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ABSTRACT ARTICLE HISTORY
Land surface temperature (LST) is a key parameter in land surface system. Received 7 September 2019
The National Aeronautics and Space Administration (NASA) recently — Accepted 30 December 2019
released new Moderate Resolution Imaging Spectroradiometer (MODIS)
LST products (MOD21 and MYD21). Here, we conducted a detailed gEYWORDS. .
. X - emote sensing; land surface
comparison between the MYD11 and MYD21 LST data in mainland temperature; data
China. The LSTs of MYD21 were approximately 1°C higher than those of  omparison; surface urban
MYD11 averaged for mainland China, as MYD21 corrected the cold bias heat island; mainland China
of MYD11. The proportions of the valid value of MYD21 were generally
lower than those of MYD11 because the cloud removal method of
MYD21 was stricter than that of MYD11. Furthermore, the outliers were
less significant in MYD11 than in MYD21 because the outliers in MYD11
were removed using temporal constraints on LST. The outliers in
MYD21A2 resulted in a difference of greater than 3°C in average
seasonal surface urban heat island intensity (SUHII) between MYD11A2
and MYD21A2. Finally, using MYD11 may underestimate the slope of
long-term trends of SUHIl. MYD21 LST data may have some
uncertainties in urban areas. This study provided a reference for users
for selecting LST products and for data producers to further improve
MODIS LST products.

1. Introduction

Land surface temperature (LST) is a key variable in various fields (Phan and Kappas 2018; Weng
2009). For example, LST can be employed to investigate the surface urban heat island (SUHI)
effect, agricultural drought and climate change (Yao et al. 2019; Zhou and Wang 2016), estimate
air temperature and evapotranspiration (Bhattarai et al. 2019; Lu et al. 2018) and analyze land
cover change and urbanization (Huang et al. 2018; Hulley, Veraverbeke, and Hook 2014). Remote
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sensing is the most effective approach for obtaining LST information over a large area. One impor-
tant LST product is the National Aeronautics and Space Administration (NASA) Moderate Resol-
ution Imaging Spectroradiometer (MODIS) LST product. It is freely available and has relatively
high accuracy, global coverage, acceptable spatial resolution (1 km) and high temporal resolution
(four times a day for two satellites). Therefore, these products have been widely used in previous
studies across many fields (Bhattarai et al. 2019; Huang et al. 2018; Hulley, Veraverbeke, and
Hook 2014; Wan 2008; Xu et al. 2018; Zhou and Wang 2016; Zhou et al. 2018).

The traditional and widely used MODIS LST products are the MxD11 (MOD11 and MYD11)
LST and emissivity products. A split-window algorithm is used to retrieve LST at a 1 km spatial res-
olution (Wan 2008, 2014; Wan and Dozier 1996). In the second half of 2018, NASA distributed the
MODIS MxD21 (MOD21 and MYD21) LST and emissivity products. The MxD21 products use an
improved water vapor scaling method to remove the atmospheric effects. The LST and emissivity at a
1 km spatial resolution are retrieved employing a temperature emissivity separation (TES) method
(Hulley, Malakar, and Freepartner 2016a). The MxD21 products were found to have some advan-
tages compared with the MxD11 products (Coll et al. 2016; Ermida et al. 2014; Hulley, Veraverbeke,
and Hook 2014; Hulley et al. 2018; Malakar and Hulley 2016; Hulley, Malakar, and Freepartner
2016a; Hulley et al. 2016b). First, Hulley, Malakar, and Freepartner (2016a) used a radiance-based
method to validate the accuracies of the MYD21 and MYD11 products at six bare sites, two water
sites and two vegetated sites. Compared with the MYDI11 products, the MYD21 products have sig-
nificantly higher accuracy over barren surfaces (MYD21 product: RMSE ranges from 0.5-1.5°C;
MYD11 product: RMSE ranges from 1.1-4.1°C) and comparable accuracy over water and vegetated
surfaces (MYD21 product: RMSE ranges from 0.9-1.3°C; MYDI1 product: RMSE ranges from
0.5-1.5°C). Second, the MxD21 data can be used to detect land cover changes, whereas MxD11
can not because MxD11 assigned a fixed emissivity value according to land cover type (Hulley,
Veraverbeke, and Hook 2014). Third, Hulley et al. (2018) showed that the LST of the MYD21 pro-
duct was highly consistent with the Visible Infrared Imaging Radiometer Suite (VIIRS) VNP21 TES
product, with an RMSE less than 1°C. However, there were significant differences in LST between
the MYD11 and VIIRS VLSTO split-window products, with an RMSE ranging from 1.2-3.0°C.
Therefore, the continuity and consistency between the MYD21 and VNP21 LST products will
help us better understand the Earth system dynamics (Hulley et al. 2018).

Overall, previous studies have compared the accuracy of the MYD11 and MYD21 products (Coll
et al. 2016; Ermida et al. 2014; Malakar and Hulley 2016) and analyzed the consistency of LST pro-
ducts across sensors (Hulley et al. 2018; Islam et al. 2017). However, to our knowledge, few studies
have compared other information (e.g. the amount of extreme and missing values) and practical
applications in terms of analyzing the SUHI effect. To fill these research gaps, this study aims to com-
pare (1) the differences in LST between the daily MYD11A1 and MYD21A1D/MYD21A1N LST pro-
ducts during 2014-2016 and between the 8-day composite MYD11A2 and MYD21A2 LST products
from 2003-2018 in mainland China, (2) the proportions of missing values between the MYD11 and
MYD21 products, (3) the extreme values between the MYD11 and MYD21 products, and (4) the
SUHI effect revealed by the MYD11A2 and MYD21A2 products in 31 major cities in mainland
China.

2. Materials and methods
2.1. Study area

Mainland China is actively studied in terms of its climate and SUHI because the country has under-
gone rapid urbanization and is sensitive to climate change (Ding et al. 2007; Xu et al. 2019; Yao et al.
2018a; Niu et al. 2019; Zhou et al. 2018; Wei et al. 2019a; Wei et al. 2019b). Therefore, mainland
China was chosen as the study area (Figure 1). Climate, elevation and land cover differ greatly across
mainland China: southeastern China has a hot-humid climate, whereas northwestern China has a
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Figure 1. Study area and locations of the 31 major cities of this study. The land cover map is China’s Land Use/Cover Dataset (CLUD)
in 2015. The 31 selected cities were Beijing (BJ), Changchun (CC), Guiyang (GY), Urumgi (UQ), Harbin (HB), Shenyang (SY), Lhasa
(LS), Hohhot (HT), Yinchuan (YC), Shijiazhuang (SJZ), Taiyuan (TY), Jinan (JN), Xining (XN), Zhengzhou (ZZ), Nanjing (NJ), Hefei (HF),
Fuzhou (FZ), Hangzhou (HZ), Wuhan (WH), Chengdu (CD), Haikou (HK), Chongging (CQ), Nanchang (NC), Changsha (CS), Kunming
(KM), Nanning (NN), Lanzhou (LZ), Tianjin (TJ), Xi'an (XA), Pearl River Delta urban agglomeration (PRD) and Yangtze River Delta
urban agglomeration (YRD).

cold-dry climate. Additionally, the elevation gradually decreases from western China (e.g. the Qin-
ghai-Tibetan Plateau) to eastern China; furthermore, northwestern China has a large amount of bar-
ren surfaces (e.g. the Tarim Basin) due to its dry climate, whereas southeastern China generally has
vegetated surfaces (e.g. woodland and cropland) due to its humid climate (Figure 1). In addition, the
SUHI effect was analyzed in 31 major cities, including 3 municipalities, 26 provincial capitals and 2
urban agglomerations (Figure 1).

2.2. Data and preprocessing

Only three types of MxD21 LST products are available online: (1) the MxD21 1 km resolution swath
product, (2) MxD21A1D and MxD21A1IN 1 km resolution daily product, and (3) MxD21A2 1 km
resolution 8-day composite product. The 1 km resolution daily and 8-day composite LST products

Table 1. Moderate resolution imaging spectroradiometer (MODIS) land surface temperature (LST) products utilized in this study.

LST product Spatial resolution Temporal resolution Time period in this study Collection
MYD11A1 1 km Daily 2014-2016 6
MYD21A1D/MYD21ATN 1 km Daily 2014-2016 6
MYD11A2 1 km 8 day 2003-2018 6
MYD21A2 1 km 8 day 2003-2018 6
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from the Aqua satellite were used in this study (Table 1). The accuracy of MxD11 LST data has been
widely validated by previous studies (Wan 2008; Duan et al. 2018, 2019). For example, Duan et al.
(2018) used a radiance-based method to validate LST over 38 validation sites. The results showed
that the RMSEs were less than 1 K for Collection 6 MxD11 LST for most sites. MOD21 LST products
from the Terra satellite were not used, because these products are not available from 2009 to the pre-
sent due to an optical crosstalk issue in the infrared bands (band 27-30) (Hulley 2019). Note that the
MYDI11A1, MYD11A2 and MYD21A2 products contain both daytime and nighttime LST, whereas
the MYD21A1D product includes only daytime LST and the MYD21AIN product includes only
nighttime LST. The MODIS reprojection tool (MRT) was utilized to re-project and mosaic the orig-
inal LST products.

The land use/land cover information in 2000 and 2015 were derived from China’s Land Use/
Cover Datasets (CLUDs) of 30 m spatial resolution (Kuang et al. 2016; Liu et al. 2014). They
have 25 land cover types, and the overall accuracies are greater than 90%. To match the LST data,
the 30 m resolution CLUDs were converted into (1) proportional land cover data with 1 km resol-
ution, where the proportions of each land cover type within each 1 km resolution pixel were calcu-
lated using the original 30 m resolution CLUDs, and (2) land cover type data with 1 km resolution,
where the land cover type of a pixel was classified as the land cover type with the highest proportion.
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation
model (DEM) data with a 30 m spatial resolution were used in this study and aggregated to a res-
olution of 1 km.

2.3. Methods

MODIS LST data include quality information stored in quality control (QC) layer. The QC values
range from 0 to 3. The QC value of 0 represents the best data and 3 represents the worst data
(Wan 2013; Hulley et al. 2016b). LST data with all QC values were used in the present study.
Thus, all valid LST data were used in the later analyses. The experiments of this study included
four sections. First, the average differences in LST between the daily MYD11A1 and MYD21A1D/
MYD21AIN products for the period of 2014-2016 and between the 8-day MYDI11A2 and
MYD21A2 products from 2003-2018 were analyzed for each pixel in mainland China (Section
3.1). There were many missing values in the LST products due to cloud contamination and other
factors. For each pixel, the difference in LST was calculated only when both the MYDI1 and
MYD21 products had no missing values. Second, the proportions of valid values of the
MYDI11A1 and MYD21A1 products for the period of 2014-2016 and of MYD11A2 and
MYD21A2 products during 2003-2018 were calculated for each pixel in mainland China (Section
3.2). Third, for each daily data during 2014-2016 and 8-day composite LST data from 2003-
2018, we calculated four values as follows: (1) the LST higher than 99.995% of LST in mainland
China (defined as extremely high LST in this study), (2) the LST lower than 99.995% of LST in main-
land China (defined as extremely low LST in this study), (3) the highest LST in mainland China, and
(4) the lowest LST in mainland China (Section 3.3).

The SUHI effect was analyzed using MYD11A2 and MYD21A2 data in 31 major cities in main-
land China (Section 3.4). The spatial extents of urban areas in 2000 and 2015 in the 31 selected cities
were first extracted from the CLUDs. The spatial extents of urban areas in 2000 were defined as old
urban areas (OUAs). In addition, the OUAs were excluded from the spatial extents of urban areas in
2015, and the remaining parts were defined as urbanizing areas (UAs). Next, 10-30 km buffers were
generated around the urban areas in 2015 (Yao et al. 2019), and pixels in the 10-30 km buffers that
met one of the following requirements were excluded because these pixels affect the estimation of the
SUHI effect: (1) pixels with a water body proportion greater than 0%; (2) pixels with a built-up area
proportion greater than 0%; and (3) pixels with an elevation outside the range of the average
elevation of urban areas + 50 m (Yao et al. 2017b; Zhou et al. 2016; Wu et al. 2019). The remaining
parts of the 10-30 km buffers were defined as rural areas. The buffer range of 10-30 km was selected,
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because: (1) the footprint of the SUHI covers not only the urban area but also the nearby area around
the urban area with a distance less than 10 km (Han and Xu 2013; Zhang et al. 2004; Zhou et al.
2015), and (2) if the selected rural areas are far from the urban areas, the estimation of the SUHI
effect will be influenced by climate variability (Yao et al. 2017a; Zhou et al. 2015). Subsequently,
the SUHI intensity (SUHII), a widely used indicator of SUHI, was calculated using Equation (1):

SUHII = LSTypan — LSTrusal 1)

where LST yspan and LST,,,,; are the spatial average LSTs of urban and rural areas, respectively. The
MYD11A2 and MYD21A2 LST products were averaged into summer (defined as from June to
August), winter (defined as from December to February) and annual mean and used to analyze
the SUHI effect. The SUHII in 2015 was first determined, and the long-term trends of the SUHII
during 2003-2018 were then analyzed utilizing linear regression analysis.

3. Results and discussion
3.1. LST differences between MYD11 and MYD21 products

The spatial distributions of the differences in LST between the MYD11 and MYD21 products are
shown in Figure 2. The LST of the MYD21 products was higher than that of the MYD11 products
in most areas in mainland China, except for the daytime LST in the northern Qinghai-Tibetan Pla-
teau. The LSTs of MYD21A1 were 1.00 and 0.65°C higher than those of MYD11A1 during the day-
time and nighttime, respectively, which are average for mainland China. The LSTs of MYD21A2
were, on average, 0.94 and 0.94°C higher than those of MYD11A2 during the daytime and nighttime,
respectively.

MYD21A1 mimus MYDI11A1l MYD21A2 minus MYD11A2

Daytime

Nighttime

Figure 2. Differences in Land surface temperature (LST) between the MYD11A1 and MYD21A1D/MYD21A1N products averaged for
the period of 2014-2016 and between the MYD11A2 and MYD21A2 products averaged from 2003-2018.
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These two LST products use different algorithms to retrieve the LST. MYD11 uses a split-window
algorithm to retrieve LST, whereas the MYD21 product uses a TES algorithm (Malakar and Hulley
2016; Wan 1999; Wan and Dozier 1996; Hulley, Malakar, and Freepartner 2016a). The major differ-
ence between these two products is that MYDI11 assigns fixed emissivity values according to land
cover information, whereas MYD21 dynamically retrieves emissivity (Hulley, Malakar, and Free-
partner 2016a). Compared with MYD11 products, MYD21 can avoid emissivity errors originating
from three main sources: (1) classification errors in land cover type; (2) emissivity errors within
land cover type (e.g, bare land); and (3) dynamic changes in land cover type (Hulley, Malakar,
and Freepartner 2016a). The higher LST of MYD21 than that of MYDI1 in arid areas is because
MYD21 corrects the cold bias of MYD11 in arid areas. The cold bias of MYD11 in arid areas can
be explained by the fact that MYDI1 assigns fixed emissivity values according to land cover infor-
mation. This method leads to higher assigned emissivity than real emissivity and lower retrieved LST
than real LST over bare sites where the surface composition varies greatly (Hulley, Malakar, and
Freepartner 2016a). In addition, the higher LST of MYD21 than that of MYDI11 in vegetated
areas and water surfaces can be explained by the fact that MYD21 slightly overestimates the LST,
and MYD11 slightly underestimates the LST in vegetated areas and water surfaces (Hulley, Malakar,
and Freepartner 2016a). In addition, the lower LST of MYD21 than that of MYDI11 in the northern
Qinghai-Tibetan Plateau can primarily be attributed to higher emissivity of MYD21 products than
that of MYD11 (Figure 3). This is because these two products use different methods to obtain the
emissivity of the land surface. MYDI11 may cause some uncertainties because the emissivities of
some land cover types (e.g. barren surface such as the northern Qinghai-Tibetan Plateau) are not
fixed and have a certain range (Hulley, Malakar, and Freepartner 2016a).

The differences in LST between the MYD11A1 and MYD21A1 products over different land cover
types are shown in Table 2. The LST of MYD21A1 was higher than that of MYD11A1 over all land
cover types. The differences in LST were highest in built-up areas because there were many extremely
high LST in MYD21Al1, especially in built-up areas. Further analysis showed that the daytime (night-
time) LST of MYD21A1 was 5°C higher than MYDI11A1 over 0.87% (0.28%) of built-up areas,
whereas this proportion was 0.06% (0.01%) on average for the other land cover types. The differences
in LST were the lowest in unused land, because the LST of MYD21A1 was equal to or lower than that
of MYD11A1 in parts of the Qinghai-Tibetan Plateau.

3.2. The proportions of valid values of LST products

The proportions of valid values of LST products are shown in Figure 4 and Table 3. Spatially, the
proportions of valid values of LST products were generally higher in northwestern China than in

Band 31 Band 32

. High: 0.02

I Low: -0.02

Figure 3. Emissivity differences between the MYD11A2 and MYD21A2 products averaged for the period of 2014-2016.
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Table 2. Differences in LST (°C) between the MYD11A1 and MYD21A1D/MYD21A1N products averaged for the period of 2014-2016
over different land cover types (using CLUD in 2015).

Woodland Cropland Unused land Built-up area Water body Grassland
Daytime 1.24 1.71 043 1.86 0.67 0.74
Nighttime 0.63 1.13 037 1.26 0.77 0.52
MYD21A1 MYDI11A1

.High: 100%5 . & .High: 100% .High: 20%

. Low: 0% . Low: 0% . Low: -20%
e

P

Nighttime
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MYDI11A2
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e ~ G

©
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o High: 20%
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Figure 4. Proportions of valid values of MYD11A1 and MYD21A1 products and their differences.

southeastern China. The lowest proportion of valid values was found in the Sichuan Basin. These
results are because southeastern China is characterized by a humid and cloudy climate, whereas
northwestern China has a dry and sunny climate. Signals from land surfaces cannot penetrate clouds;
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Table 3. The proportion of valid pixels of LST products averaged for mainland China.

MYD11A1 MYD21A1 MYD11A2 MYD21A2
Daytime 41.0% 37.3% 88.8% 85.1%
Nighttime 50.9% 38.8% 92.6% 85.6%

therefore, LST is retrieved only when there are clear-sky conditions. In addition, the proportions of
valid values of the 8-day composite MYD11A2 and MYD21A2 products were much higher than that
obtained for the daily MYD11A1 and MYD21A1 products (Figure 4 and Table 3). The proportions
of valid values of 8-day composite LST products were all higher than 85% averaged for mainland
China, while the proportions of valid values of daily LST products were all lower than 51%
(Table 3). These results are because the MYD11A2 and MYD21A2 products average the daily
LST products into eight days, and the invalid pixels were not processed in this procedure (Wan
2013; Hulley et al. 2016b). Finally, the proportions of the valid values of the MYD11A1 product
were 41.0% and 50.9% for the daytime and nighttime LST, respectively. These values were higher
than those for the MYD21A1 product (Table 3). The proportions of valid values of the MYD21 pro-
ducts were lower than those of the MYD11 products for most regions in mainland China, especially
in the Qinghai-Tibetan Plateau. The reason for these phenomena is that these two MODIS LST pro-
ducts use different methods to remove the effects of clouds. The MYD21A1 product excludes the
pixels with a confidence of clear-sky conditions < 95% using the MOD35 cloud mask product. How-
ever, the MYDI11A1 product uses more complicated methods: (1) excluding pixels with a confidence
of clear-sky conditions < 95% over land with an elevation <2000 m, (2) excluding pixels with a
confidence of clear-sky conditions < 66% over land with an elevation > 2000 m, (3) excluding pixels
with a confidence of clear-sky conditions < 66% over lakes, and (4) using temporal constraints on
LSTs in 32 days (Wan 2008, 2013). Therefore, the proportions of valid values of the MYD21 products
were greater than those of the MYD11 products, especially in the Qinghai-Tibetan Plateau.

3.3. Extreme values in LST products

The extreme LSTs were more significant in the MYD21 products than in the MYD11 products
(Figures 5 and 6). The extremely high LST in the MYD21A1 products exceeded 100°C on certain
days. The highest LST in MYD21A1 on many days was as high as 100°C, and on certain days it
exceeded 500°C (not shown in Figures 5 and 6). Although MYD21A2 is an 8-day average product,
the extremely high LST in MYD21A2 reached up to 100°C on certain days, and the highest LST in
MYD21A2 easily exceeded 100°C (Figure 6). Comparatively, the extremely high and the highest
LSTs in the MYD11 product in mainland China were stable across days and showed a clear seasonal
cycle. Further analysis showed that the extremely high LST was generally accompanied by extremely
low emissivity (not shown). Therefore, the extremely high LST in the MYD21 products may be
attributed to the incorrect retrieval of emissivity (Hulley, Malakar, and Freepartner 2016a). In
addition, the lowest and extremely low LSTs in mainland China in the MYD21 products were rela-
tively close to those of the MYD11 products, and significant differences were generally found in win-
ter. The extremely low LSTs can generally be attributed to undetected clouds (Xu et al. 2018). The
above results clearly indicated that the extreme LST was more significant in the MYD21 products
than in the MYD11 products. This phenomenon occurred because the MYD11 products use tem-
poral constraints on LST to remove outliers (Wan 2008, 2013), whereas the MYD21 products do
not. Specifically, the extreme LSTs in MYD11 were removed using the following four steps. First,
the LSTs that were higher or lower than the highest LST in 32 days by more than four times the
AT (a variable determined by land cover) were removed. Second, the LSTs that were higher or
lower than the highest LST in 16 days by more than three times the AT were removed. Third, the
LSTs that were higher or lower than the highest LST in 8 days by more than two times the AT
were removed. Fourth, the LSTs that were higher or lower than the 8-day average LST by more
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Figure 5. The extremely high and low LST, and the highest and lowest LST in mainland China in the MYD11A1 and MYD21A1
products during 2014-2016.

than the AT were removed (Wan 2008). Overall, the MYD21 products have many outliers, which
may inhibit their practical applications.

3.4. SUHI effect revealed by LST products

The spatial distribution of the SUHII in mainland China in 2015 that was revealed by MYD11A2 was
similar to that revealed by the MYD21A2 product (Figure 7). The daytime SUHII differed
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Figure 6. The extremely high and low LST, and the highest and lowest LST in mainland China in the MYD11A2 and MYD21A2
products during 2003-2018.

substantially across cities and seasons, with higher daytime SUHII values found in southeastern
China and during summer. These results were similar to Yao et al. (2017b) and Zhou et al.
(2014). Daytime SUHII is strongly related to background vegetation conditions, as vegetation tran-
spiration can reduce LST during the daytime. Rural vegetation in southeastern cities is usually more
abundant than in northwestern cities because southeastern cities have a more humid climate, which
is more suitable for vegetation growth. In addition, the amount of rural vegetation is commonly
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higher in summer than in winter and higher than the annual mean. A large amount of rural veg-
etation can increase the differences in vegetation between urban and rural areas and then enhance
the daytime SUHII (Yao et al. 2019; Zhou et al. 2014). Therefore, daytime SUHII was greater in
southeastern China and in summer. Comparatively, nighttime SUHII differed more slightly across
cities and seasons. This result can be explained by insufficient vegetation transpiration during the

nighttime (Yao et al. 2018b; Zhou et al. 2014).

MYD11A2

Summer

Daytime

Nighttime

MYD21A2

Summer Winter

Daytime

Nighttime

[&3
Legend
® SUHII<0°C ®0°C <SUHII<1.5°C  1.5°C <SUHII < 3°C ® 3°C < SUHII < 4.5°C @ SUHII > 4.5°C

Figure 7. Spatial distribution of surface urban heat island intensity (SUHII) in mainland China in 2015, as revealed by the MYD11A2
and MYD21A2 products.
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Figure 8. SUHII in 2015 revealed by the MYD11A2 and MYD21A2 products. R% coefficient of determination.

The SUHII revealed by the MYD11A2 product was significantly (p <0.01) linked with the
MYD21A2 product across 31 cities in mainland China (Figure 8). The coefficients of determination
(R?) were all higher than 0.86 for daytime SUHIL The R* values of daytime SUHII were significantly
higher than those of nighttime SUHII, which could be attributed to the larger range in daytime
SUHII than in nighttime SUHII across cities. Note that some cities had much higher SUHII values
revealed by MYD21A2 than by MYD11A2. For example, the daytime SUHII values in summer in
Nanning revealed by MYD11A2 and MYD21A2 were 6.87 and 13.85°C, respectively. The nighttime
SUHII in summer in Fuzhou was 2.12 and 5.42°C for MYD11A2 and MYD21A2, respectively. These
results are because the SUHII revealed by the MYD21A2 product was affected by extremely high
LSTs. Although the 8-day composite MYD21A2 product was averaged in summer, there were
some pixels with a nighttime LST higher than 50°C in Fuzhou and a daytime LST higher than
100°C in Nanning. The results above clearly indicate that the estimation of SUHII by the
MYD21A2 product was significantly affected by outliers. Therefore, caution should be paid when
using the MYD21A2 product to analyze SUHII, as well as in other fields. In addition, methods to
remove the outliers should be considered in the next version of MxD21 products.

The long-term trends of SUHII (for the period of 2001-2018, calculated using linear regression
analysis) revealed by the MYD11A2 product were significantly linked with the MYD21A2 product
across 31 major cities, with R* values that were all higher than 0.76 and significance level (p) values
that were all lower than 0.01 (Figure 9). However, the linear regression slope of SUHII in UAs
revealed by MYD21A2 was higher than that revealed by MYD11A2 in most cities. In addition,
the slopes of the annual daytime and nighttime SUHII in UAs revealed by the MYD21A2 product,
as averaged for 31 cities, were 0.125 and 0.089°C/year, respectively, which were higher than those
revealed by the MYD11A2 product (daytime: 0.093°C/year; nighttime: 0.071°C/year). The accuracy
of LST retrieval is strongly related to the accuracy of emissivity. The MYD11 product assigned the
emissivity according to land cover type using MODIS land cover products (Wan 2013). However,
MODIS land cover products were found to be outdated (Chakraborty and Lee 2019; Li et al.
2017; Yao et al. 2017a). For example, Yao et al. (2017a) found that the urban extents in version 5
MCD12Q1 data were nearly the same from 2001 to 2013 in Chinese cities, which have undergone
rapid urbanization. Further examination of MYD11A2 emissivity data showed that the emissivity
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was significantly lower in urban areas than in rural areas, but the extents of areas with low emissivity
were almost unchanged from 2003 to 2018 (Figure 10a and b). Therefore, the assignment of emis-
sivity according to land cover type may lead to errors in LST retrieval in UAs, which further translate
into an underestimation of the slope of SUHII in UAs. Previous studies may have slightly underes-
timated the slope of the long-term SUHII trends because they used MxD11 LST products (Chakra-
borty and Lee 2019; Peng et al. 2018; Yao et al. 2019; Yao et al. 2017b; Yao et al. 2018b; Zhou et al.
2016). In addition, there were no significant differences in emissivity between urban and rural areas
in the MYD21A2 emissivity data (Figure 10c and d). This result suggests that the MYD21 data may
have uncertainties when used to study the SUHI effect. Previous studies have validated the MYD21
LST data over bare, vegetated and water sites (Hulley, Malakar, and Freepartner 2016a; Ermida et al.
2014; Coll et al. 2016). The accuracy of the MYD21 LST products over urban sites is still unknown
and should be validated in future studies.

4, Conclusions

In this study, a detailed comparison between the MYD11 and MYD21 products was conducted in
mainland China. The LST of the MYD21 product was higher than that of the MYD11 product in
most areas of China, this could be attributed to the different methods used to retrieve the LST
between the two products. The proportions of valid values for MYD21 products were higher than
those of the MYD11 products at most regions in China. This result is because these two MODIS
LST products use different methods to reduce the effects of clouds. Furthermore, the extremely
high LST reached up to 500°C, and the extremely low LST was below —100°C in the MYD21 pro-
ducts. The outliers are less significant in MYD11 because the outliers in the MYDI1 are excluded
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using restrictions on temporal variations in LST. Although the SUHII revealed by MYD11A2 was
significantly (p < 0.01) correlated with MYD21A2 across 31 major cities in mainland China, outliers
in MYD21A2 can result in seasonal average SUHII differences greater than 3°C between MYD11A2
and MYD21A2. Finally, previous studies may have slightly underestimated the slope of the long-
term SUHII trends because they used MxD11 LST products. In addition, MYD21 LST and emissivity
data may have some uncertainties in urban areas.

Overeall, this study showed that MYD21 products had more missing and extreme values compared
with MYD11 products. Both MYD11 and MYD21 products have some uncertainties in terms of
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studying the SUHI effect. Future studies should compare the two products in other fields (e.g. esti-
mating air temperature and evapotranspiration) and further improve the MODIS LST products.
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