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A B S T R A C T   

The high spatial resolution building footprints are crucial for understanding urban development and its asso
ciated applications. However, up to now, the sub-meter-level building footprint data of China is still lacking. The 
challenges arise from two aspects: 1) the number of training samples is inadequate for large-scale building 
extraction. 2) the accuracy and efficiency of current models are insufficient to conduct large-scale building 
extraction. Therefore, we propose a framework for large-scale building extraction in this study, including semi- 
automated sample generation, building extraction model, model training, and post-processing. Specifically, the 
main technical contributions include: 1) BldgNet (Building Extraction Network) is proposed, including the Large 
Window Attention, Edge Attention, and Distribution Alignment Module with consideration of spatial contextual 
information, to address the challenge of the multi-scale building extraction, building boundary delineation, and 
class imbalance, respectively; 2) a semi-supervised training approach is proposed for large-scale building 
extraction, leveraging the incomplete information from OpenStreetMap (OSM) to enhance the diversity of 
building samples and the robustness of the model. Meanwhile, we created an open-source Global Building 
Dataset (GBD) comprising approximately 800,000 high-resolution (0.25 m) samples. This dataset incorporates 
diverse building styles worldwide, offering support for global building extraction. Based on the constructed 
sample set and the proposed deep net, we generated China’s first sub-meter (0.5 m) building footprint dataset 
(CBF). Through testing on 750,000 buildings from 350 cities, the overall F1 score for CBF reached 83.71%. 
Finally, we validated that the proposed building extraction model can achieve satisfactory results compared to 
existing representative deep networks. GBD and CBF datasets can be publicly available and downloadable via 
https://zenodo.org/doi/10.5281/zenodo.10043351.   

1. Introduction 

The high spatial resolution building footprint data is essential for 
understanding urban development and its related applications. Building 
footprints and their extent are important indicators for human activities 
(Huang et al., 2021), sustainable urbanization(Appolloni et al., 2021), 
building energy modeling(Byrne et al., 2015), and urban planning 
(Nadal et al., 2017). Furthermore, building information is related to 
urban energy usage(Resch et al., 2016) and greenhouse gas emissions 
(Borck, 2016; Marconcini et al., 2020). 

With the development of sensors as well as processing techniques, 
increasing remote sensing and geospatial data have become available for 
open-source use. As a result, various large-scale building footprints, 
building heights, and related products are released. We can categorize 
these studies into three types. The first one focuses on extracting 
impervious surfaces or human settlement footprints. The characteristics 
of such products are coarse resolution (10 m–30 m) but with a long time 

span. For example, GISA(Huang et al., 2021), GAIA(Gong et al., 2020), 
and GAUD(Liu et al., 2020) utilized Landsat imagery at 30 m resolution 
to extract global impervious surfaces from 1972 to 2019, 1985–2018, 
and 1985–2015, respectively. WSF(Marconcini et al., 2020) employed 
Landsat 8 and Sentinel-1 imagery to extract the 10-m global human 
settlement footprints for 2015. GISA-10 m(Huang et al., 2022) used 
Sentinel-1 and Sentinel-2 data to capture global 10-m resolution 
impervious surface for the year of 2016. GHSL(Corbane et al., 2021) 
employed Sentinel-2 data to extract the 10-m resolution global human 
settlement footprints for 2018. However, owing to their limitations in 
spatial resolution, such products cannot provide information on indi
vidual buildings. 

The second type of products focuses on urban building heights (Cao 
and Huang, 2021; P. Chen et al., 2023a; Frolking et al., 2022; Ma et al., 
2023). These products often have coarse resolutions (0.3 km–1 km) and 
typically cover only one year. For instance, (Xuecao Li et al., 2020a) 
released 500 m resolution building height data for major U.S. cities. 
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(Yang and Zhao, 2022) provided urban height data for China at a 1 km 
resolution. (Zhou et al., 2022) published global building height data for 
2015 at a 500 m resolution. More recently, (Frantz et al., 2021) and (Wu 
et al., 2023) offered more accurate (10 m) building height data for 
Germany and China, respectively. Similarly, products of this type also 
encounter challenges in describing building information at a fine- 
grained level. 

The third type primarily utilizes high-resolution data for extracting 
building footprints. Microsoft(Microsoft, 2023) released building foot
prints at 1 m resolution for specific global regions(year not specified). 
Google(Sirko et al., 2021) provided building footprints for Africa at a 
0.5 m resolution (year not specified). Note that these products do not 
include building footprint information of China. These high-resolution 
products are generated using deep learning methods, requiring sub
stantial training data and computational resources. More importantly, 
their reuse in other regions (such as in China) is difficult due to the lack 
of open-sourcing of the training data and methods. Recently, (Z. Zhang 
et al., 2022b) released 1 m resolution building footprint data for 90 cities 
in China for 2020. However, this study did not provide information in 
other cities and rural areas. (Liu et al., 2023) released building footprint 
information for China from 2016 to 2021. They employed a super- 
resolution segmentation method to obtain 2.5 m results based on 
Sentinel-2 data (10 m). Hence, a considerable gap exists between their 
products and sub-meter-level results, inevitably leading to incorrect 
adhesion or omissions of buildings. As of now, finely detailed (e.g., sub- 
meter-level) building footprint data of China is still lacking. 

In this study, we utilized Google imagery during 2019 to 2020 to 
extract China’s 0.5 m resolution building footprint data (CBF), aiming to 
address the absence of sub-meter-level building footprint data of China. 
Large-scale building extraction is a challenging task. Currently available 
high-resolution datasets for building extraction are often limited to 
smaller areas. Additionally, open-source data such as OpenStreetMap 
(OSM) has very low completeness in China (<9%)(Herfort et al., 2023), 
making the collection of training samples more difficult. Moreover, 
there is a lack of research on extracting building footprints from a 
massive amount of high-resolution imagery while considering both ef
ficiency and accuracy of algorithms. To overcome these challenges, we 

created a global building sample dataset (GBD) using OSM and Google 
imagery. This dataset is widely distributed and can fulfill global building 
extraction sample requirements. Based on this, we propose a deep- 
learning approach suitable for large-scale building extraction, which 
can effectively balance accuracy and efficiency. In summary, the main 
contributions of this study are as follows: 

1) Developed China’s first open-source 0.5 m resolution building foot
print dataset (CBF). 

2) Provided an open-source global building sample dataset (GBD, res
olution 0.25 m). This dataset comprises approximately 800,000 im
ages with diverse architectural styles worldwide, each with a size of 
512 × 512 pixels. It can be served as training and test samples for 
building extraction in different regions globally.  

3) Proposed a practicable building extraction method for large-scale 
high-resolution imagery. The algorithm focuses on the current 
technical bottlenecks for the deep learning based building extraction, 
e.g., collection of diverse samples, inaccurate building boundaries, 
tiny building omissions, and foreground-background imbalance. 

The remainder of this paper is arranged as follows. Sec. 2 summarizes 
the building-related datasets and describes relevant building extraction 
methods. Sec. 3 presents the data used in the study. Sec. 4 details the 
proposed methodology. In Sec. 5, we quantitatively evaluate and 
analyze the CBF dataset. Sec. 6 involves a comparison between CBF and 
other products, followed by a series of discussions. Finally, Sec. 7 sum
marizes the findings of this research. 

2. Background 

2.1. Building-related products 

As mentioned above, we categorize products related to buildings or 
containing building information into three types. The specific parame
ters for each product are shown in Table 1. Type I products primarily 
provide information on impervious surfaces or human settlement foot
prints. These products typically use Landsat imagery as their data 
sources. These products often have a long temporal span and large 
geographical extent but relatively coarse spatial resolution. More 
recently, some researchers use Sentinel imagery as a data source, and 
increase the spatial resolution to 10 m, albeit at the cost of losing tem
poral span. Type II products focus on building height information, but 
most only cover a specific country or region in a single year. Type III 
products provide footprints for individual buildings, thus requiring 
high-resolution remote sensing data. It should be noted that the accurate 
prediction of individual building footprints is relied on deep learning, 
requiring a substantial amount of high-resolution imagery, extensive 
training data, efficient building extraction methods, and considerable 
computational resources. Therefore, the individual building extraction 
from high-resolution imagery is much more difficult. So far, sub-meter 
resolution building footprint data for China remains unavailable. 

2.2. Building extraction methods 

As mentioned above, the challenges of large-scale building extrac
tion include both detection methods and sample collection. Therefore, 
here we describe in detail the recent advances in the two aspects. 

Deep learning has made significant breakthroughs and achievements 
in various fields, such as natural language processing (Doveh et al., 
2023; Yin et al., 2023), computer vision (Huang et al., 2023; Wang et al., 
2022), medical image analysis (Huang et al., 2023; Wang et al., 2022), 
autonomous driving (Huang et al., 2023; Wang et al., 2022). In the 
building extraction, deep learning algorithms are continuously evolving. 
Researchers aim to enhance the performance by focusing on various 
modules of the deep networks. The advances include local and global 
information interaction (Kang et al., 2019; Zhao et al., 2017) to improve 

Table 1 
The comparison of relevant product information.  

Dataset Scale Time span Resolution Type 

GISA(Huang et al., 
2021) 

Global 1972–2019 30 m I 

GAIA(Gong et al., 
2020) 

Global 1985–2018 30 m I 

GAUD(Liu et al., 
2020) 

Global 1985–2015 30 m I 

WSF(Marconcini 
et al., 2020) 

Global 2015 10 m I 

GISA-10 m(Huang 
et al., 2022) 

Global 2016 10 m I 

GHSL(Corbane et al., 
2021) 

Global 2018 10 m I 

(Xuecao Li et al., 
2020a) 

USA 2015 500 m II 

(Yang and Zhao, 
2022) 

China 2017 1000 m II 

(Zhou et al., 2022) Global 2015 500 m II 
(Frantz et al., 2021) Germany 2017 10 m II 
CNBH(Wu et al., 

2023) 
China 2020 10 m II 

Microsoft(Microsoft, 
2023) 

Global (not 
including China) 

No specific 
time 

<1 m III 

Google(Sirko et al., 
2021) 

Africa No specific 
time 

0.5 m III 

90-cities-BRA(Z.  
Zhang et al., 2022b) 

90 cities in China 2020 1 m III 

CBRA(Liu et al., 2023) China 2016–2021 2.5 m III 
CBF(ours) China 2019 0.5 m III  
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the model’s information acquisition; attention mechanisms (Howard 
et al., 2019; Hu et al., 2018; Tan and Le, 2019) for efficient self- 
attention; multiscale feature representation (L. Li et al., 2018b; Wu 
et al., 2018; Yan et al., 2022) to strengthen the model’s ability to acquire 
global information; and edge preservation (He et al., 2021; Xiangtai Li 
et al., 2020; Pu et al., 2022) to enhance the model’s accuracy in the 
boundaries. While these methods improve the model’s performance to 
some extent, the lack of consideration in the lightweight design makes 
them difficult to meet the requirement for large-scale mapping, which is 
a complex and comprehensive task, encompassing sample acquisition, 
pre- and post-processing. However, a single model design alone cannot 
support large-scale building extraction. While Microsoft (Microsoft, 
2023) and Google (Sirko et al., 2021) have released the large-scale 
building extraction results, their technical details have not been public 
yet. Furthermore, they have not provided the building extraction results 
of China. With respect to the samples, the existing studies typically use 

publicly available datasets (Ji et al., 2019; Maggiori et al., 2017) for 
model training and accuracy validation. Nevertheless, the current 
building datasets are often small in scale and homogeneous in style. It 
should be noted that the diversity of training data is crucial for perfor
mances of the data-driven deep learning. One approach to addressing 
the large-scale sample collection is to reduce the training sample re
quirements and enhance the model’s generalization capability through 
the weakly supervised methods (Shen et al., 2023). For instance, (Ahn 
and Kwak, 2018; Ge et al., 2019; Shen et al., 2021; Y. Wang et al., 2020d; 
Zhou et al., 2018) employed image-level labels for supervision and 
achieve pixel-level segmentation. Similarly, (Hsu et al., 2019; Khoreva 
et al., 2017; Q. Li et al., 2018a; Oh et al., 2021) used box-level labels for 
network training and the subsequent pixel-level semantic segmentation. 
(Lin et al., 2016) supervised the network using scribble-level labels. 
However, it should be noted that these weakly supervised methods still 
rely to some extent on the quantity and quality of samples, and their 

Fig. 1. The overall flowchart of the proposed framework. (a) Training and test sample generation. (b) Structure of the model. (c) Post-processing. (d) CBF dataset 
generation. (e) Accuracy assessment. 
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accuracy lags behind fully supervised methods. Therefore, how to 
generate accurate and diverse sample sets for large-scale building 
extraction deserves in-depth study. 

3. Data 

3.1. Google high resolution imagery 

We collected images with resolutions of 0.25 m and 0.5 m from the 
Google images. To enhance the model’s ability for multi-scale modeling, 
we employed both resolutions (0.25 and 0.5 m) as the data sources for 
training samples. During model predictions, only 0.5 m resolution im
ages of China were used for mapping. The acquisition time of these 
images is approximately between 2019 and 2020. Due to their diverse 
sources, the images exhibit a variety of imaging conditions, e.g., 
different seasons, angles, and tones. To mitigate the impact of colour 
variations, we applied standardization and normalization techniques to 
preprocess the images (Conn and Arandjelovic, 2017). 

3.2. OpenStreetMap 

We utilized publicly available building information from Open
StreetMap (OSM) to generate labels for training and testing datasets. To 
ensure the accuracy of the training data, manual inspection and cor
rections were conducted. Moreover, there was no overlap between the 
training and testing datasets, and the evaluation was performed in a 
blinded manner. (See Section 4.1 for details of sample production). 

3.3. GISA 

GISA (Huang et al., 2021) provides a global impervious surface area 
map from 1972 to 2019, with an F1 score of 0.954 (in terms of a large 
number of randomly selected and third-party validated sample sets). 
GISA is generated by a novel global ISA mapping method that in
corporates semi-automatic global sample collection, a locally adaptive 
classification strategy, and a spatio-temporal post-processing procedure. 
Furthermore, GISA is extracted from the entire global land area, rather 
than from an urban mask, thereby reducing underestimation. In this 
study, GISA is used for sample filtering (See Section 4.1 for details). 

4. Method 

The proposed framework consists of a series of key techniques for the 
large-scale and high-resolution building extraction (Fig. 1), including: 
(a) Training and test sample generation; (b) BldgNet: a deep network 
specialized for large-scale building extraction (denoted as BldgNet); (c) 
Post-processing; (d) CBF dataset generation; and (e) Accuracy assess
ment. The details of these modules are described in the following 
sections. 

4.1. Training and test sample generation 

The training samples are pivotal for data-driven deep-learning al
gorithms. Accurate sample sets are typically annotated manually, which 
often consumes a significant amount of manual labour and time. In this 
study, we proposed a semi-automated approach to generate samples, 
delegating only key steps to manual processing. This method ensures 
sample accuracy while significantly reducing the manual workload. The 

Fig. 2. Samples (a) to (f) represent instances within the ASB dataset, where (a) corresponds to Africa, (b) Asia, (c) Oceania, (d) Europe, (e) North America, and (f) 
South America. (a) ~ (f) are samples in the training dataset (ASB). (g) displays the ISB samples. The colour of Blue indicates building masks, while red indicates 
building boundaries. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

X. Huang et al.                                                                                                                                                                                                                                  



Remote Sensing of Environment 311 (2024) 114274

5

specific process is illustrated in Fig. 1(a). Initially, we rasterized the 
global building information from OSM (OpenStreetMap) and then 
cropped it along with Google images (0.25 m and 0.5 m) into image pairs 
of 512 × 512 pixels, forming a sample bank. Due to the varied quality of 
OSM annotations, primarily the issue of omissions, we chose the samples 
by considering the correlation between impervious surface density and 
building density. Specifically, we calculated the impervious surface 
density α and building density β as well as their difference, denoted as γ, 
for each image. α is calculated by dividing the impervious surface area 
(obtained from GISA) within each 512 × 512 patch by the total area of 
the patch, and β is computed by dividing the building area (obtained 
from OSM) within the patch by the total area of the patch. Image pairs 
with γ exceeding a threshold δ were identified as building omissions. In 
this way, the original sample bank is divided into the Accurate Sample 
Bank (ASB) and the Incomplete Sample Bank (ISB). As shown in Fig. 2, 
samples (a) to (f) belong to ASB with more complete annotations, while 
sample (g) belongs to ISB with higher omissions. Finally, we visually 
inspected and modified samples in ASB to eliminate misclassifications 
and incorrect annotations, further enhancing ASB’s accuracy. Simulta
neously, we manually filtered and revised samples in ISB to ensure that 
the existing building annotations were accurate. It should be noted that 
despite omissions in ISB’s building samples, in this study, we adopted a 
semi-supervised training approach (detailed in Section 4.2.5), 
leveraging the building information from ISB to enhance the training of 
the BldgNet. 

Figure 3(a) shows the distribution of ASB samples. ASB contains 
approximately 840,000 samples from various regions globally. It en
compasses diverse architectural styles that can provide potential sam
ples for large-scale or even global building extraction. Fig. 2(a)~(f) 

showcases building samples from different continents within ASB. We 
utilized ASB as the training dataset for our model. Fig. 3(d) presents the 
statistics of ASB samples across continents: 211,632 in Asia, 228,128 in 
Europe, 7568 in Oceania, 11,676 in Africa, 9696 in South America, and 
371,516 in North America. As depicted in Fig. 3(e), we partitioned this 
training dataset (ASB) into two parts: the first part consists of samples 
outside the study area (China), totaling 831,764 samples. The second 
one is the samples within China, approximately 8400 samples, denoted 
as D1. The small number of samples in China can be attributed to the lack 
of building datasets in China (Sun et al., 2023), which underscores the 
necessity and significance of our study. To fully leverage OSM’s build
ings samples and enhance the model’s performance within the study 
area, we designed a semi-supervised training approach capable of uti
lizing the samples with incomplete annotations, such as those in ISB, to 
improve the model’s generalization in the study area (elaborated in 
Section 4.2.5). Notice that the existing building annotations in ISB have 
been manually corrected, to maintain a high level of accuracy despite 
omissions in ISB. Subsequently, 70% of the ISB samples were randomly 
chosen and used to construct the semi-supervised training dataset (Fig. 3 
(b)), designated as D2. The remaining 30% was used as the test dataset 
(Fig. 3(c)) to evaluate the mapping results, containing 750,000 buildings 
from 350 cities in China. Fig. 3(f) displays the sample counts for each 
dataset, with no overlap between the test, the training and semi- 
supervised training datasets. 

4.2. The structure of BldgNet 

4.2.1. Overview 
CNN (convolutional neural network) and Transformer are the two 

Fig. 3. (a) The sample distribution of the ASB (training dataset). (b) The sample distribution of the semi-supervised training dataset. (c) The sample distribution of 
the test dataset. (d) A comparison of sample quantities across continents within the ASB. (e) A comparison of sample quantities within and outside the Chinese region 
in the ASB. (f) A comparison of sample quantities across various datasets. 
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predominant architectures in deep learning models. Some researchers 
have also proposed novel structures like multilayer perceptron (Tolsti
khin et al., 2021), deep learning clustering (Xu Ma et al., 2023), and 
deep learning support vector machines (Tarzanagh et al., 2023). How
ever, with the increasing volume of data, models based on the Trans
former architecture have exhibited superior capabilities in fitting large 
datasets compared to other ones. For tasks such as building extraction 
from large-scale high-resolution remote sensing images, the efficiency of 
models is crucial due to the substantial amount of data (labels and im
ages). Simultaneously, large-scale building extraction poses unique 
challenges, including diverse building sizes, difficulties in precise 
delineation of building boundaries, and foreground-background imbal
ances. To deal with these challenges, we propose the BldgNet (the 
Buildings Extraction Network), a deep learning network based on the 
Transformer architecture specifically tailored for large-scale building 
extraction. The overall structure of the model is shown in Fig. 1(b). The 
image is first passed through an encoder (see Section 4.2.2) to extract 
and fuse the multi-level features. The fused feature (F5) is fed into the 
Large Window Attention (LWA) module (see Section 4.2.3), for 
improving the contextual modeling capabilities and capturing global 
information to enhance the performance of extracting buildings with 
different sizes. Its output is recorded as F6. Subsequently, the Edge 
Attention (EA) Module is performed on F1 and F6, to strengthen the 
model’s delineation to building boundaries (see Section 4.2.4). Finally, 
the Distribution Alignment Module with Consideration of Spatial 
Contextual Information (DASCI) is used to ameliorate the model accu
racy degradation caused by imbalanced foreground-background ratios 
(see Section 4.2.5). Additionally, our proposed semi-supervised training 
method is detailed in Section 4.3. 

4.2.2. Encoder 
The encoder structure is shown in Fig. 1(b). The image data (H× W×

3) first undergoes token embedding through a Transformer Block 
(Dosovitskiy et al., 2021), resulting in a feature map with dimensions H4 ×
W
4 × 64, denoted as F1. Subsequently, three additional Transformer 

Blocks are adopted for feature extraction, with each Transformer Block 
reducing the size of the feature map by half and doubling the number of 
channels. Therefore, in sequence, the output feature map sizes of the 
Transformer Blocks are H8 ×

W
8 × 128, H

16×
W
16× 256, H

32×
W
32× 512, denoted 

as F2, F3, and F4, respectively. Subsequently, these multi-scale features 
(F2, F3, F4) are processed by a multilayer perceptron (MLP) (Tolstikhin 
et al., 2021) and are upsampled to the same size. They are then stacked 
along the channel dimension and fused using an MLP, resulting in the 
fused feature denoted as F5. 

4.2.3. The LWA module 
The attention mechanism is the core of the Transformer architecture. 

The computation of full self-attention (Fig. 4(a)) increases proportion
ally with the square of image dimensions. Considering the affordability 
of computational resources, many researchers divide the feature map 
into specific windows (as illustrated in Fig. 4(b) and Fig. 4(c)), with the 
attention computation performed simultaneously and independently 
within each window (Dong et al., 2021; Ho et al., 2019; Liu et al., 2021; 
Zhang et al., 2023). To enhance information exchange between different 
windows, shifted local self-attention (Fig. 4(b)) performs convolution or 
the self-attention calculations again by utilizing the windows that are 
partially overlapped with the preceding windows. Besides, sequential 
axial self-attention (Fig. 4(c)) conducts self-attention calculations 
sequentially using horizontal and vertical windows. These approaches 
improve the computational efficiency of the attention mechanism and 

Fig. 4. Demonstration of feature map partitioning for different attention methods. (a) Full self-attention. (b) Shifted local self-attention. (c) Sequential axial self- 
attention. (d) Directional window self-attention. (e) Cross-attention calculation between the current window and the surrounding windows. 

Fig. 5. The structure of LWA.  
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enhance the model’s accuracy. (Zhang et al., 2023) investigated the 
impact of different window shapes and window overlapping methods of 
the attention mechanism on model accuracy and efficiency. The pro
posed directional window self-attention (DWSA) (Fig. 4(d)) out
performed other attention computation methods in both speed and 
accuracy. DWSA divides the feature map into n segments along the 
channel dimension, with each segment performing self-attention cal
culations in different directions. However, this indirect information 
exchange among windows can limit the contextual modeling capabil
ities and the capture of global information. In this study, this limitation 
hinders the model from effectively capturing super-sized buildings or 
densely connected residential areas. In contrast to indirect information 
exchange, (Yan et al., 2022) employed direct cross-attention calcula
tions between the current and surrounding windows (Fig. 4(e)) to 
enhance information exchange among different windows. However, 
relying on a single mode of exchange (indirect or direct) still falls short 
of effectively representing contextual information. 

Therefore, in this study, we propose the Larger Window Attention 
(LWA) Module, which integrates the two modes (both indirect and 
direct) of information exchange between windows. This approach en
sures that the self-attention scope along different directional paths 
overlaps spatially (indirect information exchange) and enables each 
window to obtain information from surrounding windows through 
cross-attention calculations (direct information exchange). This 
enhancement facilitates the model’s capability of contextual modeling 
and global information acquisition. The structure of the LWA is illus
trated in Fig. 5, where the feature F5 (H

8 ×
W
8 × 512) is divided into n 

segments along the channel dimension (H
8 ×

W
8 × 512

n ). Each segment 

concurrently performs strip-wise attention in different directions. 
Considering the computational complexity, n is set as 2 in this study, 
representing the vertical and horizontal directions. This partitioning 
method improves computational speed while enlarging the attention 
scope along different directions. Taking the vertical direction as an 
example, by dividing the feature map (H

8 ×
W
8 × 256) into W

8×sw patches, 
the dimension of each patch is H8 × sw× 256, where sw is the strip-wise 
window width. The value of sw can be adjusted to balance accuracy and 
efficiency. To further expand the attention scope and enhance contex
tual information retrieval for each window in both directions, each 
patch (taking the red window in the figure as an example) performs 
attention calculations with patches within a radius of R (depicted by the 
purple window in the figure). Subsequently, the feature maps from both 
directions are stacked along the channel dimension to restore the orig
inal dimensions (H

8 ×
W
8 × 512). 

Figure 5 illustrates the case of R = 2. Employing window attention 
with various R sizes, i.e., spatial pyramid pooling, allows for further 
extraction of global information (Yan et al., 2022). Therefore, in this 
study, we consider multiple R values (depicted in Fig. 6). Following the 
application of window attention at different radii, these feature maps are 
stacked with the original feature map, which are then fused with a 
Multilayer Perceptron (MLP). Subsequently, upsampling is performed to 
further restore the spatial information. 

4.2.4. The EA module 
The commonly adopted Hierarchical structure design in neural net

works leads to the gradual loss of spatial details, especially for edge- 
related information. This can also lead to large uncertainty in predict
ing building edges. Many researchers (e.g., (He et al., 2021; Xiangtai Li 
et al., 2020)) address this issue by introducing Edge branches or Edge 
Processing Modules (EPM) to achieve more precise building edge pre
dictions. Using Edge branches (as shown in Fig. 7(a1)) can increase the 
model’s parameter and computation complexity, particularly in the 
structures with multiple edge branches (He et al., 2021). This approach 
hampers the model’s speed, making it unsuitable for large-scale building 
extraction. Similarly, edge pixels constitute only a small portion of the 
image, and Edge Processing Modules (as illustrated in Fig. 7(a2)) utilize 
the entire feature map for computation, thereby increasing the compu
tational effort of the model. In our research, to guide the model’s focus 
on building edges without introducing additional computation, we 
propose the Edge Attention (EA) module (Fig. 7(a3)). This method 
performs feature extraction only on edge pixels, resulting in improved 
edge prediction with lower computational complexity. The edge pixels 

Fig. 6. The overall structure of the LWA module.  

Fig. 7. (a1) Structure of the model with the edge branch. (a2) Structure of the model with the edge processing module. (a3) Structure of the model incorporating the 
proposed EA module. (b) EA module structure. 
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are identified based on the absolute difference in prediction probabili
ties between the two categories (building and non-building). Pixels with 
small differences are typically located at or near edges (Kirillov et al., 
2020). Therefore, we consider n points with the smallest differences in 
the EA module. Specifically, as depicted in Fig. 7(b), the EA module 
utilizes an attention mechanism (Dosovitskiy et al., 2021) to fuse in
formation from the edge pixels in the initial feature map F1 (containing 
more spatial details) with the corresponding pixels in the feature map F6 
(containing more semantic information) obtained after LWA. Subse
quently, the output is stacked with the edge pixels from F1, which are 
then predicted using an MLP for each point. During training, a cross- 
entropy loss is used to supervise the prediction of these points. 

4.2.5. The DASCI module 
The imbalance between the number of building and non-building 

classes can lead to biased decision boundaries of the network. There
fore, it is essential to implement class-balancing strategies to improve 
the model’s performance. The efforts to mitigate the adverse effects of 
long-tailed class distributions (i.e., class imbalance) can be categorized 
into two types: One-stage Imbalance Learning and Two-stage Imbalance 
Learning. One-stage Imbalance Learning includes resample-based 
methods (Buda et al., 2018; Chawla et al., 2002; Han et al., 2005; 
Mahajan et al., 2018; Shen et al., 2016; Wang et al., 2019), loss function 
reweighting (Cao et al., 2019; Cui et al., 2019; Huang et al., 2016; Khan 
et al., 2018; Ren et al., 2018), and transfer learning (Wang et al., 2018, 
2017; J. Wu et al., 2020a, 2020b). Resampling-based methods aim to 
either downsample the classes with more instances or upsample the 
classes with fewer instances. However, downsampling tends to reduce 
the amount of training data, while upsampling increases training time 
and leads to overfitting for minority classes. Similarly, reweighting the 
loss function during training may lead to overfitting of large-weighted 
classes and insufficient training for small-weighted classes. 

Two-stage Imbalance Learning decouples the learning of represen
tation and the classifier head (Kang et al., 2020; Menon et al., 2020; 
Tang et al., 2020; T. Wang et al., 2020a, 2020b). This type of methods 
implements the feature extraction in the first stage and correct the 

biased decision boundaries of the model in the second stage by properly 
re-balancing the classifier head or directly adjusting the prediction 
scores. However, this approach often requires intricate hyperparameter 
tuning in practice. Distribution Alignment (Zhang et al., 2021) unifies 
class-balancing paradigms in semantic segmentation and introduces 
trainable parameters that can be adjusted adaptively. However, the 
trainable parameters neglect spatial information, which is crucial for 
semantic segmentation. In this regard, (Zhang et al., 2023) proposed the 
Distribution Alignment Module with Consideration of Spatial Contex
tual Information (DASCI) to cope with this problem. Specifically, the 
network parameters are frozen after the network has achieved feature 
extraction capabilities through training. Subsequently, additional pa
rameters are trained to adjust biased decision boundaries while 
considering the spatial information. Readers can refer to (Zhang et al., 
2023) for the details of the DASCI module. 

4.3. The semi-supervised training method based on data masking 

As mentioned earlier, the lack of data in China results in a relatively 
limited number of training samples, which hinders the model’s ability to 
fully capture the characteristics of the buildings in the study area. Label- 
efficient deep image segmentation methods (Shen et al., 2023), 
including self-supervised, weakly supervised, and semi-supervised ap
proaches, are potential for generating more training samples. For 
instance, (Zou et al., 2021) refined and purified pseudo-labels to create 
trainable samples. (Ahn and Kwak, 2018; Y. Wang et al., 2020d) utilized 
class activation maps from networks trained with image-level labels to 
generate pixel-level labels. (Liu et al., 2022) leveraged the model’s 
tolerance to correct erroneous labels. In this study, during the dataset 
generation process (Section 4.1), a significant number of incompletely 
annotated building samples were collected in the ISB. Transforming the 
existing incomplete annotations (samples in the ISB) into trainable 
samples is a natural idea. Therefore, we propose a semi-supervised 
learning method based on data masking. This method masks the erro
neous parts of the ISB samples to make them invisible to the model and 
then feeds the correctly annotated portions of the samples to the model 

Fig. 8. (a) is the Google imagery, (b) is the sample from D2 (70% of ISB), (c) is the prediction of the network (BldgNet) trained on ASB data, and (d) illustrates the 
label after masking by the semi-supervised training. The second row represents the enlarged view of the yellow-boxed region in the first row. The red circles in the 
second row demonstrate the labels at the edges. 
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for training. Note that our proposed approach differs in motivation from 
existing label-efficient deep image segmentation methods (Lai et al., 
2021; Lin et al., 2016; Zou et al., 2021). The latter primarily aims to 
maintain model accuracy (compared to full supervision) while reducing 
the requirements for the precision, quantity, and annotation of existing 
samples. In contrast, our data masking algorithm aims to enhance data 
usability in a specific region (China) and make the model more 
specialized for that area. 

As shown in Fig. 8, (a) is the Google imagery, (b) depicts the samples 
from D2 (70% of ISB), (c) displays the predictions of the network 
(BldgNet) trained on ASB data, and (d) illustrates the labels after 
masking by the present method, i.e., the semi-supervised training labels. 
It can be observed that annotations in D2 exhibit omissions for buildings, 
as indicated by the red circles in the first row. Directly utilizing labels 
from D2 for network training can introduce numerous annotation errors, 
leading to a decrease in model accuracy. Therefore, it is crucial to 
identify the correct portions of the labels and mask out the mislabeled 
ones. Given that the ISB has been manually corrected, we consider the 
building annotations within it (designated as region1) to be reliable. The 

background regions (region2), consisting of x pixels around the buildings 
(region1), can be deemed correct negative annotations. The region2 is 
obtained by dilating the D2 samples with x pixels and then taking the 
difference from the original samples. Note that the priority of the 
building annotations (region1) is higher than the negative annotations 
(region2), ensuring that the dilation operation does not lead to mis
labeling the building areas as non-building. Consequently, the dilated 
region (region2) does not introduce background errors. The predictions 
of the network (BldgNet) trained on the ASB data exhibit fewer building 
omissions, as shown in Fig. 8(c). Therefore, BldgNet is used to indicate 
the incorrect areas within the background class of ISB samples, which 
should be masked out subsequently. However, its predictions to the edge 
region are relatively inaccurate. Therefore, the areas containing build
ing annotations in the prediction and the surrounding y pixels are 
designated as uncertain regions, labeled as region3. The region3 is ob
tained by dilating the prediction results with y pixels. The priority of the 
uncertain regions (region3) is the lowest, ensuring that it does not 
overwrite the accurate regions (region1 and region2). In this study, we 
leverage these three regions (region1, region2, and region3) to generate 

Fig. 9. (a) Demonstration of the grid division. (b1) Prediction results of two adjacent grids, where the red represents the prediction of grid A, the green represents the 
prediction of grid B, and the gray striped area indicates their overlapping region. (b2) Result after merging grid A and B. (c1) Enlarged view of Box 1 and Box 2 areas 
in grid A. (c2) Enlarged view of Box 1 and Box 2 areas in grid B. (c3) Enlarged view of Box 1 and Box 2 areas in the merged result. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. (a) The Google imagery. (b) The OSM building footprints. (c) The adjusted OSM building footprints. (d) The prediction of the model. (e) The fused results. 
The second and third rows display an enlarged view of the Box 1 and the Box 2 regions in the first row, respectively. The red circles in the second and third rows 
illustrate the changes before and after processing. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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semi-supervised training labels based on the following rules: 

New label =

⎧
⎨

⎩

Building = region1
Background =

(
R −

(
region1 ∪ region3

) )
∪ region2

Masked region = region3 − (region1 ∪ region2)

#

(1)  

where Building signifies the building region, Background designates the 
non-building region, Masked region denotes the areas to be masked, and 
R is the entire labeled region. In Fig. 8, the second row represents an 
enlarged view of the yellow-boxed region in the first row. It is shown 
that the new labels incorporate accurate portions from D2 samples, 
particularly near the edges. Meanwhile, the white regions 
(Masked region) represent the omissions in D2 samples identified by the 
prediction of the BldgNet (see (c)). The mask of the white regions 
eliminates misidentifications in the background of (b). The white re
gions are not involved in network training and loss function calcula
tions, thus preventing the introduction of erroneously labeled data. This 
process can effectively utilize the incomplete samples (ISB) for training, 
which is crucial in the case of scarcity of training and test samples in the 
study area (China). 

4.4. Post-processing 

Post-processing aims to refine and modify the predictive results of 
the model. It does not require additional model training and can 
compensate for deficiencies in the model’s predictions. Current research 
in large-scale building mapping (Liu et al., 2023; Z. Zhang et al., 2022b) 
has given relatively less attention to the post-processing techniques. 
Therefore, in this study, we propose a series of post-processing algo
rithms to enhance the predictive outcomes of building extraction 
(depicted in Fig. 1(c)):  

1) Overlapping Area Processing. In the large-scale mapping, models 
cannot be implemented on all the data simultaneously. Therefore, 
the regular practice is to divide the study area into grids and process 
the data grid by grid (Fig. 9(a)). However, this approach often leads 
to errors in the edge regions owing to the lack of surrounding 

Fig. 11. (a) The Google imagery. (b) The superpixel segmentation result. (c) The prediction of the network. (d) The superpixel segmentation result overlaid with the 
network prediction. (e) The result after superpixel-based fusion. (f) The result after image morphology processing. (g) The result after vectorization and topology 
checking. The second and third row provide an enlarged view for the red-boxed and blue-boxed region in the first row, respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. The result before (a) and after (b) the morphological processing.  

Table 2 
Comparison of different products in the study area.  

Dataset IoU 
(%) 

Precision 
(%) 

Recall 
(%) 

F1 score 
(%) 

90-cities-BRA(Z. Zhang et al., 
2022b) 

65.98 75.12 80.23 77.59 

CBRA(Liu et al., 2023) 55.88 61.72 74.78 67.63 
CBF(ours) 73.98 81.15 86.45 83.71  
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information. A possible solution is to consider the overlapping re
gions between adjacent grids, in order to enhance the certainty of the 
prediction in the edge areas. Specifically, in Fig. 9(b1), the prediction 
results of a grid are represented in Red (referred to as A), the results 
of its neighboring grid are indicated in Green (referred to as B), and 
their overlapping region is marked by the gray stripes. We adopt a 
union approach to merge the results of the overlapping region, and 
the fused result is shown in Fig. 9(b2). Fig. 9(c1) ~ Fig. 9(c3) pre
sents enlarged views of two boxed regions (i.e., Box 1 and 2). Fig. 9 
(c1) and (Fig. 9(c2) depict the prediction results of grid A and B, 
respectively. The third column (Fig. 9(c3)) shows their fused result. 
It can be observed that the fusion of overlapping areas can mitigate 
the omissions of the mapping results. 

2) Integration with OSM. As illustrated in Fig. 10, the OSM data accu
rately delineate the footprints for large high-rises and factories, in 

spite of conspicuous omissions in other regions. Moreover, there 
exists a slight positional offset between OSM data and the imagery, as 
shown by the red circles in Fig. 10(b). However, on the other hand, 
the position of the model’s predictions is accurate (Fig. 10(d)). 
Therefore, during the post-processing, the results of the model 
(BldgNet) and OSM are merged in a decision fusion, to leverage their 
respective strengths (Fig. 10). 

Specifically, let B = [b1, b2,…, bm] and H = [h1, h2,…, hn] represent 
the set of buildings in OSM and model prediction, respectively. For each 
building bi in OSM, we calculate its Intersection over Union (IOU) with 
each building hj in the prediction set H resulting in 
[IOU1, IOU2,…, IOUn]. The building hx with the highest IOU is regarded 
responsible for bi. Afterwards, bi is shifted within 5 pixels to generate a 
candidate set of buildings 

[
bi,1, bi,2,…, bi,25

]
, and the IOU between hx and 

each building in the candidate set is calculated, yielding 
[iou1, iou1,…, iou25], where the building with the highest IOU is 
considered as the corrected building bí. The corresponding value of IOU 
is regarded as its confidence level of the OSM building, denoted as p. If 
0.8 < p < 0.95, the union of hx and bí is used as the final prediction 
result. If 0.95 ≤ p, bí is employed as the ultimate prediction result. As 
illustrated by the red circles in Fig. 10(e), the fused result ensures both 
accurate positioning and edge precision.  

3) Superpixel Fusion. The superpixel segmentation (S. Chen et al., 
2023b; Jampani et al., 2018; Liu et al., 2018; Stutz et al., 2018) re
sults often adhere well to object boundaries. Therefore, in this study, 
a post-processing algorithm based on superpixel segmentation is 
designed to reduce building omissions and enhance edge accuracy. 
Specifically, we first use the SLIC (Liu et al., 2018) segmentation 
method to divide the Google imagery (Fig. 11(a)) into a series of 
superpixels (Fig. 11(b)). Then, the network predictions (Fig. 11(c)) 
are overlaid onto the superpixel results (Fig. 11(d)), and the ratio of 

Fig. 13. Accuracy assessment of the CBF dataset. The first row presents the accuracy scores of various metrics in each city. The second row illustrates the results for 
urban and rural areas of each city. The third row shows the evaluation for cities with different grades. The vertical axis represents the relevant evaluation metrics, 
while the horizontal axis corresponds to the city index labels. 

Table 3 
Comparison of IoU between urban and rural areas among different products.  

Dataset Urban Rural 

90-cities-BRA 66.48% 55.15% 
CBRA 59.23% 45.12% 
CBF(ours) 74.27% 70.12%  

Table 4 
IoU comparison across cities of different grades for various products.  

Dataset I II III 

90-cities-BRA 65.97% 66.07% – 
CBRA 55.46% 56.56% 48.87% 
CBF(ours) 73.05% 74.44% 68.45%  
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building pixels to the total pixels within each superpixel is calcu
lated. The superpixels with this ratio exceeding 0.5 are identified as 
buildings. From Fig. 11, it can be observed that the superpixel fusion 
algorithm can effectively improve edge accuracy (as indicated by the 
red circles in Fig. 11(d) and Fig. 11(e)).  

4) Image Morphology Processing. The image morphology processing 
techniques are further utilized to remove isolated pixels and small 
patches and fill holes. The outcome of this processing is shown in 
Fig. 11(f). To provide a clearer demonstration of the changes before 
and after processing, Fig. 12 zooms in on two black-boxed regions 
from Fig. 11(e) and Fig. 11(f). 

5) Vectorization and Topology Checking. Finally, the results are vec
torized and the topological errors are corrected manually (Fig. 11 
(g)). 

4.5. CBF dataset generation 

4.5.1. Data generation procedures 
The production process is shown in Fig. 1(d). Initially, all the samples 

from ASB were used for training, to ensure that the model (M1) can learn 
various architectural styles and achieve better generalization. Subse
quently, fine-tuning was performed using data within China (D1) to 
optimize the model (M2) and achieve superior performance within the 
study area. Finally, the network was trained using the semi-supervised 
training dataset (D2) to fully explore the characteristics of buildings, 
resulting in model M3. The CBF building footprints were generated using 
model M3 with the post-processing steps. 

4.5.2. Parameter settings 
The initial learning rate of the fully supervised training was set to 

0.001. The cosine annealing decay strategy was employed. The AdamW 
optimizer was utilized with a weight decay of 1e− 4 to optimize the 
model. The batch size was configured to 36, and the maximum number 
of epochs was set to 120. In the fine-tuning and semi-supervised training 
stages, a fixed learning rate of 1e-6 was used, maintaining consistency 
with other settings of the fully supervised stage. Data augmentation 
techniques, such as random rotation, scale transformation, and colour 
jitter, were applied across all training stages. The proposed method was 
implemented using the PyTorch framework and executed on a computer 
equipped with four NVIDIA GeForce RTX 3090 GPUs. 

4.6. Accuracy assessment 

The model performance and accuracy are validated using 
intersection-over-union (IoU), precision, recall, and the F1 score, which 
are commonly employed metrics for semantic segmentation. The con
struction of the test samples has been elaborately described in Section 
4.1, encompassing 750,000 buildings across 350 cities in China. In 
addition, the accuracy of building footprints is assessed using reference 
building density (detailed in Section 5.1). In terms of efficiency, the 
model speed is evaluated by measuring the number of images processed 
per second, denoted as frames per second (FPS). 

Fig. 14. Accuracy assessment of Building Area. (a) Overall results of the area evaluation, with the x-axis representing the reference building density and the y-axis 
the predicted building density. (b) Overall results after applying logarithmic scaling to both the x and y axes. (c) and (d) depict the results for urban and rural areas, 
respectively. (e), (f), and (g) present the overall results for cities of different levels: I (e), II (f), and III (g). (h) ~ (l) display the results for Beijing, Shanghai, Bijie, 
Haikou, and Tainan City, respectively. 
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5. Results 

5.1. Quantitative analysis 

350 cities in China, including 750,000 buildings, were used for the 
accuracy assessment. There is no overlap among the test, training, and 
semi-supervised samples. The overall IoU, Precision, Recall, and F1 
score is 73.98%, 81.15%, 86.45%, and 83.71%, respectively, repre
senting an overall satisfactory result. As compared in Table 2, the IoU 
values for 90-cities-BRA (Z. Zhang et al., 2022b) and CBRA (Liu et al., 
2023) are 65.98% and 55.88%, respectively. The first row of Fig. 13 
presents the evaluation results for each city of the generated CBF data
set. It can be observed that the IoU for the majority of cities (75%) ex
ceeds 65%. 

Compared to urban areas, rural samples are relatively scarce, with 
smaller building sizes and more complex backgrounds. Therefore, 
extracting buildings from rural areas is more challenging. Existing large- 
scale mapping results are unsatisfactory in rural areas (Liu et al., 2023; 
Marconcini et al., 2020; Sirko et al., 2021). In this study, we also used 
the urban boundary provided by (Xuecao Li et al., 2020b) to define 
urban and rural areas and conduct separate accuracy assessments. As 
shown in Table 3, the IoU of 90-cities-BRA and CBRA in rural areas is 
significantly lower than that in urban areas. In contrast, our model, 
trained on diverse samples from global regions, exhibits stronger 
generalization. Additionally, fine-tuning and semi-supervised training in 
the study area enable our method to better capture the characteristics of 
China’s buildings. This, to some extent, improves the effectiveness of 
rural mapping and reduces the gap of mapping accuracy between urban 
and rural areas. For CBF, the IoU, Precision, Recall, and F1 scores in 
urban areas are 74.27%, 81.42%, 86.54%, and 83.90%, respectively. 
The corresponding results in rural areas are 70.12%, 77.48%, 83.40%, 
and 80.33%. Meanwhile, the second row of Fig. 13 shows the results for 
urban and rural areas within each city of the CBF dataset. 

Cities of different levels exhibit variations in sample quantity and 

building morphology, leading to differences in mapping performance. 
To thoroughly assess our building extraction results across cities of 
varying levels, we categorize the cities into three grades: 

I: 21 M-cities or super-large cities according to the latest urban rat
ings from the National Bureau of Statistics (National Bureau of Statistics, 
2021). 

II: Cities with a population exceeding one million (except for grade 
I). 

III: Cities with a population equal to or less than one million. 
Table 4 presents the assessment results for different products across 

cities of various levels. Our CBF demonstrates higher accuracy in all the 
levels of cities. Building extraction from Level I cities exhibit more 
challenges compared to level II, due to a greater number of ultra-high- 
rise buildings. The level III cities are akin to rural areas, with rela
tively fewer training samples and smaller building sizes, resulting in 
lower prediction accuracy than other ones. Fig. 13, in the third row, 
shows the results for each city of our CBF product across different city 
levels. 

To further evaluate the building extraction accuracy, we divided the 
test dataset into 260,000 grids of 100 m × 100 m. The accuracy of the 
building area is assessed based on the predicted building density and the 
reference building density within each grid. Building density is the ratio 
of building area to the grid area. The overall results, as shown in Fig. 14 
(a), exhibit consistency between the predicted and reference building 
density: Mean Absolute Error (MAE) is 0.012, Root Mean Squared Error 
(RMSE) is 0.032, and the correlation coefficient (R) is 0.896. An MAE of 
0.012 implies a difference of 1.2m2 in the predicted building area 
compared to the reference building area within a 100m2 plot. In Fig. 14 
(b), the logarithmic scaling was applied to both the x and y axes for 
better distribution visualization. Fig. 14(c) and Fig. 14(d) present the 
results for urban and rural areas, respectively. The correlation coeffi
cient in rural areas is slightly lower than in urban areas. Figs. 14(e), (f), 
and (g) show the results of cities at levels I, II, and III, respectively. 
Additionally, Figs. 14(h)~(l) depict examples of cities from different 

Fig. 15. Spatial distribution of CBF. Red denotes urban building footprints, while blue indicates rural building footprints. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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levels, including Beijing (I), Shanghai (I), Bijie (III), Haikou (II), and 
Tainan (II). It can be observed that the building areas in various sce
narios are effectively reflected in the CBF dataset. 

It deserves noting that we should be cautious for the accuracy 
comparison between CBF and other building products, as they are not on 
the same benchmark. 

5.2. Overview of the CBF dataset 

Figure 15 illustrates the nationwide spatial distribution of CBF. CBF 
contains approximately 185 million buildings across China, with a total 
floor area of 598.80 billion square meters. The average spacing between 
buildings is about 8.6 m. We conducted a separate statistical analysis by 
dividing the regions into urban and rural areas based on the 2020 urban 
boundary (Xuecao Li et al., 2020b). The total building area in urban 
regions is 357.52 billion square meters, and 241.27 billion square meters 
in rural areas. The average inter-building distance in urban areas is 
around 6.9 m, and in rural areas, it is approximately 9.5 m. The total 
number of buildings is 66.7 million in urban areas and 119 million in 
rural areas. Overall, urban buildings tend to be denser and larger than 
rural ones. Note that the statistical analysis to the CBF dataset is beyond 
scope of this research, and will be investigated in future. 

6. Discussions 

6.1. Comparison with other products 

We visualized and compared different building products in various 
regions of China. Fig. 16 illustrates the three products in Chengdu City. 

The first row displays the Google imagery, the second, third, and fourth 
row exhibit the 90-cities-BRA, the CBRA, and our CBF datasets, 
respectively. Column (a) represents an overview of results in Chengdu 
city, while columns (b), (c), and (d) provide enlarged views of the black- 
boxed regions. The numerical values in the bottom right corner of each 
image denote its IoU of the predicted result. It can be observed, partic
ularly in column (b) within the red circle, that 90-cities-BRA and CBRA 
exhibit holes and significant omissions in the large buildings. This 
possibly can be attributed to the limited receptive field of these models, 
failing to adequately capture the contextual information of large 
buildings. In addition, the textures on the roofs of large buildings as well 
as the presence of other structures (such as solar panels, air conditioning 
units) further complicate the extraction. In contrast, our proposed LWA 
module can effectively capture global information, and enhance the 
model’s ability of contextual modeling. This module can significantly 
improve the extraction results for large buildings. 

In the (c) column, within the blue circles, the boundary of the 
extraction results from 90-cities-BRA is not precise enough. Our pro
posed EA module can improve this issue by extracting additional fea
tures from the edge regions. Furthermore, the post-processing method 
based on superpixels further raises the accuracy of the boundaries, as 
demonstrated in the third row of the (c) column, where the building 
boundaries align well with the reference. Simultaneously, in the yellow 
circles of the (c) column, CBRA, portrays rough edges and tends to treat 
adjacent buildings as a single entity, which might be attributed to its 
coarser spatial resolution. Due to the interference from building 
shadows or other factors, the extraction results of the (d) column 
(especially in green circles) have more fragmented spots, which can be 
mitigated by the morphological post-processing adopted in our method. 

Fig. 16. Comparison of different products in Chengdu. The first row is the Google imagery, the second, third, and the fourth row show the 90-cities-BRA, the CBRA, 
and our CBF, respectively. Column (a) provides an overview of Chengdu, with (b), (c), and (d) displaying enlarged views of the black-boxed regions. The numerical 
values in the bottom right corner indicate the IoU of the current predicted result. 
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The (d) column in red circles exhibit omission of densely packed 
buildings in other products. The omission of dense buildings might stem 
from CBRA’s lower resolution and the smaller receptive field of its 
extraction method. 

Figure 17 provides another comparative example, illustrating the 
results of Shanghai from different datasets. The red circle in Fig. 17 
highlights the omission of large buildings. Compared to 90-cities-BRA 
and CBRA, CBF (ours) exhibits more accurate extraction without holes 
or omissions. The yellow circle depicts the results of closely spaced 
buildings, showing adhesion of buildings in 90-cities-BRA and CBRA. 
The blue circle showcases the delineation of building boundaries, where 
our CBF can achieve a more precise boundary compared to 90-cities- 
BRA and CBRA. The green circle represents a false alarm in CBRA, 
which is caused by the similar textures and shapes between buildings 
and other objects in the background (e.g., parking lots). This problem 
could be effectively addressed by introducing a substantial number of 
diverse negative samples. However, the inclusion of a large number of 
negative samples can lead to imbalance between buildings and back
grounds in the training samples, making the model overly focus on non- 
building categories and thus lowering building extraction performance. 
In this regard, our approach deals with this issue by incorporating the 
DASCI module to assist the model in adjusting biased decision bound
aries (between buildings and non-buildings). 

In smaller cities or rural areas, buildings tend to be smaller, scat
tered, and embedded in complex backgrounds. Consequently, mapping 
buildings in these regions poses more challenges. Meanwhile, the 
western regions in China exhibit lower population densities than the 
eastern ones. Therefore, mapping results in these areas can further 
reflect the quality of the product. We chose Linzhi and Karamay, two 

western cities of China with populations under one million, for illus
tration. They are situated in Xizang and Xinjiang, respectively. Fig. 18 
shows the visual results for Linzhi, where the first, second, and third row 
present the results of 90-cities-BRA, CBRA, and our CBF, respectively. It 
can be seen that 90-cities-BRA did not produce mapping results in this 
region. CBRA’s results are blurred in details and boundaries ((b) and (d) 
columns, black circles) and exhibit omissions ((c) column, black circle). 
Possible explanations include: 1) in this region the roofs are spectrally 
similar with the background, confusing the model’s decisions; 2) the 
image resolution is coarse (10 m) and the size of buildings is small, and 
CBRA’s super-resolution method fails to capture spatial details 
adequately. This situation has been significantly improved in our CBF 
dataset. It can be attributed to the training strategy that combines both 
full supervision and semi-supervision, resulting in more diverse samples 
and more robust models. 

Karamay City (Fig. 19), similar to Linzhi City, exhibits clumped 
predictions and building omissions in circles (b) and (d). Furthermore, 
the predictions within the black circle in column (c) demonstrate clear- 
cut incisions, since the region’s position is located at the grid’s edge, and 
the insufficient contextual information can lead to the wrong or 
incomplete predictions. This issue can be properly resolved by our post- 
processing approach (i.e., overlapping predictions). 

6.2. Comparison with other methods 

For large-scale mapping, models need to meet requirements in both 
accuracy and speed. Therefore, we compared the accuracy and effi
ciency of different building extraction models. In this section, we 
randomly sampled 25,000 images (20,000 for training, 5000 for testing) 

Fig. 17. Comparison of different products in Shanghai. The first row is the Google imagery, the second, third, and the fourth row show the 90-cities-BRA, the CBRA, 
and our CBF, respectively. Column (a) depicts an overview of predictions in Shanghai, with (b), (c), and (d) showing enlarged views of the black-boxed regions. The 
numerical values in the bottom right corner indicate the IoU of the current predicted result. 
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from the ASB dataset for the comparison. As shown in Table 5, light
weight models (i.e., models with lightweight designs) such as Top
Former (W. Zhang et al., 2022a), EdgeFormer-S (Pu et al., 2022), and 
Segformer-B3 (Xie et al., 2021) achieve an IoU over 62% with >100 FPS, 
showing a good balance between accuracy and efficiency. However, 
these networks are not specifically designed for building extraction, 
resulting in subpar performances. On the other hand, conventional 
models like ST-UNets and HRFormer, while superior in accuracy, lack 
lightweight design, making their operating speed unsuited for large- 
scale mapping. BldgNet achieves an IoU of 72.84% at a relatively 
higher speed. Compared to lightweight models (e.g., MobileNet, Effi
cientNet), our model notably improves the metric of recall. Meanwhile, 
compared to models with a larger number of parameters (e.g., 
HRFormer, ST-UNets), our proposed BldgNet achieves a comparable 
level of precision but has a much faster computation speed (i.e., much 
smaller FPS). FPS is measured using an Intel(R) Xeon(R) Silver 4114 
CPU, 3 NVIDIA RTX 3090 GPUs, and the maximum batch size it can 
afford. Furthermore, when the model is applied to high-resolution large- 
scale mapping, hundreds of epochs and billions of image patches are 
required for training and prediction. Consequently, the difference of 
efficiency can be substantially large among different models. For 
example, it took 7 days to complete China’s building mapping using our 
model, whereas it would take three to four months using the HRFormer. 
However, it should be noted that while the efficiency of the method 
presented in this paper is advantageous, the degree of its efficiency 
advantage may become less significant with an appropriate increase in 
computational power in the future. 

We visually compared the results of the aforementioned methods on 
the test dataset. As illustrated by the blue circles in Fig. 20, the pre
dictions of the lightweight network may overlook smaller buildings or 

those situated at the patch’s edge, and have less accuracy in delineating 
building edges. Moreover, these results often exhibit scattered false 
alarms. This suggests that the lightweight networks struggle to meet the 
accuracy standards for large-scale mapping. It also underscores the 
importance of the modules proposed in this study, which aim to enhance 
model performance while minimizing the computational burden. 

6.3. Effects of the proposed method 

The efficacy of different modules in the proposed BldgNet is analyzed 
using the experimental dataset aforementioned (25,000 images). The 
results (as shown in Table 6) indicate that LWA and EA modules increase 
the IoU by 2.04 and 0.94 at the cost of decreasing 19 FPS and 6 FPS, 
respectively. DASCI can raise the IoU by 2.09 without affecting model 
FPS, but it requires an additional 1–10 epochs for training. Furthermore, 
to evaluate the effects of model training, we assessed the accuracy of the 
prediction results with different training datasets using the test dataset 
(750,000 buildings in 350 cities), as shown in Table 7. As defined in 
Section 4.4, M1 represents the model trained on ASB data, M2 represents 
the model fine-tuned in the study area, and M3 represents the model 
with the semi-supervised training. It is observed that the semi- 
supervised training contributes most to the accuracy gain, showing 
that the large amount of incomplete samples from the OSM are benefi
cial for the large-scale building extraction. 

6.4. Accuracy of ASB Samples 

Given the significance of the sample accuracy, this section delves 
into the relevant factors in the sample production process that could 
influence the sample accuracy. 

Fig. 18. Comparison of different products in Nyingchi. The first, second, and third row present the results of 90-cities-BRA, CBRA, and our CBF, respectively. Column 
(a) provides an overview of Linzhi, with (b), (c), and (d) showing enlarged views of the black-boxed regions. The numerical values in the bottom right corner indicate 
the IoU of the current predicted result. 
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1) Division between ASB and ISB. Impervious surfaces and buildings are 
not synonymous. Impervious surfaces contain buildings and other 
associated features (roads, squares, etc.). Consequently, a larger 
threshold δ may result in misclassification of ISB samples (missing 
part of the buildings) into ASB, whereas a smaller δ may leads to 
misclassification of eligible samples into ISB. However, in this study, 
both cases can be appropriately dealt with through the proposed 
sample construction process. Specifically, on the one hand, we 
enhance the quality of the ASB by eliminating the unqualified sam
ples from the initial ASB through intensive visual inspection. On the 
other hand, the division of ASB (qualified and complete) samples 
into ISB (incomplete) does not trigger errors in the proposed semi- 
supervised sample construction process. Therefore, the un
certainties can be effectively controlled and suppressed during the 
sample construction process. With regard to the threshold, a large 
value can retain more ASB samples but entail high labor intensity to 
screen out incorrect samples. In contrast, a small value may yield 

fewer ASB samples, and weaken the sample diversity, yet reduce the 
workload for manual inspection.  

2) How to control manual errors during sample production. In this 
study, we dedicated significant effort to ensure the accuracy of the 
sample datasets. 70 experienced interpreters (specialized in remote 
sensing) were involved in screening samples for the initial ASB, 
spending more than five months. To ensure sample accuracy, we 
established stringent criteria, i.e., only samples with no building 
footprint omissions, offsets, distortions, and false alarms were 
considered as candidates. In this way, approximately 800,000 ac
curate samples (about a 5% pass rate) were selected from a pool of 
15.92 million samples (each sample is a 512 × 512 image patch) 
worldwide. Furthermore, to further minimize errors, each sample 
should be confirmed by two interpreters before being considered as 
an ASB candidate sample. Additionally, all candidate samples are 
checked by an administrator before being designated as ASB 
samples.  

3) Validation of ASB sample accuracy. To further assess the accuracy of 
the samples generated through the proposed process, we conducted 
additional sample accuracy assessment. Specifically, 300 samples (in 
512 × 512 patches) were randomly chosen and manually annotated 
to evaluate the accuracy of the samples. The results are presented in 
Table 8. As depicted in the table, the sample accuracy is remarkably 
high, and close to the level of manual annotation, thus satisfying the 
sample requirements for deep learning. 

6.5. Accuracy of ISB Samples 

As aforementioned, a large quantity of ISB samples are collected, 
which is crucial for strengthening the diversity and quality of the sam
ples for large-scale building footprint mapping. However, manually 
correcting such a vast number of ISB samples is impracticable. Conse

Fig. 19. Comparison of different products in Karamay. The first, second, and third row present the results of 90-cities-BRA, CBRA, and our CBF, respectively. Column 
(a) provides an overview of Karamay, with (b), (c), and (d) showing enlarged views of the black-boxed regions. The numerical values in the bottom right corner 
indicate the IoU of the current predicted result. 

Table 5 
The comparison of accuracy and speed among different models.  

Method IoU 
(%) 

Precision 
(%) 

Recall 
(%) 

FPS 

TopFormer-B(W. Zhang et al., 
2022a) 

63.71 86.57 71.38 276 

EdgeFormer-S(Pu et al., 2022) 62.45 84.53 72.92 182 
Segformer-B3(Xie et al., 2021) 66.49 88.73 72.65 113 
MobileNet(Howard et al., 2019) 62.73 84.92 70.65 172 
EfficientNet(Tan and Le, 2019) 61.84 78.86 74.21 125 
ST-UNets(He et al., 2022) 73.82 86.24 83.75 10 
HRFormer(Yuan et al., 2021) 74.15 85.85 84.41 18 
UNet(Ronneberger et al., 2015) 70.36 84.16 81.28 68 
HRNet(J. Wang et al., 2020c) 71.24 87.18 79.71 65 
BldgNet(ours) 72.84 85.49 83.33 88  
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quently, this study designs a semi-supervised sample construction 
scheme. Specifically, an ISB sample can be divided into two regions, i.e., 
the regions with building footprints and the ones without building 
footprints. In the building regions, the footprints are visually inspected 
to ensure completeness and absence of offset and distortion. In the re
gions without building footprints, we utilize the prediction results of 
BldgNet to label these areas as missing regions, enabling the model not 

to learn from these regions. As the prediction results of BldgNet are 
solely used for masking samples but not for network learning, and it 
holds the lowest priority in the semi-supervised sample generation 
process (compared to region1 and region2), the impact of the errors from 
its prediction results can be effectively suppressed. 

To quantitatively assess the accuracy of ISB samples and semi- 
supervised training samples (SST), we randomly selected and manu
ally annotated 300 samples (in patches) for accuracy assessment. The 
results are presented in Table 9. The high precision of SST suggests that 
the proposed semi-supervised sample generation method can effectively 

Fig. 20. Visualization results of different models on the test dataset. (a) Image. (b) Label. (c) TopFormer-B. (d) EdgeFormer-S. (e) Segformer-B3. (f) MobileNet. (g) 
EfficientNet. (h) ST-UNets. (i) HRFormer. (j) UNet. (k) HRNet. (l) BldgNet(ours). The numbers 1 and 2 indicate the first and second examples, respectively. 

Table 6 
Results of the module ablation experiment.  

LWA EA DASCI IoU(%) FPS 

× × × 67.77 103 
√ × × 69.81 94 
√ √ × 70.75 88 
√ √ √ 72.84 88  

Table 7 
Accuracy of prediction results with different training 
strategies. M1 represents the model trained on ASB data, 
M2 represents the model fine-tuned in the study area, 
and M3 represents the model with the semi-supervised 
training.  

Model IoU(%) 

M1 71.36 
M2 71.92 
M3 73.15 
M3 + Post-processing 73.98  

Table 8 
Results of ASB accuracy evaluation in different regions.  

Region IoU(%) Precision(%) Recall(%) F1 score(%) 

Europe 94.48 95.07 94.60 94.83 
North America 95.22 95.55 95.74 95.65 
South America 92.66 95.57 96.83 96.20 
Africa 94.63 90.71 94.50 92.56 
Asia 89.93 90.18 96.09 93.04 
Oceania 94.60 96.04 96.00 96.02  

Table 9 
Accuracy of ISB and SST samples.  

Dataset IoU(%) Precision(%) Recall(%) F1 score(%) 

ISB 35.27 90.04 36.71 52.15 
SST Samples 86.05 90.04 95.10 92.50  
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extract accurate building samples from ISB. Meanwhile, the recall of SST 
samples is 95.10%, which is 58.39% higher than the original ISB, 
signifying that the semi-supervised method can effectively mask the 
building omission regions of ISB samples by leveraging the BldgNet 
predictions. 

6.6. Robustness of the proposed model 

To evaluate the robustness and fitting ability of the proposed model, 
we varied the number of training samples from the ASB dataset and 
assessed the model’s accuracy on the test set (the same dataset used for 
evaluating CBF). The results are depicted in Fig. 21. It can be observed 
that as the number of samples increases, the model accuracy rises. 
However, the accuracy increments diminish as the number of samples 
continues to increase. This result can be served as a reference for 

constrcuting the large-scale building sample set. 
Here we discuss the effects of the scaling-up strategy. Specifically, we 

vary the number of layers of the Transformer Block to obtain 3 models of 
different sizes. BldgNet-small indicates that the number of layers of the 
four Transformer Blocks in the encoder is 3, 4, 6, and 3, respectively. 
BldgNet-base represents that the number of layers is 3, 4, 18, and 3, and 
BldgNet-large indicates that the number of layers is 3, 8, 27, and 3 in 
order. The results (see Table 10) show that model scaling-up can 
improve the model accuracy at the expense of efficiency. BldgNet-base 
can significantly enhance the model accuracy (an increment of 2.7% 
for the IoU) relative to BldgNet-small, although the former also increases 
the model parameters and running time. On the other hand, however, 
BldgNet-large substantially increases the model complexity and runtime 
relative to BldgNet-base, but does not significantly improve the model 
accuracy (<0.2%). Therefore, in this study, we adopt the BldgNet-base 
by comprehensively considering the efficacy of the models. 

6.7. Limitations and future directions 

Although we use sub-meter imagery (0.5 m) as input, there are still a 
few closely connected urban villages identified as a whole (Fig. 22(a)). 
We attempted to segment them into individual buildings by considering 
the variations of image gradients(Comaniciu and Meer, 2002), as shown 
in Fig. 22(b). However, this method requires manual adjustment of 
parameters and is difficult to apply on a large scale. This issue might 
result in a slight underestimation of the number of buildings in CBF. 
Moreover, based on the CBF dataset, building attributes, such as time 
and height, can be estimated with additional relevant datasets (e.g., 
GISA(Global Impervious Surface Area(Huang et al., 2021)), CNBH 
(Chinese Building Height(Wu et al., 2023)). In the future, it is possible to 
retrieval high-precision building time and height information. 

In rural areas, extracting scattered, small-sized buildings is chal
lenging. As discussed in Section 5.1, the accuracy of CBF is lower in rural 
and Type III cities compared to other areas. This can be attributed to the 
fact that OSM data predominantly covers urban regions, resulting in 
fewer samples available for rural and Type III cities. In future research, 
we aim to strengthen the quantity and quality of samples in these re
gions. Moreover, in this study, we utilized an existing impervious sur
face product (GISA) to mask non-building areas (e.g., deserts, lakes) to 
expedite the mapping. However, this approach may overlook a small 
number of buildings. Therefore, in future, we also plan to involve all the 
high-resolution imagery of the study area, in order to eliminate the 
potential omissions. 

Fig. 21. Accuracy of the model with different sample sizes.  

Table 10 
The efficacy of different models with different scaling-up strategies.  

Method IoU(%) Params(M) FPS 

BldgNet-small 70.16 29.7 102 
BldgNet-base 72.84 49.5 88 
BldgNet-large 73.01 66.3 69  

Fig. 22. Examples of buildings that are misconnected in the prediction results. (a) Original prediction result. (b) Processed result. (c) Google imagery.  
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7. Conclusion 

In this paper, we generated the CBF (China Building Footprint) 
dataset, which is the first open-sourced sub-meter building footprint 
data of China. A large amount of diverse and high-quality training 
samples are crucial for achieving accurate building extraction over a 
large-scale study area (e.g., China). Therefore, in this study, a semi- 
automated procedure was proposed for constructing a global building 
sample dataset (GBD). This dataset can serve as a valuable sample 
resource for building mapping worldwide. 

From the perspective of technologies, we proposed a framework for 
accurate and robust building extraction, and offered applicable solutions 
for the difficulties and challenges faced by deep learning based building 
extraction over a large scale. Therefore, the proposed BldgNet included a 
series of novel modules: The LWA (Large Window Attention) module 
improves the acquisition of global and contextual information, thereby 
improving the extraction performance of buildings with different sizes. 
The EA (Edge Attention) module improves the extraction of building 
boundaries, and the DASCI (Distribution Alignment Module with 
consideration of spatial contextual information) alleviates the issue of 
foreground-background imbalance. The experimental results also 
demonstrated that the proposed BldgNet can achieve a balance between 
accuracy and efficiency. 
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