SVM, including c and r, and
those for SVM-NS, including c, r, and the size of the neighborhood,
are obtained by cross-validation.

The two real-world hyperspectral datasets used for the experi-
ments are briefly described as follows.

This scene gathered by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor in June 12, 1992 over the Indian
Pines test site in north-western Indiana consists of 145 � 145 pix-
els and 224 spectral reflectance bands in the wavelength range
0.4–2.5 lm. The false color composite of the Indian Pines image
is shown in Fig. 1(a). We also reduced the number of bands to
200 by removing bands covering the regions of water absorption:
[104–108], [150–163], and 220 (Gualtieri and Cromp, 1999). The
spatial resolution for this image is about 20 m. In this image, we
randomly sample 60 pixels for each class as the training samples
and the rest as the test pixels. This image contains 10 ground-truth
classes which is visually shown in Fig. 1(b), and the numbers of the
training and test sets are shown in Table 2.

The next experimental image, which is named the Pavia Univer-
sity scene, was acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor during flight campaigns in 2003 over
the Pavia area, northern Italy. The ROSIS sensor generates 115
spectral bands ranging from 0.43–0.86 lm with a geometric reso-
lution of 1.3 m per pixel. With several of the noisy bands removed,
this image contains 103 available bands. For the Pavia University
image sized as 610 � 340 pixels, it contains nine ground-truth clas-
ses, as shown in Table 3. From the ground truth, we randomly
select 40 pixels for each class as the training samples, and the rest
as the test samples to validate the performances of the aforemen-
tioned classifiers. The false color composite of the Pavia University
image is shown in Fig. 2(a), and the label of each ground truth pixel
can be shown in Fig. 2(b).

4.2. Experimental results

The visual classification results for the two datasets are
shown in Figs. 1 and 2, respectively. Tables 5 and 7 summarize
the classification accuracies of the methods under comparison. In
these tables, the OA is the ratio between the correctly classified
test pixels and the total number of test samples. The quantity
disagreement Q and the allocation disagreement A (Pontius and
Millones, 2011) are two robust and informative measures of the
degree of disagreement. In Tables 5 and 7, the best result for each
quality index is labeled in bold, while the sub-optimal one is
underlined. The classification accuracies using the different
classifiers with the test set for each class can be found in the
corresponding columns.

4.2.1. Indian Pines image
For the Indian Pines dataset, the regularization parameter k for

the CR-based classification algorithms (it is noted that SRC with
the ‘1-norm regularization is a special instance of the generalized
CR-based algorithm) ranges from 1e � 8 to 10. For the NJCRC-KE,
NJCRC-KC, and linear NJCRC algorithms, the number of the joint
sparse atoms K is chosen between K = 40 and K = 100. The neighbor-
hood window size T for the spatially extended classifiers ranges from
9 to 169, and the kernel parameter r for the KE-related algorithms
ranges from 1e � 3 to 1e � 1. The optimal sets of parameters for
the nine ‘2-norm based algorithms are shown in Table 4. In addition,
the parameters for SVM, SVM-NS, SRC, and JSRC are set as the corre-
sponding optimal, and the optimal sizes of the spatial neighborhood
for JSRC and SVM-NS are 25 and 169, respectively.



Table 1
The kernel NJCRC algorithm for HSI classification.

Input: (1) An HSI containing training samples and a test set, in which the test pixel located at pcan be represented as sp 2 RB

(2) An entire dictionary A ¼ ½A1; . . . ;AM � 2 RB�N for M classes
(3) Parameters: regulation parameter k, spatial neighborhood size T , the number of the joint signal K, and the kernel parameter r for the Euclidean distance
(this parameter is omitted if the chi-squared distance is utilized)

Initialization: Construct the entire dictionary A with all the training set in this HSI; normalize the columns of A to have a unit ‘2-norm and map the dictionary into the
kernel feature space j(A)

Main iteration:
For each test pixel in the HSI:

1. Construct the initial joint signal matrix S ¼ s1s2 . . . sT½ � 2 RB�T , where s1 locates at the center of the neighborhood window, and map this matrix to the kernel feature
space

2. Construct the nonlocal joint collaborative matrix S0K in the kernel feature space
3. Code S0K over j(A)with Eq. (13)
4. Compute the regularized residuals and label the test pixel with Eq. (15)
5. Turn to the next pixel

End for
Output: A 2-D matrix which records the labels of the HSI
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The classification maps of the various classification methods are
visually shown in Fig. 1(c–o), respectively. The quantitative accu-
racy results, which include the classification accuracy for every
class, the overall accuracy, quantity disagreement, and the alloca-
tion disagreement, are shown in Table 5. For the Indian Pines
image with a medium spatial resolution, the improvements are
mainly caused by the spatial smoothness of the HSI, as the number
of nonlocal neighboring pixels is large. With the help from the non-
local neighboring pixels, the ‘‘salt and pepper’’ phenomenon can be
significantly alleviated, especially for the pixels located in the inner
part of a block, as shown in Fig. 1. For the classification accuracy,
(a) (b) (c)

(f) (g) (h) 

(k) (l) (m)
 Corn-notill

 Corn- mintill

Grass-pasture

Grass-trees

Hay-windrowed

Soybean-notill

Soybean-mintill

Bldg-grass-tre

Soybean-clean
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Fig. 1. Classification results with the Indian Pines image: (a) false color image (R:57, G:2
(i) JSRC, (j) SVM-NS, (k) NJCRC, (l) JCRC-KC, (m) NJCRC-KC, (n) JCRC-KE, and (o) NJCRC-KE.
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the improvement of the nonlocal spatial information based classi-
fiers over the spatial contextual prior based classifiers suggests
that the nonlocal joint signal selection can further improve the per-
formance, as can be seen in Table 5. Details of the improvements
are further shown in Section 4.3.2.

4.2.2. Pavia University image
For the Pavia University image, the regularization parameter k

for the CR-based classification algorithms ranges from 1e � 8 to
10. For the NJCRC-KE, NJCRC-KC, and linear NJCRC algorithms,
the number of the joint sparse atoms K is chosen between K = 30
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7, B:17), (b) ground truth, (c) CRC, (d) SRC, (e) SVM, (f) CRC-KE, (g) CRC-KC, (h) JCRC,
In addition, the legend, scale bar, and north arrow of this image are shown in the last
erred to the web version of this article.)



Table 2
The ten ground-truth classes in the AVIRIS Indian Pines image dataset, and the
training and test sample sets for each class.

No. Class name Training samples Test samples

1 Corn-notill 60 1368
2 Corn-mintill 60 770
3 Grass-pasture 60 423
4 Grass-trees 60 670
5 Hay-windrowed 60 418
6 Soybean-notill 60 912
7 Soybean-mintill 60 2395
8 Soybean-clean 60 533
9 Woods 60 1205

10 Buildings-grass-trees 60 326
Total 600 9020

Table 3
The nine ground-truth classes in the ROSIS Pavia University dataset, and the training
and test sample sets for each class.

No. Class name Training samples Test samples

1 Asphalt 40 6591
2 Meadows 40 18,609
3 Gravel 40 2059
4 Trees 40 3024
5 Metal sheet 40 1305
6 Bare Soil 40 4989
7 Bitumen 40 1290
8 Brick 40 3642
9 Shadows 40 907

Total 360 42,416

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(k) (l) (m) (n) (o)

 Asphalt
 Trees 
 Bitumen  

 Meadows
Metal sheet

 Brick 

 Gravel
 Bare soil 
 Shadows Scale bar: North arrow:

Fig. 2. Classification results with the Pavia University image: (a) false color image, (R:102, G:56, B:31), (b) ground truth, (c) CRC, (d) SRC, (e) SVM, (f) CRC-KE, (g) CRC-KC, (h)
JCRC, (i) JSRC, (j) SVM-NS, (k) NJCRC, (l) JCRC-KC, (m) NJCRC-KC, (n) JCRC-KE, and (o) NJCRC-KE. In addition, the legend, scale bar, and north arrow of this image are shown in
the last row. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
The optimal combination of parameters for the nine ‘2-norm based classifiers with the Indian Pines dataset.

Linear version Chi-squared distance (KC) Euclidean distance (KE)

CRC k ¼ 1e� 5 k ¼ 1e� 5 k ¼ 1 and r = 0.0330
JCRC k ¼ 1e� 7, T = 81 k ¼ 1e� 7 and T = 49 k ¼ 1, T = 81, and r = 0.0133
NJCRC k ¼ 1e� 7, T = 121, and K = 80 k ¼ 1e� 7, T = 121, and K = 70 k ¼ 1e� 1, T = 121, K = 85, and r = 0.0133

Table 5
Classification accuracy (%) for the Indian Pines image with the test set.

C SRC SVM CRC CRC-KC CRC-KE SVM-NS JCRC JCRC-KC JCRC-KE NJCRC NJCRC-KC NJCRC-KE

1 0.4942 0.6923 0.6689 0.6557 0.4466 0.8085 0.8852 0.9101 0.9145 0.9393 0.8882 0.9444

2 0.5468 0.7792 0.5481 0.7455 0.5974 0.9104 0.8727 0.9792 0.9649 0.9416 0.9948 0.9805
3 0.8487 0.9125 0.8747 0.8983 0.8865 0.9456 0.9149 0.9598 0.9698 0.9173 0.9456 0.9551

4 0.9463 0.9418 0.9358 0.9612 0.9612 0.9910 0.9925 0.9985 0.9970 0.9970 0.9910 1

5 0.9952 0.9952 0.9952 0.9952 0.9952 1 1 1 1 1 1 1

6 0.6371 0.716 0.6689 0.7467 0.7215 0.9046 0.9441 0.9452 0.9497 0.9748 0.9276 0.9561
7 0.5194 0.5908 0.4472 0.6259 0.6171 0.7265 0.7061 0.7311 0.8939 0.7779 0.8342 0.9357

8 0.6323 0.7992 0.7148 0.8330 0.5760 0.8780 0.9250 0.9887 0.9887 0.9681 0.9306 0.9944

9 0.8722 0.9245 0.8863 0.9535 0.8365 0.961 0.9336 0.9710 1 0.9743 0.9876 1

10 0.7209 0.7178 0.681 0.7117 0.6227 0.9141 0.954 0.9939 1 1 0.9969 1

OA 0.6601 0.7563 0.6765 0.7667 0.6829 0.8623 0.8685 0.9009 0.9478 0.9149 0.9222 0.9660

A 0.27 0.17 0.26 0.17 0.24 0.07 0.05 0.03 0.02 0.02 0.02 0.02

Q 0.05 0.05 0.05 0.05 0.05 0.05 0.09 0.07 0.03 0.05 0.05 0.02

Table 6
The optimal combination of parameters for the nine ‘2-norm based classifiers with the Pavia University image.

Linear version Chi-squared distance (KC) Euclidean distance (KE)

CRC k ¼ 1e� 4 k ¼ 1e� 5 k ¼ 1 and r = 0.0191
JCRC k ¼ 1e� 4, T = 49 k ¼ 1e� 6 and T = 9 k ¼ 1e� 1, T = 121, and r = 0.0476
NJCRC k ¼ 1e� 5, T = 81, and K = 55 k ¼ 1e� 7, T = 81, and K = 50 k ¼ 1e� 1, T = 225, K = 180, and r = 0.0476

Table 7
Classification accuracy for the Pavia University image with the test set.

C SRC SVM CRC CRC-KC CRC-KE SVM-NS JCRC JCRC-KC JCRC-KE NJCRC NJCRC-KC NJCRC-KE

1 0.5743 0.7161 0.3995 0.7151 0.5759 0.9147 0.6973 0.8877 0.8012 0.7527 0.9436 0.8304

2 0.7256 0.7968 0.7724 0.7779 0.7279 0.9355 0.8917 0.8768 0.9726 0.8747 0.9236 0.9715
3 0.6595 0.7411 0.8324 0.8222 0.6824 0.9296 0.9213 0.9087 0.7776 0.9903 0.9354 0.7712

4 0.9137 0.9312 0.9319 0.9382 0.9160 0.9841 0.9246 0.9659 0.9130 0.9362 0.9190 0.9196

5 0.9946 0.9946 0.9992 0.9977 0.9946 0.9969 0.9724 1 1 0.9992 1 1

6 0.6274 0.7198 0.5256 0.7482 0.6312 0.9373 0.7462 0.8721 0.9455 0.6853 0.9431 0.9561

7 0.8566 0.8829 0.7426 0.8767 0.8736 0.9124 0.9349 0.9233 0.9240 0.9806 0.9806 0.9349
8 0.6068 0.7751 0.1571 0.5681 0.6669 0.8861 0.0203 0.7133 0.9333 0.1483 0.9097 0.9454

9 0.9735 0.9945 0.8820 0.9151 0.9735 0.9912 1 0.9338 0.4609 0.9713 0.2249 0.4068

OA 0.7081 0.7932 0.6553 0.7729 0.7168 0.9341 0.7795 0.8782 0.9141 0.7902 0.9172 0.9198
A 0.17 0.12 0.25 0.13 0.16 0.04 0.11 0.07 0.04 0.10 0.04 0.03

Q 0.06 0.05 0.05 0.06 0.07 0.02 0.07 0.04 0.04 0.07 0.03 0.04
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and K = 200. The neighborhood window size T for the spatially
extended classifiers ranges from 9 to 289, and the kernel parame-
ter r for the KE-related algorithms ranges from 0.015 to 0.1. The
optimal combinations of parameters for the nine ‘2-norm based
classifiers are shown in Table 6. In addition, the parameters for
SVM, SRC, and JSRC are set as the corresponding optimal, and the
optimal size of the spatial neighborhood in JSRC is 9.

The classification results for the various different classifiers are
visually displayed in Fig. 2(c–o), respectively. The quantitative
evaluation results, which include the classification accuracy for
every class, the overall accuracy, quantity disagreement, and the
allocation disagreement, are shown in Table 7. To allow a compar-
ison, we also list the detailed improvements for the nonlinear CR-
based classifiers over the linear CRC in Table 9, which is further
analyzed in the following subsection. For the Pavia dataset with
a high spatial resolution, the ranges of the numbers of the nonlocal
joint hyperspectral signals suggest an obstacle caused by increased
internal spectral/feature variability of each land-cover type on the
joint collaboration model. Comparing the SVM-related algorithms
with the ‘2-norm related ones, it can be observed that SVM-NS



Table 9
Summary of the classification comparisons undertaken with the Pavia University image. A resampling method was used to conduct the McNemar’s test to compare the
proportions of the correctly allocated pixels. All tests shown were one-sided, and a 5% level of significance was selected.

Classifier1 Classifier2 Comparison of the proportions and disagreement

DQ DA DOA zjj Significant?

NJCRC-KE CRC �0.22 �0.01 0.2645 5.74 Yes
NJCRC-KC CRC �0.21 �0.02 0.2619 5.74 Yes
NJCRC CRC �0.15 0.02 0.1349 2.95 No
JCRC-KE CRC �0.21 �0.01 0.2588 6.23 Yes
JCRC-KC CRC �0.18 �0.01 0.2229 6.23 Yes
JCRC CRC �0.14 0.02 0.1242 2.24 No
CRC-KE CRC �0.09 0.02 0.0615 0.98 No
CRC-KC CRC �0.12 0.01 0.1176 2.77 No
SVM CRC �0.13 0 0.1379 1.99 No
SRC CRC �0.08 0.01 0.0528 0.83 No
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Fig. 3. The classification accuracy versus the regularization parameter k for the various classification algorithms: (a) the Indian Pines image, and (b) the Pavia University
image.

Table 8
Summary of the classification comparisons undertaken with the Indian Pines dataset. A resampling method was used to conduct the McNemar’s test to compare the proportions
of the correctly allocated pixels. All tests shown were one-sided, and a 5% level of significance was selected.

Classifier1 Classifier2 Comparison of the proportions and disagreement

DQ DA DOA zjj Significant?

NJCRC-KE CRC �0.24 �0.03 0.2895 7.57 Yes
NJCRC-KC CRC �0.24 0 0.2456 7.23 Yes
NJCRC CRC �0.24 0 0.2384 6.68 Yes
JCRC-KE CRC �0.24 �0.02 0.2713 7.57 Yes
JCRC-KC CRC �0.23 0.02 0.2244 6.90 Yes
JCRC CRC �0.21 0.04 0.1920 6.25 Yes
CRC-KE CRC �0.02 0 0.0064 1.26 No
CRC-KC CRC �0.09 0 0.0902 3.32 No
SVM CRC �0.09 0 0.0798 2.78 No
SRC CRC 0.01 0 �0.0164 0.66 No
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yields the best overall performance. Note that in the training stage
of SVM-NS, in order to extract the spatial feature for each training
sample, SVM-NS requires knowledge of the neighboring pixels,
which may not be available in the training set. Therefore, we could
say that SVM-NS uses more training samples than the other meth-
ods, especially in our experiment setting, where the training sets
are randomly selected.

We next demonstrate the impact of the kernel approach on the
classification result of the Pavia University dataset. For the single-
signal algorithms, CRC-KC shows the best performance, while
NJCRC-KE shows the best performance for the multiple-signal
simultaneous representation category. Although the performance
in several classes shows that the original spectral feature can reach
a more accurate recognition rate (such as the shadows class in the
Pavia University image), it can still be concluded that the kernel
strategy can improve the classification accuracy in most classes.

4.3. Parameter analysis and performance discussion

4.3.1. Parameter analysis
In this subsection, we examine the effect of the parameters on

the classification performance of the various algorithms with the
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Fig. 4. The classification accuracy versus the spatial neighborhood size T for the various classification algorithms: (a) the Indian Pines image, and (b) the Pavia University
image.
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Fig. 5. The classification accuracy versus the number of joint signal atoms K for the various classification algorithms: (a) the Indian Pines image, and (b) the Pavia University
image.
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Fig. 6. The classification accuracy versus the kernel width parameter r for the various classification algorithms: (a) the Indian Pines image; (b) the Pavia University image.
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Indian Pines image and the Pavia University image, respectively.
When analyzing one specific parameter, we fix the other parame-
ters as the corresponding optimal.

4.3.1.1. Effect of the regularization parameter. Fig. 3(a and b) record
the effect of the regularization parameter k on the two datasets,
respectively. For the Indian Pines image, SRC, CRC-KE, JCRC-KE,
and NJCRC-KE show a robust performance, and NJCRC-KE is the
best one among all the algorithms. With the increase in k, the
performances of the KC-related algorithms reaches the optimal at
first and then declines when k exceeds a certain threshold. It can
also be seen that the linear versions show the worst performances.
For the Pavia University image, the kernel algorithms with the
Euclidean distance show a weaker capability with a low value,
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and then increase rapidly with a suitable k. In addition, the
KC-related algorithms and linear versions also show similar perfor-
mances for the Indian Pines image.

4.3.1.2. Effect of the spatial neighborhood size and the number of joint
signal atoms. The joint spatial aspects of the final proposed
algorithms contain two parameters: the neighborhood size T and
the number of the nonlocal signals K. For the Indian Pines image,
we fix the other parameters as the optimal, and we show the plots
of the classification results versus the two parameters in Figs. 4(a)
and 5(a), respectively. Both plots rise quickly and reach a maxi-
mum point, and then remain relatively stable with only a tiny
decline, which shows the robustness of the proposed algorithms
with respect to the two parameters. For the Pavia University image,
the optimal parameter settings for the various algorithms can be
seen in Table 6. The plot for JCRC-KE is quite similar to that for
NJCRC-KE in Fig. 4(b) by setting K = 180. Without the nonlocal
signal selection approach, the rest of the spatial information
involved algorithms show a rapid decrease as the spatial neighbor-
hood size increases. In Fig. 5(b), we fix T = 81 for NJCRC and
NJCRC-KC, and T = 225 for NJCRC-KE, to demonstrate the effects
of the number of nonlocal signals on these three algorithms. The
plots in Fig. 5(b) suggest that the preferred K for NJCRC and
NJCRC-KC are close to each other, while the performance of
NJCRC-KC is much better than that of the algorithms working in
the original spectral space. Under a large spatial window, the plot
for NJCRC-KE rises quickly and reaches a maximum point, and then
stays quite stable. It can be concluded that the suitable parameter
settings for the KC-related algorithms are close to those for the cor-
responding linear versions, while the settings for the KE-related
algorithms are quite different.
4.3.1.3. Effect of the kernel width parameter. We next investigate the
effect of the kernel width parameter r on the KE-related classifiers.
Fig. 6(a and b) show the performances with the Indian Pines image
and the Pavia University image, respectively. It can be observed
that the performance of the proposed NJCRC-KE method is quite
robust and stable with regard to the kernel parameter r.
4.3.2. Performance discussion
In this subsection, we analyze the classification performances of

some of the related classifiers. To allow a comparison, we first list
the detailed improvements for the nonlinear CR-based classifiers
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over classical CRC for the Indian Pines image in Table 8, and those
for the Pavia University image in Table 9, respectively. The DQ
values in these tables are the difference in the quantity disagree-
ment between the practical Classifer1 and Classifier2, which
indicates the superiority of the classifier when DQ < 0. The next
two indexes DA and DOA also tell a similar story, and are associ-
ated with the specific score area. The McNemar’ test (Foody,
2004), which is a non-parametric statistical significance test of
the difference between two classifications, is also utilized in this
paper. Compared with the linear CRC, most of the kernel-based
algorithms with spatial information can acquire superior classifica-
tion performances, and show a significant superiority with both
datasets. For the vector-oriented representation algorithms,
CRC-KC is superior to the linear classifiers, and shows comparable
performance to the SVM with RBF kernel.

We finally analyze the classification performance with each
category of the two hyperspectral datasets. The two proposed
kernel-based algorithms and classical CRC are utilized to make a
comparison, as shown in Fig. 7. The classification omission, agree-
ment, and commission are shown as the sub-bars for each category
in a group, and the detailed number in each sub-bar denotes the
associated proportion. In Fig. 7(a), the performance for each cate-
gory is improved with the kernel and nonlocal spatial constraint
based algorithms, and the three soybean-related categories show
a significant improvement, considering all three of the evaluation
criteria. For the experiments with the Pavia University dataset, a
similar observation can be made. Pixels belonging to the asphalt,
meadow, bare soil, and brick classes dominate the improvement.
To sum up, it is demonstrated in the experiments that the kernel
and nonlocal spatial constraint based algorithms can significantly
improve the classification result, for both the classical agricultural
AVIRIS image and the urban ROSIS image.
5. Conclusions

In this paper, we propose a new HSI classification technique
based on collaborative representation in a nonlinear feature space
induced by a column-generation kernel method. For the proposed
algorithms, we first map the spectral signal into the high-dimen-
sional feature space, and we then utilize a nonlocal joint collabora-
tive regression model for the kernel signal reconstruction and the
subsequent pixel classification. After the explicit kernel dictionary
and explicit kernel signal are obtained, a standard linear regression
model can be directly extended to a kernel version. The nonlocal
contextual information is incorporated to constrain the dominant
representation through the joint collaborative representation. The
kernel technique in this paper differs from the conventional kernel
mapping in the RKHS feature space. The column generation
directly treats the similarity measures between spectral pixels as
a feature, while the conventional kernel method replaces the
original feature vector as an implicit kernel feature by the inner
product operation. We also focus on the absolute/relative differ-
ence between pixel pairs, and we apply two specific RBF kernel
functions to investigate the efficient performance of this kernel
technique. The proposed algorithms were tested on AVIRIS and
ROSIS hyperspectral datasets, and the extensive experimental
results confirm the effectiveness of the nonlinear strategy.

We should mention that the proposed algorithms still have
room for improvement, such as better contextual information
extraction, which could automatically obtain the joint signal
matrix, adaptively fix the kernel width parameter for the KE-
related algorithms, or utilize a dictionary learning method to
reduce the size of dictionary while keeping its representative and
discriminative ability. We will focus on these issues in our future
work.
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