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ABSTRACT  
Remote sensing-based vegetation index (VI) data are significantly 
impacted by cloud contamination. Spatiotemporal reconstruction 
methods demonstrate higher accuracy than temporal reconstruction 
methods. However, the computing time and random access memory 
(RAM) consumption of these spatiotemporal reconstruction methods for 
large-scale reconstruction remains unclear. In this study, a method 
called spatial-interannual reconstruction (SIR) was proposed to 
reconstruct cloud-contaminated pixels in MODIS normalized difference 
VI (NDVI) and enhanced VI (EVI) data. SIR has four major advantages: (1) 
High accuracy. The average mean absolute error of SIR was 0.0338, 
which was 20.2% and 23.4% lower than that of two state-of-the-art 
spatiotemporal reconstruction methods (i.e. interpolation of the mean 
anomalies (IMA) and Gapfill). (2) High computing speed. The average 
computing time of SIR was 99.7% and 98.8% lower than IMA and 
Gapfill, respectively. (3) Low RAM consumption. (4) Simultaneous 
reconstruction of all invalid values. Reconstructed 250 m spatial 
resolution and 16-day composite NDVI and EVI datasets in China from 
2000 to 2022 (written as ReVIChina) were developed based on the SIR 
method and MODIS MOD13Q1 data. Spatiotemporal analyses revealed 
that the reconstructed datasets were more reliable than the original 
product and a similar dataset.
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1. Introduction

Vegetation plays a critical role in the Earth’s system. Existing research indicates a global greening 
trend in vegetation, which profoundly impacts vegetation productivity and the carbon cycle, water 
cycle and distribution, climate change and surface energy balance (Chen et al. 2019a; 2019b; 
Forzieri et al. 2020; Piao et al. 2019; Zeng et al. 2018). Remote sensing is the most effective method 
for monitoring vegetation dynamics. Some remote sensing vegetation index (VI) products, such as 
the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference VI (NDVI) 
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and enhanced VI (EVI), have been widely utilized in vegetation dynamics and related research 
(Cazorla et al. 2023; Dalagnol et al. 2023; Ims et al. 2019).

However, the quality of satellite-derived VI data is significantly affected by cloud contami-
nation. Despite the use of the maximum value composite method in many VI products (e.g. 
MODIS and Global Inventory Monitoring and Modeling Studies (GIMMS)) to mitigate the 
impact of cloud contamination, residual effects persist widely, particularly in areas with frequent 
cloud cover (Li et al. 2021; Liu et al. 2017). For example, Liu et al. (2017) discovered a significant 
number of abnormally low values in MODIS NDVI products in humid areas due to cloud 
contamination.

To address this issue, various methods have been developed to reconstruct cloud-contami-
nated VI. Early methods primarily utilized temporal information (i.e. information from neigh-
bouring dates), such as the Savitzky–Golay filter (Chen et al. 2004), the Double Logistic 
function (Beck et al. 2006), the Fourier-based method (Jakubauskas, Legates, and Kastens  
2001), the Asymmetric Gaussian function (Jönsson and Eklundh 2002) and others (Kong et al.  
2019; Yang et al. 2015). These methods are relatively simple and have been widely employed in 
vegetation dynamics and related research (Choler et al. 2021; Hilker et al. 2014; Tian et al.  
2021). More recently, spatiotemporal reconstruction methods that incorporate both spatial and 
temporal information (i.e. information from neighbouring pixels and dates) have been widely 
developed (Cao et al. 2018; Chen et al. 2021; Chu et al. 2021; Gerber et al. 2018; Huang et al.  
2021; Li et al. 2023; Militino et al. 2019; Yang et al. 2022). These methods have demonstrated 
higher accuracy compared to methods that solely rely on temporal information. For example, 
Cao et al. (2018) proposed a method that integrates spatiotemporal information with the 
Savitzky–Golay filter, achieving higher accuracy than the Savitzky–Golay filter, the Asymmetric 
Gaussian function, the Double Logistic function and the Fourier-based method. Chu et al. (2021) 
introduced a method that utilizes spatial, intra-annual and interannual information to recon-
struct NDVI. The results showed that this method performs better than four temporal filtering 
methods and the method developed by Cao et al. (2018). Li et al. (2023) developed a spatiotem-
poral prefill method with harmonic analysis of time series (ST-HANTS) to reconstruct NDVI. ST- 
HANTS significantly outperformed the Savitzky–Golay filter, wavelet transform, HANTS and 
data assimilation.

Despite significant progress being made in reconstructing cloud-contaminated VI, two limit-
ations still exist. First, the computing time and random access memory (RAM) consumption of 
these spatiotemporal reconstruction methods for large-scale reconstruction remains unclear. Pre-
vious studies have not assessed the computing time and RAM consumption (Cao et al. 2018; 
Chen et al. 2021; Gerber et al. 2018; Huang et al. 2021; Li et al. 2023) or assessed the computing 
time in small regions (Chu et al. 2021; Militino et al. 2019; Yang et al. 2022). Second, there is a 
lack of large-scale, long time series reconstructed VI datasets produced using spatiotemporal recon-
struction methods with high-precision. Gao et al. (2023) developed a monthly reconstructed NDVI 
dataset with 250 m resolution in China. However, Gao et al. (2023) first used a spatial reconstruc-
tion method to reconstruct NDVI and then used the Savitzky–Golay filter to smooth the recon-
structed NDVI. Both the spatial reconstruction method and the Savitzky–Golay filter have been 
proven to have lower accuracy than spatiotemporal reconstruction methods (Cao et al. 2018; Gerber 
et al. 2018; Li et al. 2023; Liu et al. 2019; Militino et al. 2019). Using low-quality datasets produced 
by low-precision methods may result in unreliable results.

Considering the aforementioned limitations, this study proposes a reconstruction method that 
simultaneously has high accuracy, high computing speed and low RAM consumption. Sub-
sequently, 250 m spatial resolution and 16-day composite reconstructed NDVI and EVI datasets 
for China from 2000 to 2022 were developed using this method and MODIS MOD13Q1 data. In 
the following text, Section 2 introduces the study area and data. Section 3 details the preprocessing 
and reconstruction methods. Section 4 presents the results, including the accuracy and computing 
costs of the proposed method, as well as the developed reconstructed NDVI and EVI datasets. 
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Section 5 discusses the proposed method and developed datasets. Finally, Section 6 summarizes this 
study.

2. Study area and data

China, the largest developing country in the world (Figure 1), ranks second in terms of population 
and third in terms of land area. Across China, from the southeast to the northwest, a general 
decrease in NDVI can be observed (Figure 1(a)). This is accompanied by a gradual transformation 

Figure 1. The study area of this study. The background maps display the 23-year average growing season reconstructed normal-
ized difference vegetation index (NDVI) and the China land cover dataset (CLCD) in 2021 (Yang and Huang 2021). Note that the 
lower limit of the NDVI was set to 0.1 in the postprocessing steps.
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of climate types from hot and humid to cold and dry, and a shift in dominant land cover types from 
forests to deserts. China is a hot research area for vegetation dynamics (Song, Feng, and Wang 2022; 
Yao et al. 2019; Zheng et al. 2019). Over the past few decades, China has exhibited the most pro-
minent greening trend globally (Chen et al. 2019a; Piao et al. 2019; Zhang et al. 2017).

MODIS MOD13Q1 NDVI and EVI data (version 6.1, 250 m spatial resolution and 16-day com-
posite) from February 2000 to December 2022 were used in this study. The NDVI is one of the most 
widely used vegetation indices and is sensitive to chlorophyll variations. The EVI was designed to 
enhance sensitivity in densely vegetated areas and mitigate atmospheric influences (Huete et al.  
2002; Xue and Su 2017). The MOD13Q1 product incorporates quality assurance flags that provide 
information about the quality of each pixel (Huete et al. 2002).

3. Methods

3.1. Preprocessing

Pixels with quality other than ‘good’ in the MOD13Q1 NDVI and EVI data were set as invalid 
according to previous studies (Cao et al. 2018; Gerber et al. 2018). However, this filtering approach 
may unintentionally exclude some values that appear to be correct, and lead to an increase in com-
puting time. To address this issue, the following preprocessing steps were employed to retain more 
pixels. 

(1) Pixels with a multiyear average growing season (from Apr. to Oct.) NDVI lower than 0.1 were 
considered non-vegetated areas, primarily consisting of deserts and water bodies. The NDVI 
values of these pixels were directly set to 0.1, irrespective of their quality. The threshold of 
0.1 aligns with previous studies (Liu et al. 2020; Zhao, Dai, and Dong 2018). The threshold 
for EVI was set to 0.067, which corresponds to the percentile of 0.1 in NDVI.

(2) Pixels with a multiyear average NDVI (EVI) on the same date lower than 0.1 (0.067) (mainly 
representing withered vegetation in winter) were directly set as 0.1 (0.067), regardless of their 
quality.

(3) In the MODIS VI products, there are pixels labelled as other quality, but their values appear to 
be correct (Figure 2). Therefore, the pixels labelled as other quality but with a VI higher than 
80% of the multiyear average VI on the same date, were considered good quality and retained.

(4) Pixels with an NDVI (EVI) lower than 0.1 (0.067) were directly set as 0.1 (0.067). The reason 
for using this step is to prevent the impact of extremely low values (e.g. negative values in some 
water bodies) on the reconstruction of the VI.

3.2. Reconstruction of the VI

In this study, a method was proposed to reconstruct cloud-contaminated VI. Because this method 
uses spatial and interannual information, it is called spatial-interannual reconstruction (SIR). A 
schematic of the SIR is shown in Figure 3, consisting of the following three steps. 

(1) Calculating a multiyear average image. To reconstruct a target image, a multiyear average 
image on the same date was calculated. Only VI data with good quality or those retained in 
the preprocessing steps were considered for the calculation of the multiyear average image. 
If all the VI data were invalid (i.e. labelled as other quality and not retained in the preprocessing 
steps), the average of all the invalid VI data was used. Consequently, the multiyear average 
image did not contain any missing or invalid values.

(2) Defining a spatial window. For a target pixel in the target image to be reconstructed, a spatial 
window with an initial size of 11 × 11 pixels was established. If there was more than one valid 
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VI data point within the spatial window in the target image, the VI data from both the target 
and multiyear average images within the spatial window were extracted to reconstruct the tar-
get pixel. Otherwise, the size of the spatial window was increased from 11 × 11–31 × 31, 111 ×  
111, 431 × 431, and so on until the aforementioned condition was met. The interval of size of 
the latter special window was set as four times that of the previous special window, to reduce 
the computing time needed for filling large gaps.

(3) Reconstructing the target pixel. The VI of the target pixel was reconstructed using Equation (1):

VIx,t,1 = VIx,m + VIy,t − VIy,m (1) 

where VIx,t,1 is the reconstructed VI of the target pixel. x and y are the target pixel and a pixel in 
the spatial window, respectively. t and m represent the target image and multiyear average 
image, respectively. VIx,m and VIy,m are always valid, because the multiyear average image 
does not contain any invalid values. Therefore, if VIy,t is valid, VIx,t,1 can be reconstructed. 
This equation is based on the hypothesis that the difference in VI between x and y in the target 
image is equivalent to the multiyear average image. Within the spatial window, each valid VI 
can be utilized to reconstruct a VI value for the target pixel. The VI of the target pixel was 
finally computed as the weighted average of all the reconstructed VI values. The weight was 
calculated as:

wn =
1

D2
x,n × (|VIx,m − VIn,m| + 1)

(2) 

where D2
x,n is the square of the distance between the target pixel x and pixel n. The power of Dx,n 

was set as 2, to reduce the computing time. Distant pixels were given small weights, because 
closer pixels tend to be more similar. The formula on the right side of the multiplication 
sign in the denominator represents the difference in VI between the target pixel and pixel n 

Figure 2. The NDVI, the quality of the NDVI, the 23-year mean NDVI and the land cover in an area of the Wuyi Mountains (WYM). 
Note that the lower limit of the NDVI was set to 0.1 in the preprocessing steps.
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in the multiyear average image. This indicator is utilized because pixels with similar VI values 
generally correspond to similar land cover types. wn represents the weight of pixel n.

Steps (2)–(3) were repeated to reconstruct all invalid VI data in the target image. Sub-
sequently, steps (1)–(3) were repeated to reconstruct all invalid VI data in the MOD13Q1 pro-
duct from 2000 to 2022. It is important to note that VI reconstruction may generate outliers, 
such as VI values exceeding 1. Therefore, NDVI and EVI values exceeding 1 were directly set to 

Figure 3. Schematic diagrams of the SIR method.
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1. NDVI (EVI) values below 0.1 (0.067) were directly set to 0.1 (0.067). To further refine the 
time series of the VI data, a Savitzky–Golay filter (Savitzky and Golay 1964) was applied for 
smoothing. The use of an upper envelope was not necessary, as low outliers were already recon-
structed. The R code for the SIR method is available from the authors.

3.3. Accuracy validation

The accuracy of VI reconstruction was validated in the North China Plain (NCP), Qinghai-Tibet Pla-
teau (QTP) and Wuyi Mountains (WYM) (Figure 4). Each area is 200 × 150 km (or each image had 
800 rows and 600 columns). These three areas were chosen to represent cropland/impervious surface 
mosaics, grassland and forest, respectively. Artificial gaps were introduced into the images during the 
growing season of 2015. These gaps were created with dimensions of 30 × 30 and 120 × 120 pixels, 
representing small and large cloud-contaminated areas, respectively. Subsequently, the SIR method 
was employed to fill these artificially generated gaps. Finally, the reconstructed VI data were compared 
with the original VI data. The mean absolute error (MAE), root mean square error (RMSE) and coeffi-
cient of determination (R2) were utilized to quantify the accuracy.

The performance of the SIR was compared with interpolation of the mean anomalies (IMA) 
(Militino et al. 2019) and Gapfill (Gerber et al. 2018). These methods were selected because: (1) 
they are spatiotemporal reconstruction methods and have shown higher accuracy compared to 
other reconstruction methods (Gerber et al. 2018; Militino et al. 2019). (2) They can be easily 
implemented using R add-on packages (IMA: ‘RGISTool’; Gapfill: ‘gapfill’). The accuracy validation 
and comparison were conducted using the preprocessed images.

Figure 4. Schematic diagrams of the accuracy validation. NCP: North China Plain. QTP: Qinghai-Tibet Plateau.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 4755



3.4. Computational costs

The computing time of the three methods was compared in the WYM from 2 February 2003 to 10 
June 2003 (a total of nine images). These specific images were chosen because the proportions of inva-
lid values in them were evenly distributed between 0% and 100%. This selection allowed us to evaluate 
the performance of the different methods under varying proportions of invalid values. Subsequently, 
the computing time and RAM consumption of the SIR and Gapfill methods were tested for the entire 
region of China (the image has 16,179 rows and 19,381 columns) for 2015. The IMA method was not 
tested for the entire region of China because its RAM consumption approached the upper limit of the 
available RAM (128 gigabytes (GB)) on our computer when the image size exceeded 1100 rows and 
1100 columns. These experiments were conducted using a computer equipped with an Intel Core i7- 
12700 Central Processing Unit (CPU) and 128 GB of RAM.

4. Results

4.1. Accuracy of the VI reconstruction

The SIR method significantly outperformed IMA and Gapfill (Figures 5 and 6). For all cases, the SIR 
method consistently exhibited lower MAE and RMSE values, as well as higher R2 values compared 

Figure 5. The accuracy of the three methods in filling the gaps of 30 × 30 pixels. IMA: Interpolation of the mean anomalies. MAE: 
mean absolute error. RMSE: root mean square error. R2: coefficient of determination.
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to the IMA and Gapfill methods. On average, the SIR method achieved an MAE of 0.0338, an RMSE 
of 0.0498, and an R2 of 0.861. The average MAE of the SIR method was 20.2% and 23.4% lower than 
that of the IMA and Gapfill methods, respectively. The improvement in accuracy was particularly 
pronounced in the NCP region. To uncover the underlying reasons, we analyzed the intra-annual 
variations in the regional average NDVI and the MAE in the NCP region (Figure 7). The NDVI 
curves exhibited significant fluctuations, with two prominent peaks and valleys in each curve. 
This is because the dominant land cover type in the NCP region is cropland. Human activities, 
such as planting and harvesting, have a substantial impact on the NDVI values. The IMA and 
Gapfill methods, which rely on information from neighbouring dates, may introduce uncertainties. 
The MAEs of the IMA and Gapfill methods were relatively low on dates with drastic changes in 
NDVI. In contrast, the NDVI curves in different years exhibited similarity, and the NDVI values 
on the same dates were close. Consequently, utilizing interannual information proved to be 
more reliable than relying on intra-annual information in this particular case. The fluctuation of 
MAE in the SIR method was smaller than that of the IMA and Gapfill methods. In summary, 
the utilization of interannual information in the SIR method resulted in high accuracy within 
the NCP region.

The MAE and RMSE values for VI reconstruction were higher in the NCP than in the QTP and 
WYM (Figures 5 and 6). The average MAEs of the SIR method in the NCP, QTP and WYM were 

Figure 6. The accuracy of the three methods in filling the gaps of 120 × 120 pixels.
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0.0382, 0.0301 and 0.0332, respectively. This discrepancy can be attributed to the heterogeneity of 
the land cover types and the VI within the NCP region, making VI reconstruction more challen-
ging. Additionally, the accuracy in filling the gaps of the 120 × 120 pixels was much higher than 
that for the gaps of the 30 × 30 pixels in the NCP region (Figures 5 and 6). For example, the average 
MAEs of the SIR method for filling the gaps of the 30 × 30 and 120 × 120 pixels in the NCP region 
were 0.0348 and 0.0415, respectively. This result is understandable, because distant pixels were used 
when filling the gaps of the 120 × 120 pixels. Distant pixels generally exhibit weaker correlations 
with the target pixel, thereby introducing higher errors in VI reconstruction, particularly in 
areas characterized by heterogeneous VIs and land cover types. In comparison, the average 
MAEs of the three methods for filling the gaps of the 30 × 30 pixels were similar to those for 
filling the gaps of the 120 × 120 pixels in the WYM and QTP regions. This can be attributed to 
the homogeneity of the VI and land cover type in these two regions.

4.2. Computing costs of the VI reconstruction

The SIR method exhibited a high computing speed (Table 1). On average, the computing time for 
the SIR method to reconstruct the images in the WYM was 13.89 s, which was 99.7% and 98.8% 
less than IMA and Gapfill, respectively. Most reconstructions using the SIR method were com-
pleted within 20 s. In comparison, Gapfill and IMA often took more than 5 min and 1 h to recon-
struct images, respectively. In addition, when reconstructing images for all of China, the average 
computing time for the SIR method was 1433.22 s, with most reconstructions completed within 
1 h (Table 2). In comparison, Gapfill often took more than 1 d to reconstruct images for the entire 
region of China. Due to the extensive computing time and RAM consumption, IMA was not 
tested for the entire region of China. It is important to note that the results were obtained 
using a single core of the CPU. Utilizing multiple cores in parallel could significantly increase 
the computing speed. For example, R software can support parallel computation of multiple win-
dows, therefore, VI reconstruction can be easily run using multiple cores of the CPU in parallel. 
The reasons behind the high computing speed of the SIR method are analyzed in the discussion 
section.

Figure 7. Intra-annual variations in the regional average NDVI from 2014 to 2016 and the MAE in 2015 in the NCP region.
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The RAM consumption of the SIR method was low (Table 2). The average RAM con-
sumption for reconstructing NDVI images for the entire region of China in 2015 using 
the SIR method was 6.44 GB, which was 80.8% lower than that of Gapfill (33.61 GB). The 
differences in RAM consumption for reconstructing different images were small for both 
the SIR and Gapfill methods. With its low RAM consumption, the SIR method can easily 
be run using multiple cores of CPU. For example, with our computer equipped with 12 
cores of CPU and 128 GB RAM, the SIR method could be efficiently run using 9 cores of 
CPU in parallel, with the CPU utilization rate approaching 100% and the RAM utilization 
rate below 70%.

The SIR method simultaneously reconstructed all of the cloud-contaminated pixels, similar to 
Gapfill (Tables 1 and 2). In contrast, IMA and many previous methods are unable to reconstruct 
all missing values simultaneously (Cao et al. 2018; Militino et al. 2019; Yang et al. 2022), or they 
require numerous complex steps for complete reconstruction (Li et al. 2018; Yao et al. 2023c). 
This suggests that the SIR method is a convenient and efficient approach.

4.3. Reconstructed NDVI and EVI datasets

The original MODIS MOD13Q1 NDVI and EVI data were preprocessed using the preprocessing 
methods described in Section 3.1. Subsequently, 250 m spatial resolution and 16-day composite 
reconstructed NDVI and EVI datasets were developed for China (written as ReVIChina) from 
2000 to 2022 using the SIR method and preprocessed images. The ReVIChina NDVI data were 
compared to the original MOD13Q1 NDVI products and a monthly reconstructed NDVI product 
in Gao et al. (2023). Because the reconstructed NDVI product in Gao et al. (2023) is monthly com-
posite, the original and ReVIChina NDVI data were averaged into a month for comparison. The 
WYM region was selected for comparison, because: (1) it has a humid climate, and the NDVI is 
strongly affected by cloud contamination. (2) The dominant vegetation type in the WYM region 
is forests, which are less affected by human activities.

Figure 8 presents the comparisons of the spatial distributions of the three NDVI datasets in 
the WYM region in 2002. It can be clearly seen that the original NDVI data were significantly 
affected by cloud contamination. The NDVI significantly decreased from April to May. The 
effect of cloud contamination on the NDVI was not completely removed by Gao et al. 
(2023). In contrast, the spatial distributions of ReVIChina NDVI in different months were simi-
lar. Low NDVI values were generally observed in impervious surfaces and rivers. These results 
indicate that the impact of cloud contamination on VI has been effectively eliminated in 
ReVIChina.

Figure 9 illustrates the intra-annual comparisons of the three NDVI datasets in the WYM 
region in 2002, 2005, 2007 and 2015. It is evident that the original VI curves exhibited numerous 
abnormally low outliers caused by cloud contamination. The impact of the cloud contamination 
on the regional average NDVI exceeded 0.3. The effect of the cloud contamination on the NDVI 
was also evident in Gao et al. (2023). In comparison, the ReVIChina NDVI curves were relatively 
smooth, with few extreme fluctuations. Additionally, there were strong correlations between the 
ReVIChina NDVI data in different years. For example, the Pearson’s correlation coefficient 
between the ReVIChina NDVI in 2002 and 2005 was 0.955. In contrast, the Pearson’s correlation 
coefficients for the original NDVI and the NDVI in Gao et al. (2023) were 0.622 and 0.919, 
respectively. These findings indicate that the quality of the VI data was significantly improved 
by the SIR method.

Figure 10 shows the reconstructed 23-year average growing season VI and the difference between 
the original and reconstructed 23-year average growing season VI. In the forests in southern China, the 
original VI was significantly lower than the reconstructed VI, indicating that the cloud contamination 
had a substantial impact in these areas. This can be attributed to two factors: (1) Southern China has a 
humid climate. VI is more frequently affected by cloud contamination. (2) Forests generally have high 
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VI, thus leading to a large discrepancy between the cloud-contaminated and reconstructed VI values. 
In contrast, the difference between the original and reconstructed VIs was minimal in northern China 
due to its arid climate and generally low VI values.

Figure 8. Comparisons of the spatial distributions of the original NDVI, the reconstructed NDVI in Gao et al. (2023) and the ReVI-
China NDVI in the WYM.
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5. Discussion

5.1. The SIR method

In this study, a spatiotemporal reconstruction method called SIR was proposed to reconstruct 
cloud-contaminated VI data. The SIR method was shown to have high accuracy, high computing 
speed, and low RAM consumption, and could simultaneously reconstruct all the cloud-contami-
nated pixels. These four major advantages of the SIR method are discussed in detail below.

First, the SIR method had high accuracy. One of the reasons for its high accuracy is the utiliz-
ation of interannual information, which enhances the reconstruction accuracy in the NCP (as dis-
cussed in Section 4.1). Additionally, SIR employs a weighted average of all reconstructed VI values 
as the final reconstructed VI (as described in step 3 of Section 3.2). This approach reduces the 
impact of outliers and improves the accuracy of VI reconstruction.

Second, the SIR method demonstrated high computing speed due to its well-designed framework. 
The main reasons for the high computing speed of the SIR include the following: (1) the interval of the 
size of the spatial window increases significantly (as explained in step 2 in Section 3.2) instead of 
remaining constant as seen in methods such as Gapfill and some previous approaches (Gerber et al.  
2018; Li et al. 2018; Zeng et al. 2015). This strategy reduces the computing time needed for filling 
large gaps. (2) SIR utilizes only one related image (the multiyear average image), which is significantly 
fewer compared to previous approaches (Gerber et al. 2018; Li et al. 2018; Sun et al. 2017; Yao et al.  
2021). By reducing the number of related images, the computing time is decreased. (3) All the steps 
in the SIR method employ simple and fast mathematical operations, such as addition, subtraction, div-
ision, and averaging. SIR avoids complex and time-consuming operations. The lengthy computation 
time of the IMA method is attributed to its use of a thin plate spline method for interpolation, 

Figure 9. Comparisons in the intra-annual variations of the original NDVI, the reconstructed NDVI in Gao et al. (2023) and the 
ReVIChina NDVI in the WYM.
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which is time-consuming (Militino et al. 2019). The computing time of the Gapfill is long because it 
ranks each image based on valuewise comparisons between all images (Gerber et al. 2018).

Third, the SIR method exhibited low RAM consumption. The reasons for the low RAM consump-
tion of SIR are as follows: (1) SIR utilizes only one related image (the multiyear average image) to 
reconstruct the target image. Consequently, only two images (the target image and the multiyear aver-
age image) need to be read during the reconstruction process. (2) All the steps in the SIR method 
involve simple mathematical operations that do not require additional RAM allocation.

Fourth, the SIR method can simultaneously reconstruct all cloud-contaminated pixels, as can the 
Gapfill (Tables 1 and 2). This is because: (1) the related image does not contain any invalid values, 
and (2) there is no upper limit set for the size of the spatial window. In comparison, IMA and many 
previous methods cannot simultaneously reconstruct all missing values (Cao et al. 2018; Militino 
et al. 2019; Yang et al. 2022), or require many complex steps (Li et al. 2018; Yao et al. 2023c). 
The main reason for this is that the related images used in these methods contain invalid values.

Figure 10. The reconstructed 23-year average growing season VI (first row) and the difference between the original and recon-
structed 23-year average growing season VI (second row).
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Overall, SIR is a robust reconstruction method with high accuracy and low computing costs. The 
main difference between SIR and previous methods is that SIR has been proven suitable for large- 
scale reconstruction.

It is important to note that the SIR method is specifically designed for reconstructing VI data. 
It operates based on the hypothesis that the VI difference between closely spaced pixels in the 
target image is consistent with the multiyear average image (refer to step 3 in Section 3.2). How-
ever, this hypothesis may not hold true when reconstructing other types of data, such as land 
surface temperature and snow cover. This is because the spatial distribution of land surface 
temperature and snow cover can be influenced by various factors and can vary significantly 
across different years. For instance, land surface temperature can be affected by soil moisture, 
while snow cover can be influenced by snowfall. Therefore, SIR cannot be directly applied to 
reconstruct these types of data. Some modifications, such as adjusting the calculation method 
of related images, would be necessary when utilizing the SIR method for reconstructing such 
data.

5.2. The reconstructed NDVI and EVI datasets

This study developed 250 m spatial resolution and 16-day composite NDVI and EVI datasets in 
China from 2000 to 2022. The cloud-contaminated pixels were reconstructed using a high-precision 
spatiotemporal reconstruction method called SIR. The reconstructed NDVI and EVI datasets 
exhibited significantly higher quality compared to the original MODIS MOD13Q1 product (refer 
to Section 4.3).

Remote sensing VI data play a crucial role in various fields. First, it is extensively used to analyze 
vegetation dynamics and explore the relationships between vegetation and factors such as climate, 
hydrology, and human health (Geng et al. 2020; Liu et al. 2022; Yang et al. 2021). The improved 
quality of the developed VI datasets can enhance the reliability of conclusions drawn from these 
studies. Second, remote sensing VI data serve as an essential input for estimating crop yields, 
drought indices, groundwater recharge, aboveground biomass, and other parameters (Li et al.  
2019; Parizi et al. 2020; Xie and Fan 2021; Zhang et al. 2021; 2023).

6. Conclusions

In this study, a method called SIR was proposed to reconstruct cloud-contaminated VI data. SIR has 
high accuracy, high computing speed, and low RAM consumption, and can simultaneously recon-
struct all cloud-contaminated pixels.

The accuracy of SIR was validated using simulated cloud-contaminated areas. The average MAE 
of SIR was 0.0338, which was 20.2% and 23.4% lower than the MAE of the other two methods 
tested. The average computing time of SIR was 99.7% and 98.8% lower than that of the other 
two reconstruction methods tested in the WYM. For reconstructing NDVI images across all of 
China, the average computing time and RAM consumption of SIR were 1433.22 s and 6.44 GB, 
respectively. The SIR method, due to its low computing costs, is suitable for large-scale reconstruc-
tion. The low computing costs of the SIR method can be attributed to its well-designed framework 
such as a reduced number of related images and simple mathematical operations. The 250 m spatial 
resolution and 16-day composite reconstructed NDVI and EVI datasets in China from 2000 to 2022 
were developed based on the SIR method (available at https://doi.org/10.5281/zenodo.7988989 and  
https://doi.org/10.5281/zenodo.7979989, approximately 220 GB) (Yao et al. 2023a; 2023b). Spatio-
temporal analyses demonstrated that the reconstructed datasets were more reliable than the original 
product and a similar dataset.

The developed reconstructed VI dataset can serve as essential input data in various fields such as 
ecology, hydrology, meteorology, agriculture, and forestry. Future studies can explore its applica-
bility for reconstructing other types of data, such as land surface temperature and snow cover.
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