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Abstract—In this paper, we propose a hyperspectral image
anomaly detection model by the use of background joint sparse
representation (BJSR). With a practical binary hypothesis test
model, the proposed approach consists of the following steps.
The adaptive orthogonal background complementary subspace is
first estimated by the BJSR, which adaptively selects the most
representative background bases for the local region. An unsu-
pervised adaptive subspace detection method is then proposed
to suppress the background and simultaneously highlight the
anomaly component. The experimental results confirm that the
proposed algorithm obtains a desirable detection performance and
outperforms the classical RX-based anomaly detectors and the
orthogonal subspace projection-based detectors.

Index Terms—Anomaly detection (AD), hyperspectral imagery,
joint sparse representation (JSR), robust background estimation.

I. INTRODUCTION

H YPERSPECTRAL images (HSIs) [1], [2] span the vis-
ible, near-infrared, and mid-infrared portions of the

spectrum (0.4–2.5 µm) in many contiguous and very narrow
spectral bands (normally about 0.010 µm wide per band). The
significant information about the spectral characteristics of the
materials in the hyperspectral scene can be potentially used to
exploit and discriminate different objects on the basis of their
unique spectral signatures. This discriminative capability has
led to two major applications: 1) classification [3], [4]; and
2) target detection [5]–[8]. Anomaly detection (AD) [9], [10]
is a special case of the latter application, in which no a pri-
ori information about the spectra of the targets of interest is
available [9]. In the literature, the most well-known bench-
mark AD method is the Reed–Xiaoli (RX) [11]–[13] algorithm,
which assumes a multivariate Gaussian distribution for model-
ing an optical image, and is a constant false alarm rate (CFAR)
[10] adaptive method [11]. As a promising technique, AD has
been widely used in many applications, such as detecting crop
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stress locations in precision agriculture, rare minerals in geol-
ogy, oil pollution in environmental research, landmines in the
public safety and defense domain, and man-made objects in
reconnaissance and surveillance applications [14].

Considering the complicated remote sensing background
scene, the large number of possible objects of interest, and
the uncertainty, AD still faces some obstacles. First, the way
of defining a target of interest is ambiguous, as some pix-
els detected as a target in a local region will belong to the
background in a global view. Second, the burdensome con-
struction of an accurate model of the complicated background
exacerbates the difficulty of the extraction of anomalies, as the
background model cannot be precisely obtained by single- or
multiple-Gaussian models. Moreover, with the limitation of the
spatial resolution, subpixel objects are a fundamental challenge
for AD in HSIs. In recent years, various approaches have been
developed to deal with these problems. Carlotto [15] utilized
a Gaussian mixture model (GMM) [10] and clustered all the
pixels into several subspaces to detect man-made objects and
changes in the scene. Developed from the linear mixing model
(LMM) [16]–[18], an orthogonal subspace projection (OSP)
method has also been introduced in an unsupervised manner
[17], such that the background components can be suppressed
via OSP to improve the AD performance. Moreover, some non-
linear detectors, such as kernel RX [18], support vector data
description (SVDD) [19], and so on, have also been proposed
to handle the nonlinear separability of hyperspectral data.

Sparsity of signals, an emerging and extremely powerful
tool in many classical signal processing applications [20]–[22],
denotes that most natural signals can be compactly represented
by only a few coefficients in a certain basis or dictionary,
with almost no performance loss [23]–[25]. With the devel-
opment of compressed sensing (CS) [26] and sparse coding,
this approach has been applied in many different computer
vision and pattern recognition applications [7], [27]–[30]. With
respect to some bases with meaningful semantic information,
the similar high-dimensional natural signals can be assigned to
a low-dimensional subspace, which can nonlinearly extract the
desirable sematic information for the subsequent decision and
analysis. The use of sparsity as a constraint often leads to state-
of-the-art performance, since the CS theory ensures excellent
recovery of the sparse signal. For hyperspectral target detection,
Chen et al. [7] constructed two subdictionaries from the back-
ground and the target prior, and set the target detection problem
as a special binary sparse representation classification (SRC)
[27] task, under the assumption that the background and target
should be distributed in two different subspaces.
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Our major concern in this paper is the hyperspectral AD
problem, and we propose a relaxed binary hypothesis model
with the natural highly redundant prior of the background and
the low-rank characteristic of the HSI. Considering the compli-
cated land-cover distribution of HSIs, the statistical assumption
is often ideal and the estimation of the background is hard to
determine [16]. In the proposed method, the pixels in a local
neighborhood with similar spectra are assumed to belong to
limited subspaces, which belong to the dictionary constructed
under the highly redundant background prior. If the center test
pixel is anomalous, the active dictionary bases used to simul-
taneously represent the surrounding background pixels should
be dissimilar to the center anomaly. On the other hand, when
the center pixel is a normal one, it can be predicted by the
aforementioned active bases. By comparing the reconstruction
results, an unsupervised adaptive subspace detector is proposed
to check whether there is any salient difference and judge
whether the center pixel is an anomaly or not. The robust back-
ground estimation is effectively implemented by the use of the
simultaneous sparsity constraint, and ensured by the low-rank
prior of the local neighborhood, as theoretically analyzed in
[31]. In view of this, the center test pixel can be linearly rep-
resented by the selected background subset, if and only if a
nonignorable component of the center test pixel also belongs
to the subspace spanned by the selected background subset.
Based on the robust background estimation property, the pro-
posed local AD method is named “background joint sparse
representation detection” (BJSRD).

We next introduce the relationship between the proposed
method and the other hyperspectral anomaly detectors. The
overcomplete background dictionary in the proposed algorithm
contains multiple background subspaces, which flexibly select
the underlying bases for the local neighboring pixel set, and can
effectively and simultaneously detect multiclass anomalies in a
complicated background. The cluster-based anomaly detector
(CBAD) [15], which utilizes a GMM to characterize the spec-
tral pixels from nonhomogeneous and multicomponent scenes,
is strictly dependent on the previous clustering procedure, and
is limited in real time. The OSP-based algorithms [20], [34]
often roughly divide the data into one background subspace and
one target subspace, and cannot adequately analyze the patterns
of each kind of land cover. Moreover, unlike the other detec-
tors based on statistical hypothesis testing, the sparsity model
in the proposed approach has the flexibility of modeling the
complicated characteristics of the background of the HSI.

Compared with the sparsity model-based hyperspectral target
detection method in [7], significant differences can be found as
follows. First, the algorithm in [7] employs supervised target
detection, a binary classification case based on the collabora-
tive representation (CR) mechanism [32] of the well-known
sparse representation classifier in [27]. However, the proposed
method refers to unsupervised AD, which is based on the
high-background redundancy of the HSI scene. The second dif-
ference is the dictionary learning stage. In fact, the BJSR step
of the proposed AD method is equivalent to a dictionary learn-
ing approach which aims at pruning the original dictionary and
adaptively obtaining the distinct background one, with an adap-
tive noise baseline. The target detection approach in [7] also

uses the classical K-SVD [33] method to learn the dictionary,
due to the computational efficiency.

This paper is organized as follows. Section II briefly reviews
sparse representation (SR) and joint sparse representation (JSR)
for HSIs. Section III proposes the BJSRD method for hyper-
spectral imagery. The experimental results of the proposed
algorithm are given in Section 4. Finally, Section 5 concludes
the paper.

II. BRIEF REVIEW OF RELATED WORKS

A. SR

In a sparsity model, it is assumed that a signal can be approx-
imated by a sparse linear combination of elements from a
basis set or dictionary. A hyperspectral signal can be denoted
as s ∈ R

B , where B is the number of bands. Given a matrix
A ∈ R

B×N with B � N as an overcomplete dictionary, it is
believed that the signal s can be approximately represented by
multiplying the dictionary A with a sparse vector α, in which
only a few entries are nonzero. The sparse vector α can be
obtained by solving the following optimization problem:

α = argmin ‖Aα− s‖2 s.t. ‖α‖0 ≤ K0 (1)

where K0 is the given upper bound of the sparsity level. It is
clear that these aforementioned problems are NP-hard. In gen-
eral, there are two effective ways of solving these problems:
the greedy pursuit-based algorithms [34], [35] and the �1-norm
convex relaxation algorithms [36]–[38].

B. JSR

For a hyperspectral scene, the majority of the neighboring
pixels in a local patch usually consist of similar materials.
All the similar pixels can be jointly represented in the same
low-dimensional feature subspace with different compact coef-
ficients [39]. Tropp et al. [35] noted that a simultaneous sparse
approximation problem requires a good approximation of sev-
eral input pixels at once, using different linear combinations
of the same elementary signals. This kind of approximation
problem can be solved by the joint sparsity model (JSM) [40].

For a hyperspectral patch S = [s1 s2 . . . sn] ∈ R
B×n, it can

be reconstructed under the JSM with the B ×N structured
dictionary A

S = [s1 s2 . . . sn] = [Aα1 + ε1 Aα2 + ε2 . . .Aαn + εn]

= A [α1 α2 . . .αn]︸ ︷︷ ︸
Ψ

+Σ = AΨ+Σ (2)

where Ψ is the set of all the sparse coefficient vectors
{αi}i=1,...,n, n is the number of pixels in the patch, and Σ
is the model error matrix. In the JSM, it is assumed that all
the columns {si}i=1,...,n share a common sparsity pattern,
which means that these signals are located in the same low-
dimensional subspace of the dictionary. It is believed that the
low-dimensional subspace spanned by the active atoms of A is
the most informative and distinct base for S, and Σ physically
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represents the noise level of the patch. The optimization model
corresponding to (2) can be expressed as

Ψ = argmin ‖AΨ− S‖F , s.t. ‖Ψ‖row,0 ≤ K0 (3)

where ‖•‖row,0 denotes the number of nonzero rows of Ψ. The
optimal solution Ψ is a row-sparse matrix with L nonzero rows.
For the different solutions to the optimization model (3), please
refer to [35], [41].

C. RX AD

Based on the assumption that HSI data can be represented
by a multivariate normal (Gaussian) distribution, Reed and Yu
[11] proposed the well-known RX anomaly detector. Denoting
the pixel after subtracting the mean value from each one as sc,
the two competing hypotheses of the RX algorithm are

H0 : sc = e, Anomaly absent

H1 : sc = at+ e, Anomaly present (4)

where a = 0 under H0, an d a > 0 under H1. e represents
the background clutter noise process, and t is the spectral sig-
nature of the anomaly target. Both the target signature t and
background covariance Cb are unknown, and the model of (4)
assumes that the hyperspectral data arise from two normal prob-
ability density functions with the same covariance matrix but
different means. In general, a more appropriate model should
have different covariance structures, considering the multiple
kinds of background and the complicated anomaly spectra. For
this classical anomaly detector, the RX algorithm converges to
a simple version

RX(sc) = (sc − μ�)
′
R
�−1

(sc − μ�) >H1

<H0
η (5)

where η is the threshold of the test, R
�

is the background covari-
ance matrix estimated from the reference background clutter
data, and μ� is the estimated background sample mean.

III. PROPOSED FRAMEWORK

In this section, we first review the spatial window setting
for the local AD method [10], and we then describe the pixel
detection processing in detail.

A. Dual Spatial Window Setting

For the dual windows shown in Fig. 1, the test pixel is colored
in red, and the guard window sized g2 is colored in light orange.
The dual windows are effective in preventing some potential
target pixels becoming mixed with the outer neighboring pixel
set. On the outside of the guard window, we set a local neigh-
boring window (colored in blue) with n = b2 − g2 pixels. The
possible cases for this pixel set can be categorized as: 1) all the
pixels in this local neighboring pixel set are background, and
they consist of a few types of land cover; 2) the majority of the
pixels, except for one or two anomalous pixels, are background;
and 3) the majority or all the pixels are anomalies, which is

Fig. 1. Dual windows used in the proposed method.

believed to never happen in reality, due to the low probabil-
ity of anomaly pixels in the hyperspectral scene. Therefore, the
proposed AD method, which utilizes the local dual window set,
focuses on the first two cases.

B. Proposed AD Method for the Center Test Pixel

For the test pixel, we first construct the spatial window,
as described in Section III-A, and we then set the center
pixel as sc ∈ R

B and the local neighboring pixel set as S =
[s1 s2 . . . sn] ∈ R

B×n.
For the proposed AD method, the hypothesis test is

H0 : sc = Bαb + e, Anomaly absent

H1 : sc = Bαb + t+ e, Anomaly present (6)

where B is the background basis matrix to sc, αb is the asso-
ciated background coefficient vector, t is the unknown anomaly
component of sc, and e is the random noise with low energy,
which is complicated in real HSIs. When the H1 case holds,
it is believed that there is some unignorable anomaly compo-
nent t in sc. In this way, the H1 hypothesis can be rewritten as
sc = Bαb + m, where m is mixed with the noise and anomaly
component, which occupies an unignorable energy part of the
test pixel. In view of this, the main issues under the hypothesis
test are two aspects: 1) background basis matrix B construc-
tion with the unsupervised information; and 2) the evaluation
criteria for the judgment of the aforementioned “unignorable”
contribution. In the proposed method, the first term is handled
by the BJSR process, and the latter problem is addressed by a
combination of the following procedures (Fig. 2).

1) Robust BJSR: Background estimation and suppression
techniques [3], [42]–[44] have been studied for a long time,
but they are often sensitive to the following judgment proce-
dures. To judge whether the center pixel is abnormal or not,
the most straightforward idea is to predict it with its surround-
ing pixels in the outer window, and a successful prediction can
be expected when only the background information contributes
to the prediction of the center pixel. However, as the local
neighboring pixel set S may be mixed with several potential
abnormal signatures, such decision-making hardly suggests a
desirable AD performance. In view of this, we propose an adap-
tive background basis matrix construction method by the use
of the BJSR, which adaptively estimates the local background
information of the center pixel.

We first construct the overcomplete dictionary from the
hyperspectral scene for the BJSR to linearly represent the local
neighboring pixel set S = [s1 s2 . . . sn] ∈ R

B×n. We stack all
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Fig. 2. Schematic illustration of BJSR for hyperspectral AD. For a pixel to be tested, we first construct the joint signal matrix from pixels surrounding the guard
window, which is used to prevent the potential target pixels from mixing in this local background characterization. The local neighboring pixel set S contains n
columns, where n is the size of S. All the atoms of the overcomplete dictionary H for the JSR are the raw hyperspectral pixels in the scene. First, the matrix S
is sparsely reconstructed by the dictionary H with an acceptable tolerance error matrix Σ. We then select the atoms acting as active bases in the aforementioned
SR and consider them as the most informative spectral components of this local neighboring pixel set. Utilizing these active components to linearly represent
the center test pixel, we obtain the prediction result with a residual vector ξ. We compare these two residual energies and determine whether the center test area
contains any anomaly component or not.

the pixels in the scene as a matrix H ∈ R
B×H , in which

H is the number of pixels, and B refers to the number of
spectral bands. Assuming that there are Cbn categories of back-
ground materials and Ctn categories of anomaly targets, the
columns of the matrix H are reordered by category, without
loss of generality. In view of this, the matrix can be shown as
H = [BCb1

. . .BCbn
TCt1

. . .TCtn
], where BCbi

contains Nbi

background pixels belonging to category Cbi (bi = b1, . . . , bn),
TCti

contains Nti target pixels belonging to category Cti

(ti = t1, . . . , tn), and H =
∑bn

bi=b1 Nbi +
∑tn

ti=t1 Nti. That
is to say, there are Cbn + Ctn low-dimensional subspaces
associated with the respective land-cover types in the hyper-
dimensional space spanned by H.

Some representative cases of the background information
from the local scenario S are analyzed and shown in Fig. 3.
For simplicity, the noise components of S [as in the instance of
Fig. 3(d)] are assumed to be subtracted in advance, and then the
detailed distribution of each class cluster in each case is shown
in the associated subfigure.

Case 1: Only background pixels in S, as in Fig. 3(b).
Selection of the representative spectral components
of S can reach the desired goal for background
estimation.

Case 2: A nonnegligible anomalous cluster in the local sce-
nario S, as shown in Fig. 3(c). Considering the very
small size of the anomaly panel, this case can never
happen in reality.

Case 3: Several anomaly pixels implanted in the surround-
ing background cluster, as shown in Fig. 3(e). In
this case, reducing the influence of these unexpected
anomalies is required for an acceptable background
estimation step.

To sum up the potential cases of S, it is suggested that
a robust background estimation calls for dealing with the

Fig. 3. Illustration of different cases of the local neighboring pixel set
S. (a) False-color map of S. (b) Only background land cover consti-
tutes S. (c) Background land cover and a nonnegligible anomalous cluster
in S. (d) Random noise components of the local scenario. (e) Similar compo-
sition to (b), except for a few anomaly pixels implanted in certain background
spots.

cases in which there are some existing anomaly pixels in the
surrounding neighborhood. We therefore introduce a robust
background estimation method based on a sparse constraint.
Suppose a column of S named sj (j = 1, . . . , n) belongs to
class Cbi, then it can be compactly represented by a linear
combination of the pixels of BCbi

sj = BCbi
βCbi,j + ξj (7)

where βCbi,j is an unknown Nbi-dimensional coefficient vec-
tor, and ξj is the random noise. Since there is no prior for
judging the label of the pixel sj as Cbi to remove the anomaly
target subdictionaries from the matrix H, we utilize H as the
overcomplete dictionary to solve the sparse coefficient vector
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TABLE I
PROPOSED BJSRD ALGORITHM FOR HSI

βj , with respect to the dictionary, and the optimization problem
can be given by

βj = argmin ‖Hβj − sj‖2, s.t. ‖βj‖0 ≤ l (8)

where l is the predefined sparsity level.
To avoid a trivial solution to (8), all the pixels in the local

window sized b× b are removed from H. In addition, utilizing
pixels in a local search window instead of the whole scene is
more suitable in practice, as the local similarity suggests more
stability in the joint representation step, as analyzed in detail
in [32]. In the following part, we still take “H” as the original
dictionary.

Similar to the pixel sj , all the other pixels in the local
neighboring window can also be sparsely represented by
the overcomplete dictionary H, shown as S = [s1 . . . sn] =
H [α1 . . .αn] + [ξ1 . . . ξn]. Since the local neighboring win-
dow contains only one or a few kinds of background categories,
it is assumed that all the pixels in the local neighboring window
can be linearly represented in the same low-dimensional feature
subspace with different compact coefficients, where this sub-
space can be associated with a background subdictionary B̃Cbi

or a combination of a few background subdictionaries. In this
way, the local neighboring pixel set S can be better represented
under the JSM

Ψ = argmin ‖HΨ− S‖F , s.t. ‖Ψ‖row,0 ≤ L (9)

where Ψ is the set of all the sparse coefficient vectors
{α̃i}i=1,...,n, and L denotes the upper bound of the number
of nonzero rows of Ψ. In this paper, we utilize simultaneous
orthogonal matching pursuit (SOMP) [35] to obtain the row-
sparse coefficient matrix Ψ, the residual matrix Σ, as well as
the active atom subset Ã of H, as shown in Table I. Considering
the low probability of target pixels, it is mentioned again that
the principal component of S must surely belong to the back-
ground. Based on the JSM, it is natural that the atoms of Ã
effectively reflect the characteristics of the feature space asso-
ciated with the principal background components of S, which
are robust in dealing with the case where S includes only one
or two anomaly pixels, and can elegantly handle the cases in
Fig. 3(b), (e), and (f). That is to say, the subset Ã, which filters
out the bases associated with the underlying anomaly subspaces

and the irrelevant background subspaces from the original over-
complete dictionary H, is the adaptive background basis set to
the central test pixel sc, and is equivalent to B in (6).

By the use of SOMP, the characteristics of Σ can be
denoted as

Σ = S− ÃΨ = S− Ã

((
Ã
)T

Ã

)−1(
Ã
)T

S

=

(
I− Ã

((
Ã
)T

Ã

)−1(
Ã
)T

)
S = P⊥

BS (10)

where P⊥
B represents the background orthogonal complemen-

tary subspace. As the majority of S is background land cover,
the average energy of Σ reflects the noise level of this neighbor-
hood, and the contribution of the potential anomaly component
in the neighborhood can be smoothed.

To select the active set from H, the stopping criterion of
SOMP contains three parameters. First, the upper bound of the
joint sparsity level L is related to the intrinsic dimension of the
hyperspectral scene, which is low rank (as discussed in [45]).
For the background estimation, it is believed that L plays the
dominant role, and the final residual threshold should be robust
over a wide reasonable range. In addition, it should be men-
tioned that the residual is proportional to the noise of the scene,
and the reference scopes of these parameters may require some
adjustment, according to the specific quality and the content
of the hyperspectral image. The detailed characteristics of the
parameters, as illustrated by the experiments, are described in
Section III-B2.

2) Anomaly Detector Construction: We next analyze the
characteristics of the center pixel sc, based on the active dic-
tionary atoms selected by the BJSR in the last step. Induced
from the orthogonality utilized in each iteration of SOMP, each
atom of Ã can be considered as the most representative basis of
the local neighboring pixel set. In this way, the linear projection
(LP) by the use of Ã can be shown as

sc = Ãα̃+ ξc (11)

where α̃ denotes the fractional abundance of the most rep-
resentative spectral component, and ξc denotes the tolerance
error. For simplicity, the unconstrained LP is utilized as (10).
Since Ã is an adaptive subdictionary selected from H, such an
unconstrained LP approach should induce a sparse and superior
solution, as suggested in [32], [46]. To minimize the uncon-
strained LP error, it can be determined using a least-squares
solution ξc = sc − Ãα̃ = P⊥

Bsc.
For the proposed AD algorithm, the different cases can be

analyzed as follows:
Case 1: sc contains no anomalies, and the H0 hypothesis

holds. Considering the spatial correlation of sc with
its surrounding neighboring background, sc can be
successfully reconstructed by (11), and ξc denotes
the noise, which is similar to the atoms of Σ. That is
to say, the energy of ξc, represented as ‖ξc‖2, should
be comparable to the average energy of Σ.

Case 2: sc is a pure anomaly pixel to its surrounding
background. In this case, sc can be modeled as
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sc = t+ n = ξc, where ξc should maintain the prin-
cipal component with respect to the orthogonal sub-
space of Ã, and the LP (10) mostly fails. Therefore,
‖ξc‖2 should be significantly larger than the average
energy of Σ.

Case 3: sc is a mixed pixel containing some anomalous com-
ponents, and the H1 hypothesis holds. In this case,
some unignorable anomalous signatures t are mixed
in sc, as shown in (6). For an HSI with a reasonable
signal-to-noise ratio (SNR), it is believed that ξc =
t+ n should be dominated by t, and ‖ξc‖2 should
still be in multiples of the base average energy of Σ.

In view of this, it is reasonable that the detector be
modeled as

d =

∥∥P⊥
Bsc

∥∥2
2∑∥∥P⊥

Bsi
∥∥2
2
/n

=
sc

TP⊥
Bsc

mean
(
siTP⊥

Bsi
) , i = 1, . . . , n

(12)

where si is the ith pixel in the dual window. It can be seen that
the formulation of the proposed method is a matched filter, and
it can be considered as an unsupervised extended version of the
adaptive subspace detector [47].

As described above, the proposed AD algorithm is robust
in two aspects. First, the only assumption for the AD method
refers to the overcompleteness of the dictionary H and the lim-
itation of the anomalies, no matter what the distribution or size
of the anomalous objects and the background land cover are. In
view of this, it is worth mentioning that the dictionary H can
also be constructed by a local search window centered at the
test pixel, instead of the whole scene, in consideration of the
computational cost in practical applications. Although this kind
of approach may weaken the prior of the high redundancy of
the dictionary H, some potential interfering bases will also be
removed in advance, which improves the representation perfor-
mance. The effectiveness of this technique is validated in the
experimental section. Second, the proposed AD method can
tolerate some potentially confusing anomaly signatures in the
local background S. In the BJSR step, the anomaly part is mod-
eled into the noise, and only the principal component of S,
that is the background information, is utilized to automatically
prune the rest of the subspace of H and to maintain the adaptive
and pure local background basis matrix Ã.

C. Final Scheme for BJSRD

The implementation details of the proposed BJSRD algo-
rithm for HSI are shown in Table I.

When utilizing the full scene as the original overcomplete
dictionary, the computational burden for each pixel to be tested
by the proposed AD algorithm is O(nLBH + LB2), where the
local background representation costs O(nLBH) by SOMP,
and the P⊥

B construction and the final detection cost O(LB2),

as ((Ã)
T
Ã)−1(Ã)T can be obtained simultaneously from

SOMP. In this way, the computational burden for the whole
scene is O(nLBH2 + LB2H). In practice, the computational
complexity can be reduced to O((nH +B)LBd2) when uti-
lizing a smaller search window instead of the full scene to

construct H, where d2 < H denotes the size of the search
window.

The proposed approach is superior to the well-known local
RX (LRX) detector for the following reasons. First, P⊥

B alle-
viates the interference from the potential anomaly component
in the neighborhood, as the joint sparsity constraint ensures the
purity of the selected representative background basis. Second,
the computational complexity of the local version of the pro-
posed approach is less than that of LRX, as the covariance
matrix inverse costs O(n3 +B3) for each pixel.

IV. EXPERIMENTS

We investigated the effectiveness of the proposed algorithm
with two widely used real HSI datasets. The detectors of global
RX (GRX), LRX [11], low possibility detection (LPD) [3]
based on OSP [18], and a recent low-rank subspace decomposi-
tion method for global RX detection (referred to as LRD-GRX)
[48] were used as the benchmarks in this study. To obtain a
fair comparison, each detection map was linearly normalized by
its maximum value in the performance evaluation step. All the
methods and experiments were carried out using MATLAB on
a PC with a single 3.50-GHz processer and 16.0 GB of RAM.

A. Dataset Description

The first real dataset, obtained from an aircraft plat-
form with a HYperspectral Digital Imagery Collection
Experiment (HYDICE) sensor, can be freely down-
loaded from the website of the Army GeoSpatial Center
(www.agc.army.mil/hypercube/). With a spectral resolution of
10 nm and a spatial resolution of 1 m, this dataset contains
a vegetation area, a construction area, and several roads,
on which there are some vehicles. The full image size is
307× 307 pixels, with 210 spectral channels in the VNIR–
SWIR range. In this experiment, the low-SNR and water
absorption bands were eliminated so that 160 bands remained.
A subscene sized 80× 100 in the upper right of the whole
scene was used in this experiment, as shown in Fig. 4(a). It
can be seen that the anomaly panels with different sizes are
mainly vehicles located in different backgrounds, the positions
of which are shown in Fig. 4(b). With the help of the minimum
noise fraction (MNF) and the pixel purity index (PPI) modules
in ENVI 4.7, it was revealed that the rest of the pixels in the
scene were all composed of the four main background objects:
1) asphalt; 2) grass; 3) trees; and 4) soil, the detailed spectra
of which are shown in Fig. 4(c). In addition, the details of the
anomaly target spectra are shown in Fig. 4(d).

The second real dataset covers an agricultural area of the
State of Indiana, USA, in 2008, and was obtained by the
Hyperion sensor onboard NASA’s Earth Observing-1 (EO-1)
satellite. This dataset has 242 bands with a spectral resolution of
10 nm over 357–2576 nm. After removal of the low-SNR bands
and the uncalibrated bands, a 150× 150 subimage containing
149 spectral bands was used. The anomalies come from the
storage silo and the roof, and are shown in Fig. 5(d). The back-
ground object endmembers were extracted, including paddy
field, crops, and water, and constituted the majority of the whole
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Fig. 4. HYDICE hyperspectral dataset. (a) False-color map. (b) Subscene
detection area. (b) Anomaly target positions. (c) Spectra of the background
objects. (d) Spectra of all of the anomalies.

Fig. 5. Hyperion hyperspectral dataset. (a) False-color map. (b) Anomaly tar-
get positions. (c) Spectra of the background objects. (d) Spectra of all of the
anomalies.

image pixel dataset, as shown in Fig. 5(c). We ensured that
all of the pixels spectrally different from these endmembers
were selected, and the rest of the pixels were all from the three
background endmembers.

B. Detection Performance

For the proposed algorithm, the upper bound of the spar-
sity level L of the overcomplete background dictionary H was
varied from 5 to 50. For the dual spatial window, the size
of the local neighboring window was varied from 3× 3 to
17× 17, while the search window d× d was varied from 5× 5
to 33× 33 for both data sets. The size of the guard window
was set from 1× 1 to 5× 5. In all the experiments, the param-
eters for each algorithm in each case were set as the optimal, as
described in this section, and a detailed analysis of the roles of
these parameters is presented in Section IV-C.

TABLE II
AUC VALUES/RUNNING TIMES OF THE ALGORITHMS OBTAINED WITH

THE HYPERSPECTRAL DATASETS

The quantitative results and the running times of the two
hyperspectral image datasets are shown in Table II. The area
under the receiver operating characteristic (ROC) curve (AUC)
was utilized to evaluate the detection performance for each
detector. The AUC metric varies between [0, 1], and a larger
value is associated with a better detection result. In Table II,
the best results for each quality index are labeled in bold, and
the second-best results for each quality index are underlined.
The detection results and the binary detection map at 1e-3 FAR
for each AD method are shown in Figs. 6 and 7, respectively.
In addition, the representative ROC [9] curves under different
fraction cases and the statistical separability analysis for these
two datasets are shown in Fig. 8, respectively.

AD methods project the vectored pixels into an ideal decision
plane, where anomaly pixels should be highlighted and back-
ground pixels should be suppressed. For the HYDICE dataset,
whose background constitution is more complicated than the
Hyperion dataset, the number of subspaces cannot be easily
fixed, which causes the inferior result of LPD. The detection
performance of LRX was better than that of GRX, since the spa-
tial distribution of the anomalies in this dataset encourages the
local window to avoid the interruption from the complex back-
ground in the whole scene. For the global-based detectors, it is
noted that LRD—RXD is superior to the others, as the low-rank
prior can effectively enhance the detector. In the meantime, the
global-based detectors mistreat several pixels on the right side
and the upper left Y-shaped pathway as anomalies, as shown
in Fig. 6(a), (c), and (d). For the relatively simple Hyperion
dataset, a similar performance can be seen in Fig. 7(a), (c),
and (d), as a vertical strip in the scene is also wrongly high-
lighted. In this dataset, LPD provides an acceptable detection
result, as the parameter of the subspace number can success-
fully estimate the background in the scene. As can be seen in
the binary maps, the global-based detectors cannot effectively
consider some of the local environmental variation, as shown
in the false alarms located in the right edge of Fig. 6(f) and (i)
for the HYDICE dataset and those located in the lower right
of Fig. 7(f) and (i) for the Hyperion dataset. In short, when
compared with the global-based detectors, the local detectors
are better at suppressing the background components, and the
proposed algorithm gives the best result. From the quantitative
point of view, the ROC curves and AUC values suggest a similar
story.

We continue to analyze the separability of the aforemen-
tioned AD algorithms in Fig. 8(c) and (d). These subfigures
report the output target detection test result range of all the
AD methods in the test datasets in five groups. Each group has
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Fig. 6. Detection performances of the AD algorithms for the real HYDICE dataset: (a)–(e) refer to the detection probability result of (a) GRX, (b) LRX, (c) LPD,
(d) LRD-GRX, and (e) BJSRD; (f)–(j) refer to the binary map @ 1e-3 FAR of (f) GRX, (g) LRX, (h) LPD, (i) LRD–GRX, and (j) BJSRD; and (k) is the reference
location.

Fig. 7. Detection performances of the AD algorithms for the real Hyperion dataset: (a)–(e) refer to the detection probability result of (a) GRX, (b) LRX, (c) LPD,
(d) LRD-GRX, and (e) BJSRD; (f)–(j) refer to the binary map @ 1e-3 FAR of (f) GRX, (g) LRX, (h) LPD, (i) LRD–GRX, and (j) BJSRD; and (k) is the reference
location.

Fig. 8. ROC curves and statistical separability analysis of the AD algorithms:
(a) and (b) ROC curves of the HYDICE and Hyperion datasets, respectively;
(c) and (d) statistical separability analysis of the HYDICE and Hyperion
datasets, respectively.

a green box representing the real target pixels, and an orange
box representing the range of the background pixels in the
scene. Each box provides the detailed value distribution of the
detection test statistic results, as shown in the legend. The gap
between the lower bound of the green box and the upper bound
of its counterpart orange box refers to the separability between
the target and the background pixels in the dataset. In both sub-
figures, BJSRD shows the best separability that confirms the
effectiveness of the redundant prior of the background utilized
in the proposed algorithm.

For the running time comparison, the running times of each
of the AD algorithms implemented in MATLAB code are
shown in the second item of Table II. Here, it can be seen that
the global-based methods are faster than the local-based meth-
ods. Furthermore, LPD with one singular value decomposition
(SVD) calculation and GRX with one covariance matrix inverse
calculation are the fastest. The main computational burden for
the LRD–GRX method comes from the SVD calculations in the
iteration of the low-rank constraint-based preprocessing. The
global version of the proposed work BJSRD(f), which utilizes
the whole scene to construct the original dictionary H, calls
for enormous computational burden. The result of BJSRD(f)
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TABLE III
OPTIMAL PARAMETER SETTINGS FOR THE LOCAL DETECTORS

with the Hyperion dataset is omitted, as it costs far more than
1e5 s. It can still be seen that the AUC value of BJSRD(f) is
inferior to BJSRD, as the local approach ignoring the irrele-
vant pixels far away from S leads to a more stable estimation
by the use of SOMP. For the local-based methods, the optimal
parameter settings are shown in Table III. In these cases, it is
shown that BJSRD is faster than LRX, which calls for multiple
local inverse covariance estimation. Compared with the global
methods, the computational load of the JSR is the main draw-
back of the proposed BJSRD. To sum up, although the proposed
method takes the most time, the burden is still acceptable when
considering its superior detection performance.

C. Parameter Analysis

This section examines the effect of the parameters on the
detection performance of the proposed BJSRD algorithm. The
optimal parameter settings for BJSRD are shown in Table III.
In this experiment, we fixed the other parameters as the cor-
responding optimal and focused on specific parameter(s) at a
time. For the two-dimensional (2-D) subfigures below, each
horizontal axis is the parameter, and the vertical axis shows the
AUC. For the three-dimensional (3-D) subfigures, the two hor-
izontal axes are the related parameters, while the vertical axis
records the AUC value.

1) Dual Spatial Window: We first varied the size of the
local neighboring window g × g from 1× 1 to 25× 25 (where
1× 1 means no guard window) and the outer window b× b
was varied from 5× 5 to 17× 17 for the proposed BJSRD,
and a larger range for LRX, to investigate the effect of the
dual window size. In Fig. 9(b) and (d), the AUC increases with
the growth of the dual window size, and then begins to slowly
decrease after the maximum value. It should be noted that most
dual window sets can still obtain a reasonable detection result,
which verifies the robustness of this parameter set. Meanwhile,
as seen in Fig. 9(a) and (c), LRX requires many more neighbor-
ing pixels to estimate the surrounding background information,
and it costs more running time in practice.

2) Size of Dictionary: For the size of the local dictionary,
the value was ranged from 9 to 37 for all the experiments,
to investigate the sensitiveness of the proposed algorithm. As
shown in Fig. 10, it is suggested that this term is relatively sta-
ble. In this way, it is believed that setting a local search window
to construct the dictionary, instead of the whole scene, is mean-
ingful, not only for the sake of the computational complexity,
but also for a more robust detection performance. Considering
the complicated background distribution of the real data exper-
iments, the size of the local window and the size of the search
window needed to be large enough to fully construct the major
background information of the local patch.

Fig. 9. AUC versus the dual spatial window size. (a) LRX with the HYDICE
dataset. (b) BJSRD with the HYDICE dataset. (c) LRX with the Hyperion
dataset. (d) BJSRD with the Hyperion dataset.

Fig. 10. AUC versus the local dictionary size for the proposed algorithm with
the two hyperspectral datasets.

Fig. 11. AUC versus the SOMP-related parameters for the proposed algorithm
with the two hyperspectral datasets. (a) HYDICE dataset. (b) Hyperion dataset.

3) Parameters of the SOMP Step: Finally, the residual
threshold ε was varied from L1e− 7 to 1e− 1, and the upper
bound of the sparsity level L was varied from 2 to 15 for the
two datasets. Since these two parameters are related to the
SOMP step, a 3-D plot is utilized to simultaneously display
the performances. It can also be seen in Fig. 11 that the resid-
ual threshold is insensitive to the detection result over a wide
reasonable range, as the optimal residual threshold value is
omitted in Table III. Once ε exceeds a certain threshold, the
local neighboring pixel set will be linearly reconstructed with a
large residual, which cannot be utilized to measure the separa-
bility of the test pixel and its surrounding neighborhood pixels.
For the upper bound of the sparsity level, the performance is
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quite stable, which validates the effectiveness of utilizing only
a few active dictionary atoms to linearly represent the local
neighboring pixel set. As fully analyzed in [45],it also worth
mentioning that the optimal L value is related to the dominant
background components. In view of this, the detailed optimal
values mentioned before suggest that the proposed algorithm
is not sensitive to the joint sparsity level, and the low-rank
characteristic of the HSI plays the key role. All in all, the
parameter setting is quite robust within the proposed algorithm,
which shows an acceptable detection performance over a large
parameter range.

V. CONCLUSION

This paper has proposed a JSR-based framework for HSI
AD. The proposed algorithm utilizes the redundant background
information in the hyperspectral scene, and automatically deals
with the complicated multiple background classes, without esti-
mating the statistical information of the background. Whether
the test pixel belongs to an anomaly or not, it is judged by mea-
suring the length of the matched projection on the orthogonal
complementary background subspace that is estimated by the
JSR. The proposed BJSRD method was tested on two widely
used real HSI datasets, and the experimental results confirm the
effectiveness of the proposed anomaly detector.

The proposed framework could still be further improved in
some aspects. For instance, the proposed method works well
under the assumption that the subspace for each background
and target is linearly divisible; however, nonlinear cases should
also be considered. A method of designing a unified over-
complete dictionary is also of interest. Our future work will
therefore focus on how to extend the proposed detector to a
nonlinear kernel and a global version.
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