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A B S T R A C T

Automatically monitoring newly constructed building areas (NCBAs) is essential for efficient land resource
management and sustainable urban development, particularly in the rapidly urbanizing country of China. In this
regard, time-series multi-view high-resolution optical satellite images can provide fine spatial details for clearly
characterizing NCBAs, but this leads to great heterogeneity and complexity, owing to the high spectral variation,
complicated imaging conditions, and different viewing angles. Moreover, to date, the vertical features and time-
series information from these images have not been fully exploited for urban change detection. In this paper, our
primary objective is to automatically detect the presence of NCBAs, and meanwhile, to investigate the feasibility
of identifying their change timing using time-series multi-view ZY-3 high-resolution satellite images. To this aim,
we propose an automatic change detection method consisting of three components: 1) firstly, we jointly use
planar-vertical features to delineate the NCBAs; 2) object-based temporal correction is subsequently applied to
improve the spatiotemporal consistency of the features; and 3) finally, a multi-temporal change detection model
is used to simultaneously capture the NCBAs and the change timing. We applied the method on two urban fringe
areas of Beijing (7 multi-temporal image sets) and Shanghai (7 multi-temporal image sets), respectively, which
are cities that have been experiencing rapid urbanization. The experimental results confirmed the effectiveness
of the proposed method. For both study areas, the F-score values reached nearly 90% in terms of NCBA de-
tection, and with respect to the change timing, the overall accuracies with a one-year tolerance strategy reached
around 92%. The joint use of the planar-vertical features and the inclusion of multi-temporal images make the
proposed method a promising approach for automatically providing the spatiotemporal information of NCBAs in
practical applications.

1. Introduction

Extensive urbanization is commonly accompanied by physical ex-
pansion of urban land, especially in Asia and Africa (Bren d'Amour
et al., 2017). For instance, in the rapidly urbanizing Asian country of
China, a great deal of non-urban land (e.g., arable land, pastures, for-
ests, lakes) is being converted into newly constructed building areas
(NCBAs) (Y. Li et al., 2015; J. Liu et al., 2014; Y. Liu et al., 2014; Liu
et al., 2018; J. Wang et al., 2012; Zhou et al., 2017). The newly con-
structed building areas (NCBAs) refer to the areas that are dominated
by new buildings, ancillary roads and greenbelts, and they are usually
constructed for residential, commercial, industrial zones, and public
facilities, according to the China's land-use classification scheme (SAC,

2017). Although these newly constructed regions can relieve the po-
pulation pressure and promote economic development, they have
threatened the quality of arable land (Kong, 2014) and induced severe
environmental degradation (Bai et al., 2016; Liu et al., 2018).

In this context, the government of China has started to strictly
confine NCBAs to specific areas by implementing the three “red line”
policies, which are the ecological conservation redline (ECR) (Bai et al.,
2016), the prime farmland protection boundary (PFPB) (Xia et al.,
2016), and the urban growth boundary (UGB) (Jian et al., 2017).
Nevertheless, some illegal cases of land occupation are still taking place
(ChinaDaily, 2015), destroying the areas that are under the protection
of the three red line policies project. Moreover, the prevalence of
NCBAs poses a great threat to food security (Bren d'Amour et al., 2017),
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freshwater availability (Cohen, 2011), climate change (Fu and Weng,
2016; Sun et al., 2016), and forest ecosystem services and biodiversity
(He et al., 2017, 2014; Potapov et al., 2012). Therefore, monitoring
NCBAs has become the focus of the China's Ministry of Natural Re-
sources (ChinaDaily, 2017), and it is imperative to characterize the
spatiotemporal dynamics of NCBAs, in order to enhance land resource
management and guarantee sustainable urban development.

Remotely sensed imagery, with the notable advantages of the var-
ious spectral, spatial, and temporal resolutions, as well as the wide
coverage, is increasingly utilized to investigate urban land expansion
(Ban et al., 2017; Ban and Yousif, 2012; Del Frate et al., 2008; Gamba
et al., 2006; Grey et al., 2003; Lefebvre et al., 2016; Mertes et al., 2015;
Taubenböck et al., 2019, 2012; L. Wang et al., 2012; Zhou et al., 2018).
Recently, the availability of high-resolution (with a spatial resolution
of< 5 m) satellite data, e.g., IKONOS, QuickBird, WorldView-1/2/3,
Pléiades-1A/1B, ZY-3 01/02, GF-1/2, TerraSAR-X, and COSMO-
SkyMed, is opening up new avenues for dynamic urban monitoring at a
very fine scale (Bouziani et al., 2010; Leichtle et al., 2017; Marin et al.,
2015; Mendez Dominguez et al., 2019; Pacifici et al., 2007; Zhang et al.,
2017). Specifically, the detailed spatial information provided by the
high-resolution images makes it possible to mitigate the mixed pixel
problem existing in the moderate-to-coarse images, and can therefore
characterize NCBAs more clearly. Nevertheless, to date, identifying
NCBAs has been totally reliant on visual interpretation (ChinaDaily,
2019), in practice, leading to a high cost in terms of time and effort,
especially when conducted in large areas. Therefore, for the con-
siderations of practical use, it is well worth developing automatic
change detection methods without manual sampling, in order to derive
NCBAs from the huge amount of high-resolution data.

However, most initiatives to automatically monitor urban land ex-
pansion using high-resolution optical satellite images are hampered by:
a) the limited data availability caused by the low temporal resolution
and cloud contamination; and b) the heterogeneity and complexity (i.e.,
the high spectral variation, complicated imaging conditions, and dif-
ferent viewing angles) (Bruzzone and Bovolo, 2013; Chen et al., 2012).
These factors pose great challenges to the traditional change detection
methods (Tewkesbury et al., 2015). Generally speaking, change detec-
tion can be conducted at bi-temporal (i.e., identifying the differences of
two images at a time) or multi-temporal (i.e., time-series analysis with
multiple images) timescales (Coppin et al., 2004). While bi-temporal
methods have been widely adopted (Ban and Yousif, 2012; Bovolo and
Bruzzone, 2007; Gamba et al., 2006; Ridd and Liu, 1998; Teo and Shih,
2013; Xian et al., 2009), multi-temporal methods have shown great
potential for providing a more in-depth understanding of land-cover
dynamics in recent years (Zhu, 2017). For instance, many researchers
have proposed multi-temporal or time-series change detection algo-
rithms for moderate-to-coarse resolution images, such as LandTrendr
(Kennedy et al., 2010), the vegetation change tracker (VCT) (Huang
et al., 2010), the breaks for additive season and trend (BFAST) algo-
rithm (Verbesselt et al., 2010), and continuous change detection and
classification (CCDC) (Zhu and Woodcock, 2014). However, most of
these algorithms have been developed for vegetative ecosystems, which
may experience multidirectional changes (e.g., forestry disturbance or
recovery), and thus they are not suitable for monitoring urban land
expansion, since this is typically unidirectional (i.e., the inverse change
is unrealistic) (Schneider, 2012). In this regard, Song et al. (2016)
adopted a logical function to model the impervious surface cover
change, and then extracted the change magnitude, timing, and duration
over a 27-year span (Sexton et al., 2013). More recently, Li et al. (2018)
developed a temporal segmentation method based on linear regression,
and identified the urban land conversion sources (i.e., vegetation,
water, and bare soil) during 1985–2015. These methods can char-
acterize the urban land expansion process as three continuous stages
(pre-change, change, and post-change), based on sufficient time-series
images.

Synthetic aperture radar (SAR) images have received much

attention on urban change detection, as they are not affected by
weather conditions (Ban and Yousif, 2012; Del Frate et al., 2008;
Gamba et al., 2007, 2006; Hu and Ban, 2014; Mendez Dominguez et al.,
2019; Su et al., 2015; Yang et al., 2017). For example, Gamba et al.
(2006) extracted linear features from bi-temporal SAR images to detect
changed pixels. By using time-series SAR images, Su et al. (2015)
combined a likelihood ratio test and a clustering-and-recognizing
method to identify different change types in urban areas. Furthermore,
Mendez Dominguez et al. (2019) utilized the backscatter and height
differences from high-resolution tomographic SAR image pairs to per-
form 2D and 3D urban change detection. However, most of these
methods are specific to SAR images which are prone to intrinsic speckle
noise (Hu and Ban, 2014), and thus they can be not directly applied to
optical images. In this research, the multi-view high-resolution (< 5 m)
optical satellite images are focused on. To the knowledge of the authors,
the existing urban change detection studies seldom take into account
time series of high-resolution (< 5 m) optical satellite images, owing to
the difficulties in data acquisition and image processing, as well as the
lack of specific application scenarios. Recently, Sentnel-2 data, with a
spatial resolution of 10 m and a revisit time of 5 days at the equator
(Drusch et al., 2012), has been employed to urban change detection
(Ban et al., 2017; Benedetti et al., 2018; Haas and Ban, 2018; Lefebvre
et al., 2016). However, single buildings and small settlements may be
omitted due to the limitation of the spatial resolution of Sentinel-2 data
(Pesaresi et al., 2016). Therefore, high-resolution (< 5 m) optical
images are essential to find and analyze the micro-scale changes (e.g.,
NCBAs) and the timing of the changes.

Some progress has been made on high-resolution image change
detection. For instance, the inclusion of spatial/contextual information
(e.g., texture, structure, and spatial relationships) has often been con-
sidered to complement the spectral features and suppress false alarms
(Bruzzone and Bovolo, 2013). Examples are the gray-level co-occur-
rence matrix (GLCM) (Lefebvre and Corpetti, 2017), wavelet decom-
position (Celik and Ma, 2011), morphological profiles (MPs) (Falco
et al., 2013; Mura et al., 2008), and edge features (Rowe and Grewe,
2001). Furthermore, object-based change detection (OBCD), which fo-
cuses on image objects instead of individual pixels, is more effective for
analyzing multi-temporal high-resolution images, due to its super-
iorities in both facilitating the multiscale modeling of spatial informa-
tion and mitigating the “salt-and-pepper” effect induced by registration
errors, spectral variability, and imaging conditions (Chen et al., 2012;
Hussain et al., 2013). Consequently, a wide range of studies have ap-
plied spatial information derived from image objects or the context of
pixels (e.g., a local neighborhood) to improve the performance of
change detection. For example, Im et al. (2008) developed an object-
based correlation image analysis approach, under the assumption that
the correlation significantly decreased from unchanged objects to
changed objects; Bovolo (2009) introduced a multilevel parcel-based
technique to model multi-temporal images, and subsequently employed
multilevel change vector analysis (CVA) to produce change maps;
Pacifici and Del Frate (2010) compared the signal values of pulse-
coupled neural networks (PCNNs) between bi-temporal images to de-
rive changed areas; Tang et al. (2011) proposed an object-based Kol-
mogorov-Smirnov test to detect the changes between pairs of image
objects by judging whether their probability distributions were similar
under a predefined significance level; Wen et al. (2016) measured the
patch-based (i.e., a fixed-size window) histogram similarity of multiple
indices (i.e., the morphological building index, enhanced vegetation
index, and normalized difference water index) to recognize the differ-
ence of the spatial arrangements between bi-temporal images; and Xiao
et al. (2016) employed a series of morphological operators to transform
the analysis unit from pixels to objects, and made full use of the spectral
and textural features to detect changed objects.

In contrast to planar features (e.g., spectrum, texture, and struc-
ture), vertical features can provide three-dimensional (3D) information
for describing off-terrain objects (e.g., buildings) (Li et al., 2020), and
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thus they have been widely applied to urban change detection (Qin
et al., 2016), such as radar (e.g., scatterometer, interferometric, and
tomographic synthetic aperture radar) (Balk et al., 2019; Montazeri
et al., 2016; Weissgerber et al., 2017), Light Detection and Ranging
(LiDAR) (Teo and Shih, 2013), and Digital Surface Models (DSM) from
stereo-/multi-view optical imageries (Chaabouni-Chouayakh and
Reinartz, 2011; Guerin et al., 2014). Particularly, in the domain of high-
resolution urban change detection, vertical features have been in-
creasingly studied (Che et al., 2018; Leichtle et al., 2017; Mendez
Dominguez et al., 2019; Qin, 2014; Stal et al., 2013; Tian et al., 2014;
Yang et al., 2017). For instance, Stal et al. (2013) calculated the dif-
ference of DSMs derived from stereoscopic aerial images on date 1 and
LiDAR on date 2 to generate the 3D building change result. Tian et al.
(2014) measured the difference of DSMs on two dates through the
Kullback–Leibler (KL) divergence similarity (Inglacla and Mercier,
2007) to produce building change maps. Leichtle et al. (2017) proposed
an unsupervised object-based clustering method to detect changed
buildings by using bi-temporal high resolution satellite images and
DSM. Che et al. (2018) performed 2D and 3D urban change detection by
applying a multivariate Gaussian mixed model to bi-temporal Quad-
PolSAR images at the superpixel level. However, it should be noted
that, owing to shadowing and layover effects, radar data cannot provide
precise shapes of ground objects (e.g., buildings) (Gamba and
Houshmand, 2000). By contrast, LiDAR can deal with this issue but they
usually have a limited coverage due to the high cost. In this regard, high
resolution stereo optical images hold great potentials for retrieving 3D
information with fine shape details at a low cost. However, to the
knowledge of the authors, time-series and multi-view high-resolution
optical satellite images have not been investigated for urban change
detection. In summary, the aforementioned work has been devoted to
dealing with the relevant challenges, but the following key issues in
high-resolution image change detection have not been investigated:

1) The vertical features can provide three-dimensional information
when describing complex urban scenes, and thus deserve compre-
hensive investigation. Nevertheless, in the current literature, ver-
tical features from multi-view high-resolution optical satellite ima-
geries, as well as their joint use with planar features, have seldom
been considered for urban change detection.

2) A large number of the existing methods addressing high-resolution
change detection are not based on the nadir-view images, due to the
difficulty in acquiring time-series high-resolution images with the
nadir view or the same view angle. However, the nadir view is the
premise of an accurate and fair comparison between multi-temporal
images, and can also reduce the spurious changes caused by angular
differences.

3) Most of the existing high-resolution change detection methods have
been designed for use with bi-temporal images, while multi-tem-
poral images have rarely been considered. In this context, the time-
series information has not been fully exploited for the change de-
tection. Moreover, the previous studies have usually failed to iden-
tify the timing of the changes, owing to the lack of time-series in-
formation.

In this context, it has now become possible to address the afore-
mentioned research limitations, courtesy of the Chinese ZY-3 high-re-
solution stereo satellite constellation. The constellation consists of ZY-3
01 and its successor ZY-3 02, launched in January 2012 and May 2016,
respectively. Each satellite can simultaneously acquire three panchro-
matic images with±22° forward/backward (3.5 m spatial resolution
for ZY-3 01 and 2.5 m for ZY-3 02) and nadir (2.1 m) viewing angles,
and one multispectral (5.8 m) image (Huang et al., 2017). The four
images constitute an image set, where the multi-view images can pro-
vide effective representations of the vertical features, and the multi-
spectral image can be used to extract abundant spectral, textural, and
structural features. In addition, the nadir-view cameras carried on the

ZY-3 satellites can be expected to substantially reduce the spurious
changes induced by the different viewing angles between multi-tem-
poral high-resolution images (Huang et al., 2017).

In this paper, our primary objective is to automatically detect the
presence of NCBAs, and meanwhile, to investigate the feasibility of
identifying their change timing from time-series multi-view ZY-3
images. The change timing refers to the start point of building con-
struction. To achieve this goal, we propose an automatic change de-
tection method consisting of three components: 1) firstly, we jointly use
the planar-vertical features to describe the NCBAs; 2) subsequently, we
apply object-based temporal correction to improve the spatiotemporal
consistency of the features; and 3) finally, a multi-temporal change
detection model based on the second-order difference (SOD) is used to
capture the NCBAs and the timing of the changes.

The rest of this paper is organized as follows. Section 2 introduces
the study areas and data, which is followed by a detailed description of
the proposed method in Section 3. The experimental results are pre-
sented in Section 4. The performance of the method is then discussed in
Section 5. Finally, Section 6 concludes the paper.

2. Study areas and data

The two Chinese megacities of Beijing and Shanghai were selected
to test the proposed method, since they have been experiencing rapid
urban land expansion in recent decades (Fei and Zhao, 2019). Land
transformation, such as the presence of NCBAs, often occurs in urban-
rural fringes where land resources (e.g., cultivated land, forest land,
barren land) are adequate for the construction of new building areas (X.
Li et al., 2015). Therefore, in this research, we focused on the urban
fringe areas of the two cities (Fig. 1a–b).

Beijing, the capital of China, situated in the north of the North China
Plain, has long been a prosperous and populous metropolis. Its per-
manent population amounted to 21.71 million in 2017 (NBSC, 2018).
The study site, as shown in Fig. 1a, covers an area of approximately
689.23 km2 and encompasses an urban-suburban-rural transition from
north to south. This study area presents a mixture of arable land and
building areas, and is thus well suited for testing the proposed method.

Shanghai, the largest megacity in China (UN, 2018), located in the
south of the Yangtze River Delta, had a permanent population of 24.18
million in 2017 (NBSC, 2018). Fig. 1b displays the study area covering
an area of about 413.25 km2. Compared to Beijing, this area shows a
distinct pattern, in terms of geographic location and direction of urban
expansion (from west to east), and thus it is suitable to further verify
the generalization ability of the proposed method.

All available ZY-3 01/02 images between 2012 and 2018 and with
cloud cover of< 10% were collected (Fig. 1c–d and Table 1). There
were a total of 14 multi-temporal image sets from ZY-3 01 (12 sets) and
ZY-3 02 (two sets) for Beijing, and a total of eight multi-temporal image
sets from ZY-3 01 (six sets) and ZY-3 02 (two sets) for Shanghai. Please
note that each ZY-3 image set contains four images acquired simulta-
neously in the same area, i.e., three panchromatic images (forward,
backward, and nadir viewing angles) and one multispectral image with
four bands (blue, green, red, and near-infrared). Considering the sparse
temporal distribution of ZY-3 data in two study areas, we used one
image for each year at similar acquisition time. The effect of incon-
sistent temporal information on monitoring NCBAs is analyzed in
Section 5.3.

3. Methodology

The proposed change detection method for monitoring the spatio-
temporal dynamics of NCBAs consists of three components: 1) planar-
vertical feature extraction for delineating NCBAs; 2) object-based
temporal correction for improving the spatiotemporal consistency of
the features; and 3) multi-temporal change detection for capturing the
NCBAs and their change timing (Fig. 2). Details of each component are
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presented below.

3.1. Pre-processing

Multi-temporal ZY-3 image sets were preprocessed in four steps: 1)
digital surface model (DSM) generation; 2) image-to-image registration;
3) orthorectification and pan-sharpening; and 4) radiometric correc-
tion. The details of each steps are described as follows.

Firstly, the nadir-forward stereo pair was employed to generate
DSM, since this stereo pair usually performs better than nadir-backward

and forward-backward pairs (Liu et al., 2017), and the DSM was sub-
sequently used for extracting normalized DSM (nDSM), i.e., the relative
height of off-terrain objects above the ground (see Section 3.2). The key
steps for DSM generation involved: 1) the nadir-forward stereo pair was
rectified to a quasi epipolar stereo pair (Wang et al., 2011), based on
the rational polynomial coefficients (RPCs) provided by the China
Centre for Resources Satellite Data and Application (CRESDA); 2) the
hierarchical semi-global matching (SGM) algorithm (Hirschmüller,
2008) was performed on the epipolar images to generate the disparity
map; and 3) the three-dimensional (3D) point clouds were obtained by

Fig. 1. The two study areas and the temporal distribution of the ZY-3 images. (a) and (b) False-color images (R: near-infrared, G: red, B: green), acquired on Oct. 6,
2018, and Sept. 30, 2018, respectively. (c) and (d) The temporal distribution of the ZY-3 01/02 images for Beijing and Shanghai, respectively. The spatial extents of
the study areas a and b are 689.23 km2 and 413.25 km2, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Table 1
The available ZY-3 multi-temporal images (cloud cover< 10%) of Beijing and Shanghai. Images marked with “*” are ZY-3 02 images, while the others are ZY-3 01.
Date “2012-10-11” corresponds to “year-month-day”.

City Acquisition date Angle number Study
area

2012 2013 2014 2015 2016 2017 2018 (km2)

Beijing 10–11 10–10 01–21 06–02 01–24 05–15 01–01 3 689.23
11–17 09–23 03–23 04–07⁎ 3

05–21 10–06⁎ 3
11–24 3

Shanghai 09–18 07–10 10–15 05–05 09–03 05–14⁎ 01–15⁎ 3 413.25
09–30 3
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forward intersection, and then were resampled into a raster grid, fol-
lowed by inverse distance interpolation for filling the holes caused by
matching failures (Qin, 2014). The root mean square error (RMSE) of
DSM derived from ZY-3 satellite images is about 3.9–6.9 m in the urban
area (Fratarcangeli et al., 2016), and the RMSE of nDSM derived from
DSM is about 10 m in terms of building height estimation (Liu et al.,
2017). Note that low or repetitive textures and occlusions of buildings
can sometimes degrade the performance of DSM (Hirschmüller, 2008),
leading to underestimation of the low-rise buildings (e.g., site 2 in
Fig. 8). Therefore, in the proposed method, we jointly used planar-
vertical feature fusion to alleviate the uncertainty of DSM.

Secondly, all off-nadir (i.e., forward/backward-view) and multi-
spectral images were geometrically registered to the same nadir-view
image by polynomial warping using the automatically identified tie
points (Kennedy and Cohen, 2003), with a registration error of< 1
pixel, and all the images were then resampled to 2.5 m. In this study,
the forward/backward/nadir-view images were registered, so that we
can utilize the angular difference between them to obtain the vertical
information of buildings for monitoring NCBAs (see Section 3.2).

Thirdly, the multispectral and nadir images were orthorectified with
the generated DSM, and subsequently were fused by the Gram-Schmidt
algorithm (Laben and Brower, 2000) to improve the spatial resolution
of multispectral images.

Finally, in order to reduce the radiometric differences between the
multi-view image series, the pseudo-invariant features method (Schott
et al., 1988) was applied to the time series of multispectral images and
nadir images, and the off-nadir images were normalized to the nadir
images of the same date by the histogram matching method (Gonzalez
and Woods, 2002).

3.2. Planar-vertical feature extraction

A total of three planar features and three vertical features were used
for delineating the different properties of NCBAs (Table 2). The nadir
panchromatic images were used as the base images to extract the MBI,
MSI, Harris, and PanTex features. Detailed descriptions of these features
are presented as follows.

3.2.1. Planar features

(a) The morphological building index (MBI)

The MBI (Huang and Zhang, 2011) depicts the structural properties

of buildings with multiscale and multidirectional morphological op-
erators, based on the fact that buildings usually exhibit a higher
brightness than their surroundings and display distinct structural
characteristics (i.e., size, directionality, and shape). It is defined as:

=
∑

×

s d

N N
MBI

DMP ( , )s d

s d

, WTH

(1)

with

= −s d s dWTH ( , ) NAD γ ( , )NAD (2)

where DMPWTH denotes the differential morphological profiles (DMPs)
of the white top-hat by reconstruction (WTH); Ns and Nd refer to the
total number of scale s and directionality d, respectively; and γNAD is the
opening-by-reconstruction of the nadir panchromatic image (NAD) with
multiple linear structural elements. Note that the structural element is
determined by s and d. In this study, we set s in the range of [2, 150]
with an interval of 37 (Ns = 4), according to the spatial resolution of
the images (2.5 m) and the size of the buildings in the study areas. Four
directions (Nd = 4) were considered: 0°, 45°, 90°, and 135°.

(b) The Harris corner detector (Harris)

The Harris corner detector (Harris and Stephens, 1988) is used to
detect the corners of buildings by measuring the image intensity
changes caused by all possible shifts of a predefined window. The
Harris corner response is expressed as a function of determinant det and
trace tr of the symmetric matrix M:

= −det M k tr MHarris ( ) · ( )2 (3)

with

∑ ∑= ⎡

⎣
⎢

⎤

⎦
⎥

= =

w x y
I I I
I I I

M ( , )
x

N

y

N
x x y

x y y1 1

2

2

w w

(4)

where Ix and Iy denote the image derivatives in the horizontal and
vertical directions, respectively; and w(x, y) defines the weight of pixel
(x, y) within a window. A Gaussian window with the size of 12.5 m and
a standard deviation of 2 was selected due to the low sensitivity to noise
(Harris and Stephens, 1988), and the trade-off scalar k was empirically
set to 0.04.

(c) The texture-derived built-up presence index (PanTex)

The PanTex index (Pesaresi et al., 2008) represents the textural
characteristics of building areas, and is defined as the minimum value
of multiple contrast metrics (CON), each of which is derived from a
gray-level co-occurrence matrix (GLCM):

∑ ∑= −
=

−

=

−

i j P i jCON ( ) ( , )
i

N

j

N

0

1

0

1
2

g g

(5)

where P (i, j) signifies the (i, j) th entry of the GLCM (determined by a
window and a displacement vector), and Ng is the number of image gray
levels. The window size and gray levels were set to 50 m and 256, re-
spectively, and 10 combinations of displacement vectors were selected

Fig. 2. The workflow of the proposed change detection method. NCBAs: newly constructed building areas.

Table 2
The planar and vertical features used to delineate NCBAs. Base images include
the nadir (NAD), forward (FWD), and backward (BWD) panchromatic images.

Type Feature Property Base image

Planar MBI Structure NAD
Harris Corner NAD
PanTex Texture NAD

Vertical MSI Shadow NAD
nDSM Height NAD and FWD
MABI Angle NAD, FWD and BWD
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according to Pesaresi et al. (2008).

3.2.2. Vertical features

(a) The morphological shadow index (MSI)

The MSI (Huang and Zhang, 2012) highlights building shadows,
which can indicate the height and location of buildings (Liasis and
Stavrou, 2016). The basic idea of the MSI is that shadows often show
lower brightness and similar structure features when compared with
their spatially adjacent buildings:

=
∑

×

s d

N N
MSI

DMP ( , )s d

s d

, BTH

(6)

with

= −s d s dBTH ( , ) φ ( , ) NADNAD (7)

where DMPBTH denotes the DMP of black top-hat by reconstruction
(BTH), and φNAD specifies the closing-by-reconstruction of the nadir
panchromatic image (NAD). Scale s, directionality d, and the number of
s and d (Ns and Nd, respectively) were set the same as those of the MBI,
in terms of the high correlation between shadows and buildings.

(b) The normalized digital surface model (nDSM)

The nDSM (Qin and Fang, 2014) indicates the relative height of
buildings above the ground, and is generally obtained by subtracting
the height of the terrain from the digital surface model (DSM). Courtesy
of the nadir-forward stereo pairs acquired by the ZY-3 satellites (Liu
et al., 2017), we generated the DSM by the widely used semi-global
matching (SGM) algorithm (Hirschmüller, 2008), and then performed
top-hat reconstruction on the DSM to remove the height of the terrain:

= −nDSM DSM ρ (ε)DSM (8)

where ρDSM (ε) indicates the morphological reconstruction of the mask
image (DSM) from the marker image. Specifically, the marker image
was generated by eroding the mask image with a disk-shaped structural
element. The radius of the structural element was set to 75 m, according
to the size of the largest buildings in the study areas (Qin and Fang,
2014).

(c) The multi-angular built-up index (MABI)

The MABI (Liu et al., 2019) depicts the angular properties of
buildings, based on the inconsistent response of buildings (i.e., spectral
and structural variations) to different viewing angles. In this study, we
applied the normalized difference MABI to quantify the angular dif-
ferences of buildings:

= ⎧
⎨⎩

− − − ⎫
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MABI max |I I |
max(I , I )

, |I I |
max(I , I )

, |I I |
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n f

n f

n b

n b

f b

f b (9)

where In, If, and Ib correspond to the spectral values of the nadir, for-
ward, and backward panchromatic images, respectively. A large MABI
value indicates a large angular difference between multi-view images,
and hints at the presence of buildings.

Fig. 3 shows two examples of planar-vertical features located in
residential (a) and industrial (b) areas, respectively. The structures with
high feature values are more likely to be building areas. It can be seen
that these complex and diverse building areas are effectively dis-
tinguished from non-building areas (e.g., main roads and bare land) by
these features. For instance, the dark building areas (sites 1 and 2) are
highlighted by the vertical descriptors, i.e., MSI, nDSM, and MABI,
while the low-rise bright building areas (site 3) are indicated by the
textural properties, i.e., MBI, Harris, and PanTex.

3.3. Object-based temporal correction

We implemented object-based temporal correction for improving
the spatiotemporal consistency of the features through the following
two steps.

Step 1. Object-based segmentation. Firstly, a linear 2% stretch was
applied to normalize each feature into [0, 1]. The widely used
multi-resolution segmentation algorithm (Baatz and Schäpe,
2000) was then employed to partition the last one of the time-
series images into objects. Finally, for each object, the value of
each feature was assigned as the mean value over all the in-
ternal pixels. It should be stressed that the selection of an op-
timal segmentation scale is challenging, but in this study, a
small scale (i.e., 50) was set, considering that over-segmenta-
tion is preferable to under-segmentation, since the latter often
leads to an undesired mixture of buildings and their sur-
roundings (Huang and Zhang, 2012). The effect of scale is
further analyzed in Section 5.2.

Step 2. Temporal correction for removing abnormal fluctuations in the
original time series of features, such as ephemeral “spikes” or
“dips”. Under the widely accepted assumption that the con-
version from non-urban land to urban land is irreversible
during a short time period (Schneider, 2012), the values of
building features (i.e., the planar-vertical features in Table 2)
do not generally decrease after construction. The rule can be
written as:

 =

⎧

⎨

⎪

⎩
⎪
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−
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where Fi, t and Fi, t−1 signify the original features for object i at time t
and t − 1 respectively; and Fi t, is the corrected feature for object i at
time t. Based on this rule, we corrected the original time series of each
feature for each object. Note that t can start from the beginning (for-
ward direction) or end (backward direction) of the time series, which
may bias the features (Hu and Huang, 2019). In this study, we took the
average of the two directions as the corrected feature. The effect of
temporal correction is further discussed in Section 5.2.

3.4. Multi-temporal change detection

We carried out multi-temporal change detection to capture the
NCBAs and their change timing. The basic idea is that NCBAs often
exhibit a distinctive temporal pattern, which can be characterized by
the time series of planar-vertical features. Fig. 4 illustrates typical time
series of planar-vertical features for NCBAs and non-NCBAs. For the
NCBAs, the values of the building features in the non-building areas are
generally low at the beginning of the time series, and then rise either
gradually or sharply during the period of construction, and eventually
become stable after completion (Fig. 4a). In contrast, for the cases of
non-NCBAs (Fig. 4b–f), the values of the building features mostly stay at
a high or low level, and are relatively stable over the entire study
period.

Based on the distinctive temporal pattern of NCBAs, we first cal-
culated the dynamics of three consecutive feature values within a
moving temporal window (the red rectangle in Fig. 5a). It is formulated
as:

= − − −+ −D F F F F( ) ( )i t i t i t i t i t, , 1 , , , 1 (11)

where Fi,t-1, Fi,t, and Fi,t+1 denote the values of the building feature F for
object i at times t− 1, t, and t+ 1, respectively. On the one hand, if the
first term (Fi, t+1 − Fi, t) is significantly greater than the second term (Fi,
t − Fi, t−1), the pattern of the three feature values (i.e., Fi,t-1, Fi,t, and Fi,t
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+1) is likely to be ‘low-low-high’, indicating that the feature value be-
gins to increase significantly. The point with the maximum value of Di, t

(the blue point in Fig. 5b) is regarded as the change start point Q1 (the
blue point in Fig. 5a). On the other hand, if the first term is significantly
less than the second term, the pattern is close to ‘low-high-high’, sig-
nifying that the feature value starts to stabilize. The point with the
minimum value of Di, t (the red point in Fig. 5b) is identified as the
change end point Q2 (the red point in Fig. 5a). Particularly, when there
is little difference between the first and second term, the change of
feature values is relatively stable. By searching for the stage between Q1

and Q2, we determined the point with the maximum increment of the
feature value as the change point, corresponding to the change timing.

We then calculated the difference of the mean value between the

stage after Q2 and before Q1 as the change magnitude of each feature
(Fig. 5a). In this way, the time-series information was taken into ac-
count. A larger change magnitude indicates a higher probability of the
presence of NCBAs. Furthermore, we applied a threshold to the change
magnitude to extract NCBAs. The threshold was set as α times the
standard deviation from the mean of the change magnitude (Xian et al.,
2009). Accordingly, an object was classified as “NCBA”, if its change
magnitude exceeded the threshold, and as “non-NCBA” otherwise. In
this study, α was set to 1.0, according to Morisette and Khorram (2000).

Finally, we fused the results of all the features (Table 2) to de-
termine the final NCBAs and their change timings, since a single
building feature is not reliable and is usually subject to omission and
commission errors in terms of the spatiotemporal complexity and

Fig. 3. Two examples of planar-vertical features in Beijing. (a) Residential areas (1 km by 1 km). (b) Industrial areas (1 km by 1 km). The multi-view images are
displayed as the combination of the nadir (NAD), forward (FWD), and backward (BWD) panchromatic images.

Fig. 4. Typical time series of planar-vertical features for NCBAs and non-NCBAs. The time Ti (i = 1, 2, …) corresponds to the acquisition date of the i th image (see
Table 1). The six graphs denote the time-series features in the center pixels of the green circles. The two dashed black lines in graph (a) indicate the change stage (i.e.,
T3–T4).The spatial extent of this region is 827.5 m by 700 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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heterogeneity of ground objects. In detail, an object was identified as an
NCBA if confirmed by at least two features, and we then performed
weighted voting on the change timing of these features. Specifically, the
weight was set to 1 for MBI, Harris, PanTex, and MSI, and 2 for nDSM
and MABI, given that the latter two features are extracted from multi-
view images and are therefore less affected by illumination variations
(Qin et al., 2016).

3.5. Accuracy assessment

To evaluate the performance of the proposed method, we visually
interpreted the NCBAs (dominated by new buildings) and non-NCBAs
(i.e., persistent building areas or persistent non-building areas), and
identified the change timings when the NCBAs appeared, assisted with
the nadir multi-temporal ZY-3 images and very high resolution images
from Google Earth. Please notice that if a NCBA only contains an iso-
lated building (e.g., a large factory), it was delineated individually. In
addition, the minimum mapping unit was set to 400 m2, according to
the requirement of the Ministry of Natural Resources of the People's
Republic of China, implying that an NCBA with a size of< 400 m2

would not be considered. Fig. 6a and c show the reference data col-
lected in the two study areas.

In view of the small proportion of NCBAs, we adopted the stratified
random sampling scheme with equal allocation (Olofsson et al., 2014;
Stehman, 2012) to generate 1000 test samples (in pixels), where 500
samples were from NCBAs and 500 samples were from non-NCBAs,
based on the reference data. A minimum distance of 100 m was set to
reduce the spatial autocorrelation between test samples. We assessed
the accuracy of the NCBA detection using the F-score metric (Powers,
2011), which is the harmonic mean of the user's accuracy (UA) and the
producer's accuracy (PA). For those samples that were correctly de-
tected as NCBAs by our method, we calculated their change timing
accuracy using the overall accuracy (OA) metric. Specifically, con-
sidering that lots of building construction would take several years to
complete, which may induce confusions between neighboring years for
detecting change timing, we adopted two matching strategies. The first
was the exact match, in that the detected change timing was considered
as correct if it was consistent with the reference change timing, while
the second strategy refers to a one-year tolerance, in that the detected
change timing was considered as correct if it was in the range of± 1
year of the reference change timing (Song et al., 2016). In order to
achieve a high statistical confidence in the accuracy assessment, we
created 10 independent test sets (i.e., 10 × 1000 samples), and we
report the mean and standard deviation of each accuracy metric.

4. Results

Fig. 6 illustrates the identified NCBAs and their change timing

results in Beijing and Shanghai. In the two study areas, most of NCBAs
are located in low-density urban areas with adequate land for building
construction, involving individual large buildings (e.g., large factories)
or a group of buildings (e.g., residential blocks). Our method can ef-
fectively detect these NCBAs, such as those dominated by compact
buildings (sites 1, 3 and 8), large buildings (sites 2 and 4), detached
high-rise buildings (site 5), and residential blocks (sites 7 and 9), by
courtesy of their distinct texture, structure, and height attributes. In
addition, a few of NCBAs are located in high-density urban areas, in-
volving a single or several buildings owing to the limitation of land and
space. In these areas, our approach can effectively detect large or high
buildings, e.g., site 6 (Fig. 6), but may miss small and low buildings, due
to the low response of planar-vertical features. Other irrelevant objects,
e.g., newly constructed roads (in the top-left corner of region g), un-
changed building areas, and rivers, are successfully suppressed by the
proposed method, since the features we employ are focused on building
areas from both planar and vertical viewpoints.

Table 3 presents the accuracies of the NCBAs for Beijing and
Shanghai. In general, the proposed method shows a promising accuracy
for NCBA detection, with the mean F-score value being 90.2% and
91.4% for Beijing and Shanghai, respectively. Table 4 and Table 5 re-
veal the accuracies of the change timings for Beijing and Shanghai,
respectively. We can observe that the one-year tolerance strategy in-
creases the mean OA from 68.9% to 93.0% for Beijing, and from 77.1%
to 92.3% for Shanghai, compared to the exact match. The results
quantitatively demonstrate that the proposed method can not only
detect the NCBAs accurately, but it can also determine their change
timings, based on the time-series multi-view ZY-3 images.

5. Discussion

5.1. Performance of the planar-vertical features

To evaluate the performance of the planar-vertical features in de-
tecting NCBAs and their change timings, we compared individual
planar/vertical features (planar: MBI, Harris, PanTex; vertical: MSI,
nDSM, MABI) and their combinations. All single and fused features
have been aggregated into the object level. Fig. 7 shows the accuracies
of the NCBAs and their change timings for the different feature com-
binations in both Beijing and Shanghai.

With regard to the NCBA detection (Fig. 7a and b), the planar-ver-
tical joint features obtain the highest F-score values, and the producer's
accuracies are significantly improved, in both study areas. It is shown
that the 2D-3D fused features can greatly reduce the omission errors,
while not increasing the false alarms. It is interesting to see that the MSI
(shadow features) achieves a high UA but a very low PA, indicating that
the shadow features can correctly detect NCBAs, but are subject to large
omission errors. This property actually makes the MSI suitable for

Fig. 5. The building feature curve (a) and the dynamics of feature value (b). Q1: the change start point; Q2: the change end point. The red rectangle denotes three
consecutive feature values within a temporal window. The two dashed gray lines mark the mean feature values at the stages before Q1 and after Q2, respectively. For
the first and last dates, we add the temporally nearest feature values to complete the three consecutive feature values. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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fusion with other features, since it is able to strengthen the complete-
ness of the results, without triggering commission errors.

In terms of the change timings with the two matching strategies
(Fig. 7c and d), we can observe that nDSM and MABI perform better
than the other single features, verifying the superiority of the multi-
view features in identifying the change timings of the NCBAs. For the
feature fusion, the planar-vertical fusion achieves comparable results to
the planar or vertical feature fusion in the case of change timing, but

the former outperforms the latter in detecting NCBAs. Overall, the joint
use of planar-vertical features is able to make use of the different fea-
tures, and yields satisfactory results.

Fig. 8 illustrates an example of the NCBAs and their change timing
results for the different feature combinations. All single and fused fea-
tures have been aggregated into the object level. Different from the
pixel-level features (e.g., spectral features), the six features employed in
this study are actually defined in a spatial context to represent building
areas. The MBI and MSI were constructed on a series of linear neigh-
borhood (i.e., structural elements), although they were calculated on a
per-pixel basis (Huang and Zhang, 2012). Considering that MBI and
MSI can indicate the presence of buildings and their spatially adjacent
shadows, respectively, they actually describe the spatial context of the
NCBAs. The Harris employed the possible shifts of a predefined window
to measure the image intensity changes for identifying the corners of
buildings (Harris and Stephens, 1988). The PanTex used a local window
to extract textural features, which can characterize built-ups as well as

Fig. 6. The identified NCBAs and their change timing results. (a) and (c) The reference data for Beijing and Shanghai, respectively. (b) and (d) The NCBAs and change
timing results detected by the proposed method for Beijing and Shanghai, respectively. The last three rows show the zoomed-in areas (black rectangles) of the
reference data, detection result, and the multi-temporal ZY-3 images. The spatial extents of regions e, f, and g are 1.48 km by 1.52 km, 0.95 km by 0.89 km, and 1 km
by 1 km, respectively.

Table 3
The accuracies (%) of the NCBAs for Beijing and Shanghai. UA: user's accuracy;
PA: producer's accuracy.

UA PA F-score

Beijing 92.5 ± 1.0 88.1 ± 1.1 90.2 ± 0.8
Shanghai 94.3 ± 1.1 88.7 ± 1.3 91.4 ± 0.9

Table 4
The accuracies (%) of the change timings with the exact match and the one-year
tolerance strategies for Beijing. UA: user's accuracy; PA: producer's accuracy;
OA: overall accuracy.

Year Exact match One-year tolerance

UA PA UA PA

2013 74.3 ± 4.6 82.8 ± 3.4 93.5 ± 2.3 95.6 ± 1.2
2014 81.6 ± 2.5 73.9 ± 3.1 96.5 ± 1.3 95.2 ± 1.9
2015 55.4 ± 5.2 62.3 ± 7.0 88.8 ± 5.4 87.6 ± 5.4
2016 35.6 ± 3.9 70.1 ± 6.5 86.9 ± 5.2 86.7 ± 4.4
2017 71.5 ± 7.4 30.6 ± 3.7 95.7 ± 2.0 92.1 ± 3.5
2018 78.1 ± 3.7 86.0 ± 3.8 89.0 ± 4.4 92.7 ± 2.7

OA 68.9 ± 2.0 OA 93.0 ± 1.5

Table 5
The accuracies (%) of the change timings with the exact match and the one-year
tolerance strategies for Shanghai. UA: user's accuracy; PA: producer's accuracy;
OA: overall accuracy.

Year Exact match One-year tolerance

UA PA UA PA

2013 77.4 ± 4.2 83.1 ± 4.1 93.8 ± 3.3 93.1 ± 3.0
2014 82.5 ± 2.2 78.8 ± 4.6 95.4 ± 1.2 92.4 ± 1.9
2015 65.2 ± 7.1 50.5 ± 7.8 89.8 ± 3.9 87.3 ± 4.7
2016 84.4 ± 3.8 78.9 ± 3.4 94.6 ± 2.0 91.5 ± 2.0
2017 56.2 ± 5.5 73.2 ± 6.8 93.5 ± 3.0 96.9 ± 2.7
2018 78.9 ± 3.8 81.6 ± 4.1 85.8 ± 4.1 92.7 ± 1.6

OA 77.1 ± 1.3 OA 92.3 ± 0.9

X. Huang, et al. Remote Sensing of Environment 244 (2020) 111802

9



their neighborhoods (Pesaresi et al., 2008). The nDSM utilized the
height difference between buildings and the terrain within a local
neighborhood to obtain the relative height of buildings above the
ground (Qin and Fang, 2014). The MABI employed the different re-
sponses of buildings to different viewing angles in a local context to
extract the vertical properties of buildings (Liu et al., 2019).

In site 1, it can be seen that PanTex, nDSM, and MABI successfully
detect the dark NCBAs, due to their efficacy in describing the textural
and vertical properties. In site 2, the low-rise bright NCBAs are effec-
tively identified by the planar features, i.e., MBI, Harris, and PanTex. In
this case, it is found that the planar features are more sensitive to the

low-rise building areas with high brightness and conspicuous textures,
compared to the vertical features. In site 3, nDSM and MABI success-
fully capture the change timings, and the MSI effectively identifies the
shadows adjacent to newly constructed buildings. In site 4, our ap-
proach can suppress the noise of the flat bare land, which is falsely
detected by MBI but is filtered out by the fusion of planar-vertical
features. In summary, we can observe that the single features and fused
planar/vertical features are subject to missed or false detections owing
to the diversity and complexity of building areas, but their joint use can
capture more complete NCBAs and accurate change timings.

In addition, we also collected samples at the pixel level and further

Fig. 7. The accuracies of the NCBAs and their change timings for the different feature combinations in both Beijing and Shanghai. All: planar-vertical features; UA:
user's accuracy; PA: producer's accuracy; OA: overall accuracy; exact: exact match; one: one-year tolerance.

Fig. 8. An example (1 km by 1 km) of the NCBAs and their change timing results for the different feature combinations in Shanghai.
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evaluated the accuracies of the proposed method. Specifically, we di-
vided the study areas into 5 km by 5 km grids, and then, we randomly
generated and labeled a number of samples (in pixels) for each grid.
The minimum distance between samples was set to 100 m to avoid the
spatial autocorrelation. In this way, we collected 500 NCBA pixels and
500 non-NCBA pixels. Moreover, we repeated the aforementioned
sampling procedure ten-times, and generated 10 groups of sample sets
and calculated the mean and standard derivation for accuracy assess-
ment.

Table 6 show the accuracies of NCBAs and change timing with both
pixel-level and object-level assessment. Regarding the detection accu-
racy, the pixel-level samples achieved slightly lower F-score values than
the object-level samples. However, with respect to the change timing,
the pixel-level samples gave higher OAs than the object-based ones with
both exact match and one-year tolerance strategies. This phenomenon
is possibly due to the factor that the planar and vertical features
adopted in this research are calculated in a local neighborhood, leading
to higher accuracy for the change detection but lower accuracy for the
change timing at the object level.

In addition, we compared the results using the nadir panchromatic
images and the brightness images as the basis for feature extraction.
The brightness images (the maximum of visible bands for each pixel)
were selected according to the relevant literature (Huang and Zhang,
2012; Pesaresi et al., 2011), considering that the visible bands con-
tribute most to the spectral information of buildings. As shown in
Table 7, we can observe that there is little difference between the two
types of base images in terms of the accuracies of NCBAs and change
timing.

5.2. Performance of the object-based temporal correction

The object-based temporal correction is used for improving the
spatiotemporal consistency of the features. To investigate its perfor-
mance, we analyzed the effect of the segmentation scale and the tem-
poral correction. Firstly, we compared temporal correction at the pixel
level and the object level, where four segmentation scales (i.e., 25, 50,
75, and 100) were considered (Table 8). In general, the object level
outperforms the pixel level in terms of the accuracies of the NCBA
detection and change timing, and the object level improves the mean F-
score value of the NCBAs and the mean OA of the change timing, in
both study areas. At the object level, scales 25 and 50 achieve slightly
higher mean F-score values for the NCBA detection than scales 75 and

100, and regarding the change timing, scales 50, 75, and 100 obtain
slightly higher mean overall accuracies than scale 25, in both study
areas. However, in general, the results across different segmentation
scales do not show much oscillation, indicating that the proposed
method is robust. Note that a small scale is preferable to a large one,
since the latter can easily lead to under-segmentation and loss of de-
tails. Therefore, it was reasonable to set the segmentation scale as 50 in
this study.

We also compared the object-based features (at the segmentation
scale of 50) with and without temporal correction, and forward and
backward correction directions as well as their average were con-
sidered. As shown in Table 9, in the four situations, the temporal cor-
rection with the average of two directions performs the best, and the
backward correction performs the worst, in terms of the F-score values
of NCBAs and the overall accuracies of change timing. These results
verify the effectiveness of the average backward-forward temporal
correction.

Fig. 9 presents an example of the multi-temporal features with and
without object-based temporal correction, with the average of forward
and backward directions adopted. It can be seen that the object-based
temporal correction suppresses the salt-and-pepper effect induced by
the heterogeneity of the high-resolution images. At the same time, it
removes temporal outliers and retains true changes, e.g., the NCBAs in
the bottom-right corner. In addition, the joint use of planar-vertical
features also has the potential to suppress the uncertainty of observa-
tions. Note that temporal correction is based on the assumption that
urban land expansion is commonly irreversible during a short time
period (Schneider, 2012). However, when the temporal period is ex-
panded to a longer one (e.g., decades), building reconstruction is likely
to occur in urban area. Particularly, for most of cases of reconstruction,
i.e., the conversion of low-rise building areas to middle-high building
areas, our approach can detect it due to the high response of planar-
vertical features, such as sites 3 and 8 in Fig. 6.

5.3. Performance of the multi-temporal change detection

Since 1972, Landsat satellites have collected a large number of
optical images with a spatial resolution of 30–60 m and a temporal
resolution of 16 days (Wulder et al., 2019). With the open data access
policy (Woodcock et al., 2008), Landsat images have been widely ap-
plied to land cover change monitoring (Gong et al., 2019; X. Li et al.,
2015; Schneider, 2012). However, Landsat images cannot detect

Table 6
The accuracies (%) of NCBAs and change timing with both pixel-level and object-level assessment in Beijing and Shanghai. UA: user's accuracy; PA: producer's
accuracy; OA: overall accuracy; exact: exact match; one: one-year tolerance.

NCBAs Change timing

UA PA F-score OA (exact) OA (one)

Beijing Pixel-level 89.5 ± 1.5 88.2 ± 1.1 88.8 ± 1.1 69.8 ± 2.3 93.2 ± 1.5
Object-level 92.5 ± 1.0 88.1 ± 1.1 90.2 ± 0.8 68.9 ± 2.0 93.0 ± 1.5

Shanghai Pixel-level 90.6 ± 1.3 89.5 ± 1.0 90.0 ± 0.9 78.2 ± 1.3 92.8 ± 0.6
Object-level 94.3 ± 1.1 88.7 ± 1.3 91.4 ± 0.9 77.1 ± 1.3 92.3 ± 0.9

Table 7
Comparison of the accuracies (%) of NCBAs and change timing obtained by the nadir panchromatic images (PAN) and the brightness images (BT) in Beijing and
Shanghai. UA: user's accuracy; PA: producer's accuracy; OA: overall accuracy; exact: exact match; one: one-year tolerance.

NCBAs Change timing

UA PA F-score OA (exact) OA (one)

Beijing PAN 92.5 ± 1.0 88.1 ± 1.1 90.2 ± 0.8 68.9 ± 2.0 93.0 ± 1.5
BT 92.5 ± 0.9 88.3 ± 1.6 90.4 ± 1.1 68.7 ± 1.8 92.9 ± 1.3

Shanghai PAN 94.3 ± 1.1 88.7 ± 1.3 91.4 ± 0.9 77.1 ± 1.3 92.3 ± 0.9
BT 94.4 ± 0.9 88.5 ± 1.4 91.3 ± 0.9 77.3 ± 1.1 92.2 ± 1.0
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vertical changes, and meanwhile, they often suffer from the problem of
mixed pixels due to the limitation of the spatial resolution. By contrast,
the multi-view ZY-3 images, containing 2.1-m nadir-view, 2.5–3.5-m
forward/backward-view (± 22°), and 5.8-m multispectral images, can
provide: 1) rich spatial details for clearly delineating ground objects
and 2) vertical features for describing 3D urban morphology. In this
context, the time series of ZY-3 images make it possible to characterize
both 2D and 3D change patterns of ground objects at a fine spatial scale.

With respect to high-resolution change detection, most of the ex-
isting studies have focused on bi-temporal images. However, multi-
temporal images can provide more abundant time-series information
than bi-temporal ones. The time-series information can indicate both
where and when changes occur, which is vital for a thorough under-
standing of urban expansion. The proposed multi-temporal change
detection method analyzed the distinctive temporal pattern of NCBAs
and simultaneously captured the change positions and timings using the
time series of ZY-3 images. In this section, three issues were discussed:
1) to evaluate the performance of the proposed method, we compared it
with a multi-temporal regression method; 2) we investigated the effect
of time-series information on detecting NCBAs by comparing the pro-
posed method with a bi-temporal method; and 3) we analyzed the effect
of inconsistent temporal information on monitoring NCBAs.

Firstly, we applied the state-of-the-art multi-temporal regression
method developed by Li et al. (2018), since it is very effective in
identifying urbanized areas and the change timings by analyzing the
regression lines of three indicators derived from Landsat images, i.e.,
the normalized difference vegetation index (NDVI), the modified nor-
malized difference water index (MNDWI), and the short-wave infrared
(SWIR) band. However, since our research focused on the detection of
NCBAs with high-resolution images, we could not directly employ these
three indicators in the experiments. Therefore, to ensure a fair com-
parison between the proposed method and the multi-temporal regres-
sion method, the same input features were used, i.e., the planar-vertical
features with object-based temporal correction. As illustrated in

Table 10, the two methods obtain comparable accuracies for detecting
NCBAs in both study areas. However, the proposed method performs
slightly better in capturing the change timing. The mean overall ac-
curacies with the exact match and the one-year tolerance strategies are
improved by 6.0% and 1.7% for Beijing, respectively, and 8.1% and
1.1% for Shanghai, respectively. Note that the two methods were in-
itially designed for different indicators relevant to different application
scenarios, which can explain the discrepancies in performance.

Fig. 10 further displays the histograms of the difference between the
detected change timings (by the two methods) and the reference change
timings. Compared to the multi-temporal regression method (Li et al.,
2018), the proposed method detects more exact matches of change
timing. In addition, most of the change timings detected by the two
methods are concentrated in the neighboring years. The main reason for
the confusion is that: amount of building construction would take
several years to complete, but some of planar or vertical features may
have a significant response before (i.e., conversion of bare soil to paved
surface) and under construction, owing to the rich details provided by
ZY-3 images. Overall, these results demonstrate the strengths of the
proposed method, especially for determining the change timings of
NCBAs.

In addition, we implemented the bi-temporal method with only two
image sets (acquired on the first and last dates, respectively) to calcu-
late the change magnitude, for a comparison with the proposed multi-
temporal method (see Section 3.4). Fig. 11 shows the accuracy incre-
ment obtained by the multi-temporal method in NCBA detection, and
the effect of the different feature combinations is also shown. When the
planar features or the planar-vertical fusion features are used, the multi-
temporal method considerably increases the F-score values, compared
to adopting only the bi-temporal images (acquired on the first and last
dates). This can be attributed to the fact that planar features are sen-
sitive to the uncertainties caused by poor image quality (e.g., noise
induced by complicated imaging conditions). Nevertheless, this defi-
ciency can be effectively compensated by the consideration of the time-

Table 8
The accuracies (%) of the NCBAs and their change timings at the pixel level and the object level, where four segmentation scales were considered. UA: user's
accuracy; PA: producer's accuracy; OA: overall accuracy; exact: exact match; one: one-year tolerance.

Pixel level Object level

25 50 75 100

Beijing NCBAs UA 93.4 ± 0.7 92.7 ± 0.9 92.5 ± 1.0 92.1 ± 0.7 91.9 ± 0.7
PA 78.9 ± 1.4 87.3 ± 1.4 88.1 ± 1.1 86.8 ± 1.5 85.4 ± 1.8
F-score 85.6 ± 0.9 89.9 ± 1.0 90.2 ± 0.8 89.4 ± 0.8 88.5 ± 1.2

Change timing OA (exact) 61.0 ± 1.7 66.5 ± 1.7 68.9 ± 2.0 69.1 ± 1.5 69.9 ± 1.5
OA (one) 87.5 ± 1.7 91.8 ± 1.3 93.0 ± 1.5 93.1 ± 1.4 92.7 ± 1.6

Shanghai NCBAs UA 95.8 ± 0.7 94.6 ± 0.9 94.3 ± 1.1 94.4 ± 0.8 93.8 ± 0.6
PA 80.4 ± 1.5 87.5 ± 1.0 88.7 ± 1.3 87.9 ± 1.4 86.3 ± 1.5
F-score 87.4 ± 1.1 90.9 ± 0.8 91.4 ± 0.9 91.0 ± 1.1 89.9 ± 0.9

Change timing OA (exact) 67.7 ± 2.2 75.2 ± 2.2 77.1 ± 1.3 78.8 ± 1.3 78.2 ± 1.8
OA (one) 88.0 ± 1.4 91.6 ± 1.1 92.3 ± 0.9 92.8 ± 1.1 92.8 ± 1.4

Table 9
The accuracies (%) of the NCBAs and their change timings with and without temporal correction, where forward and backward correction directions as well as their
average were considered. UA: user's accuracy; PA: producer's accuracy; OA: overall accuracy; exact: exact match; one: one-year tolerance.

NCBAs Change timing

UA PA F-score OA (exact) OA (one)

Beijing Without 92.7 ± 0.9 84.0 ± 0.7 88.1 ± 0.5 64.0 ± 2.0 87.5 ± 1.7
Forward 90.6 ± 0.8 87.2 ± 1.4 88.8 ± 0.9 67.9 ± 2.3 91.9 ± 1.7
Backward 90.6 ± 0.9 82.3 ± 1.4 86.2 ± 1.1 60.8 ± 0.8 85.1 ± 0.8
Average 92.5 ± 1.0 88.1 ± 1.1 90.2 ± 0.8 68.9 ± 2.0 93.0 ± 1.5

Shanghai Without 94.9 ± 1.1 84.3 ± 0.8 89.3 ± 0.7 73.7 ± 1.8 89.6 ± 1.0
Forward 93.9 ± 1.0 88.8 ± 1.5 91.3 ± 1.0 75.7 ± 1.4 92.9 ± 0.8
Backward 93.2 ± 1.0 76.0 ± 1.3 83.7 ± 1.0 71.6 ± 1.6 86.9 ± 1.7
Average 94.3 ± 1.1 88.7 ± 1.3 91.4 ± 0.9 77.1 ± 1.3 92.3 ± 0.9
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series information. Moreover, it can be seen that the multi-temporal
images have little impact on nDSM and MABI, showing that the multi-
view features are very effective for detecting NCBAs. Meanwhile, it
should be kept in mind that the bi-temporal method cannot determine
the change timing, owing to the absence of time-series information.

Fig. 12 displays an example of the NCBAs obtained by the multi-
temporal and bi-temporal methods for different feature combinations. It
can be seen that, compared to the bi-temporal method, the multi-tem-
poral method captures more complete NCBAs dominated by low-rise
dark buildings, such as the dense new residential area (site 1) with the
fused planar features, and the large new warehouse (site 2) with the
fused vertical features. This phenomenon indicates that the time-series
information inherent in multi-temporal images has the ability to im-
prove the performance of both planar and vertical features. In addition,
it can be seen that the planar and vertical features effectively comple-
ment each other, which validates the reliability of their joint use in

identifying complex and diverse NCBAs.
In addition, we compared the results of consistent and inconsistent

temporal information on monitoring NCBAs. Specifically, the consistent
result was generated by using one image set for each year at similar
acquisition time, while the inconsistent result was obtained by using all
the available images (i.e., a total of 14 image sets in Beijing and 8 image
sets in Shanghai). Our results (Table 11) show that there is little dif-
ference between the consistent and inconsistent approaches, in terms of
the accuracies of NCBAs and change timing. The reasons can be pos-
sibly attributed to the following two aspects: On the one hand, NCBAs
usually exhibit less seasonal fluctuation than vegetation, and the
planar-vertical features can directly indicate the presence of building
areas, rather than non-building areas (e.g., bare soil and vegetation).
On the other hand, the joint use of planar-vertical features and object-
based temporal correction can suppress the effect of inconsistent tem-
poral information.

Fig. 9. An example (1 km by 1 km) of the multi-temporal features with and without object-based temporal correction, with the average of forward and backward
directions adopted in Shanghai. Multi-temporal features in 2014, 2013, and 2012 are displayed in red, green, and blue, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 10
Comparison of the accuracies (%) of the NCBAs and their change timings between the proposed method and the multi-temporal regression method of Li et al. (2018).
UA: user's accuracy; PA: producer's accuracy; OA: overall accuracy; exact: exact match; one: one-year tolerance.

NCBAs Change timing

UA PA F-score OA (exact) OA (one)

Beijing Proposed method 92.5 ± 1.0 88.1 ± 1.1 90.2 ± 0.8 68.9 ± 2.0 93.0 ± 1.5
Li et al. (2018) 92.4 ± 1.0 87.4 ± 1.2 89.8 ± 0.8 62.9 ± 2.4 91.3 ± 1.4

Shanghai Proposed method 94.3 ± 1.1 88.7 ± 1.3 91.4 ± 0.9 77.1 ± 1.3 92.3 ± 0.9
Li et al. (2018) 94.5 ± 1.0 87.6 ± 1.0 90.9 ± 0.7 69.0 ± 1.2 91.2 ± 0.9
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5.4. Implications for land resource management

This research provided two major implications for land resource
management:

Firstly, the proposed automated approach can achieve high accu-
racy for detecting NCBAs (with F-score of about 90%), and the false
alarms (6–8%) can be further filtered out with slight human interven-
tion. However, at the patch level, 73 out of 1344 (5.4%) NCBAs were
completely missed for Beijing, while 42 out of 954 (4.4%) for Shanghai.
Most of the missed NCBAs corresponded to one individual or several
buildings, and they were usually small and low (e.g., temporary
buildings), which were not well characterized by the planar-vertical
features owing to their low response. In addition, the proposed ap-
proach can be used as early warning for land resource management. For
instance, attention should be paid to the areas with significant changes
of texture or structure, since these changes often indicate building
construction.

Secondly, some of the planar or vertical features can have a sig-
nificant response before (i.e., conversion of bare soil to paved surface)
or under the construction of building areas, owing to the rich details
provided by ZY-3 images. This is useful for early warning for the
emergence of NCBAs. In addition, please kindly notice that, although it
is difficult to accurately identify the change timing of NCBAs, the time-
series images have the potential to improve the performance of planar-
vertical features on detecting their presence and spatial extent.

6. Conclusions

In this paper, we focused on monitoring NCBAs and their change
timing with the time series of ZY-3 images. Concerning the method, we
proposed a series of original algorithms:

6.1. Multi-temporal high-resolution image change detection method

Most of existing high-resolution change detection studies used bi-

temporal images, which may lead to a large number of false alarms
owing to the uncertainty of complicated imaging conditions. In this
research, therefore, we used multi-temporal images to overcome this
issue, by proposing an object-based temporal correction for improving
the spatial-temporal consistency, and an automatic multi-temporal
change detection algorithm for detecting NCBAs and their change
timing.

6.2. Nadir-based high-resolution change detection

In particular, most of existing high-resolution change detection
studies are not based on nadir images, and thereby are subject to
spurious changes induced by different viewing angles. In this regard,
this research used the nadir images as the baselines to suppress this
effect.

6.3. A comprehensive fusion of time-series 2D and 3D features

We systematically integrated 2D and 3D feature sets (2D: MBI,
Harris, PanTex; 3D: MSI, nSDM, MABI). The additional 3D features, i.e.,
MSI and nDSM, have not been considered by previous research (Liu
et al., 2019), but were proven effective in this study. MSI (morpholo-
gical shadow index) can indicate the height of buildings by measuring
the structure of shadows (Huang and Zhang, 2012). The nDSM (nor-
malized Digital Surface Model) can describe 3D information of building
areas by utilizing the stereo matching technique (Qin and Fang, 2014).

We tested the proposed method on two urban fringe areas of Beijing
(7 multi-temporal image sets) and Shanghai (7 multi-temporal image
sets), respectively, where rapid urbanization is taking place. The major
conclusions are summarized below:

1) The planar-vertical features extracted from the multi-view ZY-3
images can delineate NCBAs from different perspectives by feature
fusion. Specifically, multi-view features (i.e., nDSM and MABI) are
effective for detecting NCBAs and capturing their change timings.

Fig. 10. Histograms of the difference between the detected change timings (by the proposed method and the multi-temporal regression method of Li et al. (2018))
and the reference change timings.

Fig. 11. The accuracy increment obtained by the multi-temporal method compared to the bi-temporal method, in terms of NCBA detection. All: the planar-vertical
features; UA: user's accuracy; PA: producer's accuracy; Δ: the accuracy increment.
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2) The object-based temporal correction is able to mitigate the het-
erogeneity of high-resolution images and remove temporal noise,
and can thus improve the spatiotemporal consistency of the features.

3) The proposed multi-temporal change detection method shows a
satisfactory performance, with an F-score value of about 90% in
detecting NCBAs, and an OA of around 92% in identifying change
timings using the one-year tolerance strategy.

4) We found that, compared to bi-temporal images, multi-temporal
images can greatly enhance the performance of the planar features
and the planar-vertical fusion features. However, the time-series
information barely affects the performance of the multi-view fea-
tures, verifying their effectiveness for NCBA detection. Moreover, it
should be kept in mind that the change timing cannot be identified
without multi-temporal images.

There are some limitations to the proposed automated method. For
instance, it may falsely detect rebuilt building areas, though such
changes rarely happen. However, these errors can be filtered out
through the existing NCBA databases. Moreover, due to the limitation
of the ZY-3 data acquisition ability, we cannot obtain more dense times-
series images, and hence the seasonal information from the ZY-3 con-
stellation, which is useful for further eliminating some false alarms, is
not sufficient. Nevertheless, considering that this research focused on

building areas, which exhibit less seasonal fluctuation than vegetation,
the negative effects caused by the limited data availability were not so
apparent. The proposed automated approach yielded satisfactory re-
sults on two study areas (Beijing and Shanghai). However, for areas
where only few changes happen, the approach still holds potential. The
main reason is that the approach uses planar-vertical features for low-
ering the uncertainty of a single feature, and considers multi-temporal
observations for alleviating the instability of a single observation (e.g.,
noise induced by complicated imaging conditions). Therefore, it's po-
tential to apply the approach to less dynamic areas in future work. In
addition, this research focused on a very specific issue, i.e., monitoring
NCBAs for protecting arable land and ecosystem in the context of the
rapid urbanization of China. In future work, to extend the current re-
search, we plan to investigate the conversion sources of NCBAs, e.g.,
croplands, forest, wetland.
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Fig. 12. An example (1 km by 1 km) of the NCBAs obtained by the multi-temporal and bi-temporal methods for different feature combinations in Shanghai.

Table 11
Comparison of the accuracies (%) of NCBAs and change timing between the consistent and inconsistent results. UA: user's accuracy; PA: producer's accuracy; OA:
overall accuracy; exact: exact match; one: one-year tolerance.

NCBAs Change timing

UA PA F-score OA (exact) OA (one)

Beijing Consistent 92.5 ± 1.0 88.1 ± 1.1 90.2 ± 0.8 68.9 ± 2.0 93.0 ± 1.5
Inconsistent 91.6 ± 1.0 88.5 ± 1.2 90.0 ± 0.9 66.5 ± 1.7 93.0 ± 1.1

Shanghai Consistent 94.3 ± 1.1 88.7 ± 1.3 91.4 ± 0.9 77.1 ± 1.3 92.3 ± 0.9
Inconsistent 94.2 ± 1.2 88.5 ± 1.2 91.3 ± 1.0 77.1 ± 1.8 92.4 ± 0.8
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