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A Pixel Shape Index Coupled With Spectral
Information for Classification of High Spatial

Resolution Remotely Sensed Imagery
Liangpei Zhang, Xin Huang, Bo Huang, and Pingxiang Li

Abstract—Shape and spectra are both important features of
high spatial resolution remotely sensed (HSRRS) imagery, and
they are concrete manifestation of textures on such imagery. This
paper presents a spatial feature index, pixel shape index (PSI), to
describe the shape feature in a local area surrounding a pixel. PSI
is a pixel-based feature which measures the gray similarity dis-
tance in every direction. As merely the shape feature is inadequate
for classifying HSRRS imagery, a transformed spectral feature
extracted by independent component analysis is added to the input
vectors of our classifier, and this replaces the original multispectral
bands. Meanwhile, a fast fusion algorithm that integrates both
shape and spectral features using the support vector machine
has been developed to interpret the complex input vectors. The
results by PSI are compared with some spatial features extracted
using wavelet transform, gray level co-occurrence matrix, and the
length–width extraction algorithm to test its effectiveness. The
experiments demonstrate that PSI is capable of describing shape
features effectively and result in more accurate classifications than
other methods. While it is found that spectral and shape features
can complement each other and their integration can improve
classification accuracy, the transformed spectral components are
also found to be more suitable for classification.

Index Terms—Independent components analysis (ICA),
integration of shape and spectra, shape feature, support vector
machine (SVM).

I. INTRODUCTION

H IGH spatial resolution remotely sensed (HSRRS) images
with multispectral bands such as QuickBird and IKONOS

provide a large amount of information, thus opening up avenues
for new remote sensing applications. However, their availability
poses challenges to image classification. Due to the complex
spatial arrangement and spectral heterogeneity even within
the same class, conventional spectral classification methods
are grossly inadequate for HSRRS imagery [1]. In order to
overcome this inadequacy, spectral features must evidently be
complemented by one or the other means. It is by and large
agreeable to not only use the spectral information, but also to
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exploit spatial analysis [2]. Spatial analytical approaches can
simply be categorized into spatial features extracted by moving
windows or elements and a spatial classifier based on contextual
decision criteria with consideration of neighboring pixels inside
the classifier [2]. This paper focuses on the spatial features to
strengthen the feature space for better classification accuracies.

Several effective spatial features that have been proposed,
e.g., wavelet transform (WT) methods, are used to extract tex-
ture features [1], [3]. WT allows extraction of different texture
features at different scales, thus providing a useful alternative
for the spatial features analysis of HSRRS images. The gray
level co-occurrence matrix (GLCM) method can introduce spa-
tial information into a spectral classification, in which an image
gray value is transformed into the co-occurrence matrix space
and various output images are calculated adopting different
spatial measures [4], [5]. The Gaussian Markov random field
(GMRF) model, which is an accurate and compact version
of the Markov random field (MRF) [6], [7], is yet another
representative method for extracting spatial information. No-
tably, Shackelford and Davis [8] proposed an effective algo-
rithm, length–width extraction algorithm (LWEA), to extract
the length and width of spectrally similar connected groups
of pixels. The notion of LWEA is akin to GLCM, which
also measures the spatial features within a spectrally similar
neighborhood along a certain direction. In addition to the
aforementioned methods, a series of spatial features extracted
by morphological profiles (MPs) and differential morphological
profiles (DMPs) was proposed [9]–[11]. These morphological
features have proven to be effective in extracting multiscale
structural information from HSRRS images and, hence, com-
plement spectral information.

Based on the aforementioned work, this paper investigates
the following three issues pertaining to spectral and spatial
feature extraction and their fusion in the classifier.

1) In addition to textural features, HSRRS imagery also
includes ample shape features. The complex raster data
structure of remotely sensed images makes the shape
description of objects a nontrivial task. Especially, as
the spatial resolution increases, sharper spatial features
must be interpreted and captured effectively. This paper,
therefore, puts forward the pixel shape index (PSI), an
improved version of LWEA, to describe the spatial infor-
mation around the central pixel in its entirety.

2) Quite frequently, multispectral classification utilizes the
original spectral bands as the input for classifiers.
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Nevertheless, it is very difficult to achieve good classi-
fication results this way, as most of the land cover classes
in an HSRRS image contain a number of spectrally dif-
ferent pixels or objects [1]. Thus, it would be interesting
to investigate if some transformed spectral features can
achieve higher accuracy than the original multispectral
HSRRS images. For this purpose, the feature extraction
method of independent component analysis (ICA) is em-
ployed. ICA is an effective approach for blind source
separation and has drawn a great deal of attention owing
to its tremendous potential in image processing.

3) High-resolution imagery reveals objects in greater detail,
depicting their size, shape, structure, and color. Unlike
medium-resolution images, a single feature is not suffi-
cient for classifying the high-resolution imagery. Thus,
interpretation of such images entails multiple effective
features. An appropriate classifier and better decision
rules are inevitable for identifying the multiple input
features. Unlike the multispectral classification method
[2] and the classifiers fusion approach [12]–[14], the
multiple spectral and spatial features in this paper are
input into the support vector machine (SVM), a relatively
new method of machine learning. The notable advantages
of SVM include self-adaptability, swift learning pace,
and high-dimensional property in feature space. SVM
can also reduce the dominance effects of the spectral
information if the input vector contains both spectral and
spatial features. This SVM approach of a single classifier
with multiple features is chosen because of its fast and
effective processing.

The rest of this paper is organized as follows. Section II
describes the PSI algorithm. Section III discusses ICA trans-
formation for the original spectral bands. Section IV describes
the fusion of spectral and spatial features based on SVM, and
Section V details the two experiments with two multispectral
HSRRS datasets. The first experiment detects the influence of
three parameters on the PSI algorithm, and the second explores
fusion of the shape and spectral features. Finally, Section VI
concludes the paper.

II. PIXEL SHAPE INDEX

Shackelford and Davis [8] proposed LWEA to examine the
context of each pixel and measure the spatial dimensions of
groups of spectrally similar connected pixels. LWEA calculated
a length and width value for each pixel in the image. These
values are found by searching along a predetermined number
of equally spaced lines radiating from the central pixel.

PSI adds an extension to LWEA. The shape features are
extracted in a pixel-by-pixel manner, wherein each pixel has a
feature value. The shape represents the contextual feature along
all the directions to some predefined limit around the central
pixel. Like LWEA and GLCM, PSI is also based on the spectral
similarity of its neighboring pixels.

PSI shape feature extraction consists of three steps.
1) extension of direction lines based on gray level similarity;
2) measurement of the length of each direction line;
3) calculation of PSI.

Fig. 1. Direction lines of PSI algorithm.

A. Extension of Direction Lines

The extended direction lines used to detect the object’s
overall contour are symmetric around the centric pixel. In one
chosen direction, the spectral difference is measured between a
pixel and its centric pixel in order to decide if this pixel lies in
the homogeneous area around the centric pixel. Some example
direction lines are shown in Fig. 1, where different gray levels
symbolize different direction lines.

The pixel homogeneity is defined using the following
method:

PHi =
n∑

s=1

|pcen
s − psur

s | (1)

where PHi represents the spectral homogeneity of the ith
direction between the centric pixel and its surrounding pixel,
n denotes the number of spectral bands, pcen

s is the spectral
value of the centric pixel, as shown in black in Fig. 1, and psur

s

denotes the spectral value of the surrounding pixel, which is on
the direction line in different gray levels (Fig. 1).

The ith direction line is extended if the following conditions
are met.

1) PHi is less than a predefined threshold T1.
2) The total number of pixels in this direction line is less

than another predefined threshold T2.

The extension of each direction line will cease if either of the
above conditions is not met. In this case, the extension of the
ith direction line will be terminated, and the algorithm will skip
to the (i+ 1)th direction line.

B. Length of Direction Line

After determining all the direction lines, the length of each
and every direction line is calculated. In the ith direction, the
length is measured as follows:

di = max
{|me1 −me2|, |ne1 − ne2|} (2)

where (me1, ne1) denotes the row and column number of the
pixel in one end of the direction line, and (me2, ne2) denotes
the row and column numbers of the pixel in the other end. The
maximum city-block distance is adopted here because: 1) it can
smooth the spatial feature values in a homogeneous area and let
the pixels in the same shape area possess the same or close PSI
values and 2) a large amount of computation can be saved with
the use of integers instead of decimals in (2).
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Fig. 2. Flowchart of the PSI algorithm.

Upon completion of this step, the lengths of all the direction
lines are obtained. Thus, the feature sets of the centric pixel
can be formulated as (d1, d2, d3, . . . , dD), where D denotes the
total number of all the directions.

C. Calculation of PSI

The shape index of the centric pixel is the sum total length of
all the direction lines, which is defined as

PSIm,n =
D∑

i=1

di (3)

where PSIm,n represents the shape index of the centric pixel
(m,n). The flowchart of PSI is shown in Fig. 2.

The spectral similarity is used to construct spectrally con-
nected groups of pixels to describe the shape features. There
are three parameters in PSI: the total number of directions D,
and the direction line extension thresholds T1 and T2.

The parameterD indicates the total number of direction lines
of PSI. The value of D can be raised in order to describe the
shape features in detail. The values, T1 and T2 ought to be
determined through experiments as these two parameters are
related to the shape and spatial arrangement of objects in the
image. T1 is the threshold for homogeneity, and pertains to the
spectral variability in the same shape area. T2 is the maximum
length for one direction line, and relates to the size of one shape
area. More details about the parameters of PSI will be discussed
later under the experiments section.

It should be noted that PSI differs from LWEA in the
following aspects.

1) LWEA extracts length–width features and stores the max-
imum value as the length and the minimum value as the
width after searching all direction lines. However, PSI
sums the length of all the direction lines instead of just the
maximum length and width for describing the contextual
structure around the centric pixel. The features of length
and width in LWEA only represent two directions around
the centric pixel, which is inadequate to provide sufficient
contextual information along all directions. The aim of
PSI is to describe the overall neighborhood features and

Fig. 3. PSI feature values for four classes (wide street, narrow street, building,
tree, and grass) from a multispectral image of Beijing, China. The PSI parame-
ters used in this figure are D = 20, T1 = 110, and T2 = 50. The vertical
axis of the histogram represents the occurrence frequency of the PSI value in a
local area.

let all the pixels in the same shape area have the same
feature value.

2) In LWEA, the spatial feature values are determined by
searching along the predetermined number of equally
spaced lines radiating from the centric pixel; however,
these values in PSI are calculated along the direction
lines throughout the centric pixel. Hence, PSI provides
an orientation-independent property, which, in turn, has
an advantage to provide more stable spatial features.
Moreover, the azimuth sampling in PSI is enhanced from
10 of LWEA (D = 18) to 9 (D = 20), which improves
the descriptive ability of spatial features.

To illustrate the strength of PSI, an example of PSI features
for four classes in a multispectral QuickBird image of Beijing,
China, is given in Fig. 3. It can be found that different PSI
values are achieved within the spectrally similar classes such
as building versus road and grass versus tree.

III. INDEPENDENT COMPONENT ANALYSIS

ICA is a multivariate data analysis method for blind source
separation of signals. ICA seeks to render the components as
statistically independent as possible, and is a useful tool for data
mining of remotely sensed data. The use of ICA features for
unsupervised signature extraction of IKONOS images has been
investigated previously [15]. In this paper, the ICA features of
the QuickBird RGB bands are, however, extracted to strengthen
multispectral information to reduce the spectral complexity and
complement the shape features extracted using the PSI-based
algorithm.

The basic model of ICA is

Y = A X (4)

where
Y vector of observed signals;
A mixing matrix to be estimated;
X mutually independent components.
The goal of ICA is to calculate the matrix B such that the

sources X = B Y can be estimated from the observed vector
Y by optimizing the statistical independence criterion.
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Fig. 4. Fusion of transformed spectral information and PSI shape features
using SVM.

Fig. 5. QuickBird image of typical buildings and roads in Beijing.

TABLE I
NUMBER OF TRAINING AND TESTING PIXELS IN FIG. 5

Our paper adopts the fast and robust ICA (Fast-ICA) algo-
rithm proposed by Hyvarinen [16]. It is a fixed-point algorithm
based on an optimization of entropy function called negative
entropy. Initially, this algorithm was introduced using kurtosis
as a function, and was subsequently extended for general con-
trast functions such as

JG(w) =
[
E

{
G(wTx)

} − E {G(v)}]2 (5)

where w is an m-dimensional vector constrained such that
E{(wTx)2} = 1. v is a Gaussian variable of zero mean and
unit variance.G(y) is practically any nonquadratic function and
is used in its derivation form g(y) in the Fast-ICA algorithm,
which can be chosen as follows:

G(y) =
1
4
y4 g(y) = y3

G(y) =
1
a

log (cosh(ay)) g(y) = tanh(ay)

G(y) = − 1
a
e−

ay2

2 g(y) = y e−
ay2

2 . (6)

TABLE II
CLASSIFICATION ACCURACIES OF DIFFERENT VALUES

FOR D WITH T1 = 110 AND T2 = 100

Fig. 6. Relationship between Kappa coefficient and D.

Fig. 7. Relationship between Kappa coefficient and T1.

Fig. 8. Relationship between Kappa coefficient and T2.

One by one, the Fast-ICA algorithm estimates each inde-
pendent component, and the independent component can be
obtained subsequent to the optimization process denoted by (5).
The RGB bands of the QuickBird are viewed as the input
observed vectors, and Fast-ICA is employed to obtain three
spectral independent components.
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Fig. 9. (a) Classification result of spectral features. (b) and (c) The classification results with different parameter values of PSI. The parameters setting of are,
respectively, D = 20, T1 = 100, and T2 = 30 in (b), and D = 20, T1 = 100, and T2 = 5 in (c).

Fig. 10. (a) RGB image, (b) the classification map of original spectral fea-
tures, (c) the classification result with T2 = 5, and (d) the classification result
with T2 = 40. The other two PSI parameters are set to the same T1 = 110
and D = 20 in this test.

IV. INTEGRATION OF SHAPE AND SPECTRAL

FEATURES USING SVM

This paper examines the feasibility of fusion using PSI in-
tegrated with spectral features based on SVM. Primarily, three
problems need to be resolved in the fusion: the strategy of in-
tegration, normalization prior to classification, and parameters
selection of SVM.

Various methods have been proposed to integrate spectral and
spatial features. One appropriate method is that of decision-
level fusion [2], [12]–[14]. This way, spectral and spatial feature
bands can be processed, respectively, in different classifiers,
and the final classification map can be obtained by the ap-

Fig. 11. Relationship between Kappa coefficient and T2.

Fig. 12. QuickBird image for the second experimental area in RGB true color.

proaches based on decision-level fusion. A notable hierarchical
fuzzy classification approach has been developed [8], wherein
different features were employed for classes with different
characteristics. However, as HSRRS data require a significant
amount of memory for storage and analysis, computationally
light algorithms are of our particular interest [2].

In this paper, the single classifier with multiple features is
utilized, which requires less CPU time for classification than
the multiple-classifiers method. Owing to the complexity of
input features, a nonparametric model needs to be chosen
for the classification [17]. Conventional classifiers like the
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maximum–likelihood classifier (MLC) are not capable of
achieving a satisfactory accuracy. This is because the estimated
distribution function usually employs the normal distribution,
which may not represent the actual distribution of the data. In
recognition of this, fuzzy ARTMAP was tested for the contex-
tual features extracted by the spatial reclassification algorithm
[2]. Similarly in [10] and [11], the morphological features
after feature selection and the spectrally transformed bands by
principal component analysis (PCA) were input to the neural
network classifier at the same time. This paper investigates
SVM owing to its computational simplicity and superior accu-
racy when compared to other classifiers.

The second problem is to normalize the spatial and spectral
features into [0, 1] in such a way that they can then be input
into the classifier. The normalization method of spectral inputs
differs from that of spatial ones because of the dissimilar
range distribution of spatial feature values. The normalization
methods can be formulated as follows:

Step1 :

{
d′ij = dij−dmin

dmax−dmin
· 255 spectral features

histogram − equalization spatial features

(7)

Step2 : d′′ij =
d′ij − d′max

d′max − d′min

· 1 (8)

where dij denotes the original value of the pixel (i, j), and
accordingly dmax, dmin represent the maximum and minimum
value in that band, d′′ij is the feature value of the pixel (i, j) after
normalization.

The third problem relates to the parameters of SVM. SVM
classifiers [18], [19] of the form f(x) = w · Φ(x) + b are
learned from the data {(xi, yi), i = 1, 2, 3, . . . , N}, where xi

is an n-dimensional feature vector, f(x) denotes a hyperplane,
which separates samples label yi = ±1 on each side, and w
and b are the parameters of the hyperplane. The hyperplane
calculation can be formulated into a constrained optimization
problem as follows:

min
w,b,ξ

1
2
‖w‖2 + C

N∑
i=1

ξi (9)

where C is a regularization parameter and ξi is slack-variables
subject to the constraints

yi (w · Φ(xi) + b) ≥ 1 − ξiξi ≥ 0. (10)

To simplify the learning of nonlinear SVMs, the objective
function is typically expressed in its dual form

min
0≤αi≤C

W =
1
2

N∑
i,j=1

αiQijαj −
N∑

i=1

αi + b

N∑
i=1

yiαi. (11)

Subject to 0 ≤ αi ≤ C and
∑N

i=1 yiαi = 0, where b is
Lagrange multiplier and Qii = yiyiΦ(xi)Φ(xi). For more

TABLE III
NUMBER OF TRAINING AND TESTING PIXELS

Fig. 13. Available reference data.

details about the SVM, see [18]–[20]. The design of SVM for a
specific application needs to handle several issues.

1) Multiclass classification: While SVM was originally de-
signed for binary classification, most remote sensing
applications involved multiple classes. Two main ap-
proaches have been suggested for extending SVM to
multiclass classifications [21]. The first is “one against
all” (OAA), which consists of a set of binary SVMs.
Each classifier is trained to separate one class from the
rest and the pixel is allocated to the class for which
the largest decision value is determined. The second is
“one against one” (OAO), where a series of classifiers are
applied to each pair of classes, with the most commonly
computed class label reserved for each pixel [21]. In our
experiments, the OAO method is employed.

2) Selection of kernel function: The commonly used kernel
functions are Gaussian radial basis function (RBF) and
polynomial function (POLY):

{
K(xi, x) = (xi · x+ 1)p POLY

K(xi, x) = exp
(−γ‖xi − x‖2

)
RBF.

(12)

For pattern recognition of HSRRS images, the POLY kernel
was found to be better than RBF, because the POLY kernel is
a type of function with overall influence, whereas RBF only
has great respondence to local points around the central value
[17]. Considering that the feature space of HSRRS images is
dispersedly distributed without an obvious clustering center, the
POLY kernel is used in this paper.

In addition, the kernel-based implementation of SVM in-
volves problems pertaining to the selection of multiple parame-
ters, including the kernel parameters (p) and the regularization
parameter C. Some standard ways exist, which can facilitate
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Fig. 14. Classification results of (a) original RGB spectral features, (b) ICA signals, (c) PSI and RGB features, and (d) ICA and PSI features fused by SVM.

TABLE IV
CONFUSION MATRIX OF THE CLASSIFICATION RESULT FOR FIG. 14(a)

the selection of parameters in SVM classifier design such as
the well-known leave-one-out (LOO) procedure [21]. In this
paper, these parameters are selected based on our experience
considering that different parameters setting can be compared
in that way. The flowchart of the whole processing is shown
in Fig. 4.

V. EXPERIMENTS

Two experiments were performed to test the effectiveness
of the proposed methodologies. The first was designed to detect
the influence of the PSI parameters. The second was to compare
the classification effect of different spatial features. Both the
experiments employed QuickBird images of Beijing.

A. Experiment 1—Parameters of PSI

Typically, an urban infrastructure consists of buildings and
roads. However, these two types of objects usually present Fig. 15. Histograms of spectral features.
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TABLE V
CLASSIFICATION ACCURACIES OF SPECTRAL FEATURES

analogous spectral features in the HSRRS image. Hence, other
features are needed to discriminate them. In Chinese cities,
buildings and roads have typical shape characteristics. Fig. 5
illustrates a sample QuickBird image of Beijing city. This
experiment tested different values for the three parameters of
PSI: T1, T2, and D, in order to detect their influence on the
algorithm. There are three object types in Fig. 5: buildings,
roads, and trees. Although buildings and roads are spectrally
similar, they vary in their shapes. The numbers of training and
testing pixels of the three types of objects are listed in Table I.

The parameter D indicating the total number of directions
of PSI was detected first. As mentioned in Section II, when
the value of D increases, the difference of PSI values for
pixels in the same shape area decreases. In this experiment,
the PSI features are regarded as an additional band of the
three spectral RGB bands, the dimension of the input feature
vectors is four, and the classifier used herein is the MLC as
the performance of feature space is concentrated here. All
the input features were preprocessed employing the two steps
of normalization. The classification results with different D
values are shown in Table II. As D increases, the classification
accuracies of buildings and roads are also found to increase.
Nonetheless, the accuracy of trees remains nearly at the same
level as they have no apparent shape features; the classification
results have not been influenced with the input of PSI. This test
indicates that D is a parameter representing the capability of
PSI for shape feature description, which can be demonstrated
in Fig. 6.

Next, the parameter T1 indicating the maximum spectral
distance between the centric pixel and its surrounding pixels
was detected. The value of T1 should be adjusted in accordance
with the different image features. If the homogeneous area or
the same shape area displayed varying spectral information,
the value of T1 should be set to a larger number. As shown
in Fig. 5, the building’s roof facing to the sunlight presents a
larger spectral value than the other sides with less sunlight, and
the vehicles on the roads also influence T1. This signifies that
a lager value of T1 may result in better classification accuracy.
Fig. 7 proves this. Similar to the situation of D, when the value
of T1 ranges from 10 to 130, the classification accuracies of
buildings and roads increase clearly, and the accuracy of trees
remain almost the same.

Finally, the parameter T2 indicating the maximum spatial
distance between the centric pixel and its surrounding pixels
was detected. T2 value is critical in discriminating objects of
different shapes. The relationship between the Kappa coeffi-
cient and T2 is shown in Fig. 8.

When the value of T2 ranges from 110 down to 30, the Kappa
coefficients slowly escalate to the maximum value, and then
Kappa decreases sharply to the minimum with the value of T2

Fig. 16. Orientation-independent WT feature.

being from 30 to 5. It is noted that at 30, T2 is approximately
the average of the width and length of the buildings in Fig. 5.
If T2 is small to some extent, PSI features are not capable
of discriminating the objects with different shapes. As Fig. 8
shows, the classification accuracies decrease sharply when the
value of T2 ranges from 30 to 5.

Fig. 9 shows three classification maps of Fig. 5. Fig. 9(b)
displays the result using spectral and PSI features withD = 20,
T1 = 100, and T2 = 30, and Fig. 9(c) the result using spectral
and PSI features with D = 20, T1 = 100, and T2 = 5.

Fig. 9(a) demonstrates the obvious misclassification of spec-
tral features, whereas the results in Fig. 9(b) and (c) show
a considerable improvement over the spectral classification.
Comparing Fig. 9(b) and (c), it is apparent that the parameter
T2 is also a scale factor of PSI. A larger value of T2 [Fig. 9(b)]
can identify larger objects but overlooks some smaller objects.
A smaller value of T2 [Fig. 9(c)] can identify smaller objects
such as the narrow roads between buildings, whose width
approximately equals T2, about five pixels. Another dataset
was added here to discuss the dependence of PSI to the local
structural pattern and its multiscale effect. Fig. 10(a) shows a
typical residential area in Beijing, consisting of low and dense
houses in the old city area, and some communities with high
buildings and green covers in the new developing region. The
image size is 545 × 535 pixels, and it displays multiscale shape
features of objects. The features employed here also include the
RGB and PSI. The classification maps with different values of
T2 are listed in Fig. 10(b)–(d). T2 was given considerable atten-
tion because it was the scale factor of PSI critical to multiscale
objects. The relationship between the Kappa coefficient and T2

is charted in Fig. 11, where similar results are observed: there
are apparently misclassifications with only spectral signals as
input; when T2 increases from 3 to 10, the Kappa curve grows
to the zenith, and after that the curve fluctuates to another sum-
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TABLE VI
CLASSIFICATION ACCURACIES OF SPATIAL FEATURES WITH RGB BANDS

TABLE VII
CONFUSION MATRIX OF THE CLASSIFICATION RESULT FOR FIG. 14(d)

mit with T2 = 40. Subsequently the curve descends gradually
to a stable value, which remains above 0.56 even though T2

ranges greatly from 70 to 200. Note the two T2 values (10
and 40) corresponding to the two summits in the curve, which
are just the sizes of low and high buildings, respectively, in the
image. Accordingly, it can be found that PSI with an invariable
T2 cannot describe multiscale characteristics of objects at the
same time; however, some multiscale profiles [10], [11] can be
constructed to overcome this deficiency. This will be explored
in our future work.

In the aforementioned curve, the maximum value is about
0.61, and the minimum is 0.56. Considering the Kappa co-
efficient of spectral features classification that is 0.48, it can
be found that the appropriate parameter range to achieve an
apparent accuracy increase is wide comparing to the results of
the spectral classification.

B. Experiment2—Fusion of PSI and ICA

The purpose of this experiment is twofold. The first is to
compare the classification results using different spatial features
to demonstrate the effectiveness of PSI features. Second, it
illustrates that the combination of the shape features extracted
by PSI and the spectral features extracted by ICA can facilitate
HSRRS data classification.

Another QuickBird image of the Beijing city was used.
Fig. 12 shows the image (495 × 317 pixels), replete with
available ground truth data. This image presents a typical
urbanized area in Beijing, which includes a water body, long,
and wide roads, low and dense buildings, bare soil, grass, and
high trees. The key challenge in classifying this image lies in
the confusion among roads and buildings, water and shadow,
grass and trees, bare soil and buildings, and bare soil and roads
and the uncertainties arising thereof.

In this experiment, the training samples were selected at ran-
dom. The accuracy estimation was based on the reference pixels

Fig. 17. Increase of accuracy from original RGB spectral bands, to RGB and
the spatial information, PCA and the spatial information, and ICA and the
spatial information using WT, GLCM, and PSI, respectively.

independent of the training data. The image was classified into
seven classes, namely water, tree, grass, building, bare soil,
road, and shadow. The numbers of training and testing pixels
in each class are listed in Table III, and the available reference
data are shown in Fig. 13.

The classification maps using different shape and spectral
features are shown in Fig. 14. Fig. 14(a) shows many uncer-
tainties in the classification map that employs only spectral
features. These significant misclassifications are between ob-
jects of similar spectral signatures such as building–road, and
tree–grass. This is also illustrated by the confusion matrix in
Table IV. Fig. 14(b) shows the classification map with ICA
replacing the original spectral bands. PCA and ICA can be
regarded as transformed spectral features, which are utilized
to reduce the complexity distribution and heterogeneity of
original spectral bands. Three histograms of RGB, PCA, and
ICA are compared in Fig. 15, where clear, stable, and less
variable spectral distribution are observed from PCA and ICA
images. Their classification accuracies are listed in Table V.
Upon comparing the results of RGB and ICA, it is noted that
the classification accuracies of grasses and trees are improved,
hence contributing to an increased accuracy by 17%.
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TABLE VIII
CLASSIFICATION ACCURACIES COMPARISON BETWEEN MLC AND SVM

Both ICA and PCA can reduce the correlation among the
different spectral bands, but the accuracy increase from PCA
to ICA is only 1.3%. This is not apparent because only three
spectral bands are available, and there is no obvious meaning
of statistical independence in this case.

Due to the inadequacy of spectral information for discrimi-
nating different objects, spatial features were added to the clas-
sifier. For purposes of comparison, the spatial features extracted
by GLCM and WT were also employed. The feature images
of GLCM were acquired using a 7 × 7 window displacement
of one pixel, and multiple texture measures such as variance,
dissimilarity, mean, and contrast [1] were calculated based on
the first primary component (PC1) of RGB bands. Four co-
occurrence matrices in four directions were averaged, and so
just one additional feature band of GLCM can be obtained. The
WT feature band was also acquired based on PC1. Here, an
8 × 8 moving window was utilized, and the entropy measure
was employed to extract the features of four subchannels [1].
For the purpose of fair comparison, an orientation-independent
WT texture feature was constructed with the parameters illus-
trated in Fig. 16

F (x, y) =
E(AP )

E(D) + E(H) + E(V )
(13)

where E is the entropy measure, F (x, y) represents the WT
feature value of pixel (x, y), and E(AP ), E(V ), E(H), E(D)
are the entropy values of the four subimages obtained by the
WT at level 1. The spatial features extracted using LWEA were
then compared with PSI. The two-band length–width feature
images obtained using LWEA were added into spectral bands
as the input of the classifier [8].

All the spatial features were normalized using the (7) and
(8), and these features were fused with RGB bands based on
SVM. Their classification accuracies are listed in Table VI,
which shows that the features of GLCM, LWEA, and PSI can
supplement the spectral information and describe the structure
of objects effectively, whereas WT is unable to.

The highest accuracy was achieved by PSI as its feature band
can enhance the homogeneity of neighborhood using the con-
textual information and describe the shape feature effectively.
The classification map of PSI and RGB based on SVM is shown
in Fig. 14(c).

The high accuracy of classifying buildings indicates that
PSI is a good shape descriptor; however, features based on
PSI could not completely exploit the spectral information si-
multaneously. When PSI and original RGB bands were used
together as input, the road–building classification of showed a
promising improvement. Nevertheless, the results of tree–grass
became worse. Consequently, some transformed spectral bands

TABLE IX
CLASSIFICATION ACCURACIES FOR SPECTRAL FEATURES OF FIG. 10(a)

obtained by PCA or ICA were introduced to attain better spec-
tral classification accuracy. Additionally, this offers strength-
ened spectral information to reduce the complex distribution
and heterogeneity in the original RGB bands and enlarge the
contrast between objects and background. The classification
map in Fig. 14(d) and the confusion matrix in Table VII reveal
an improvement which maintains the accuracy of buildings
while increasing those of bare soil and grass.

In this case, the accuracy is enhanced in two stages. In the
first stage, the increase is due to the input of spatial features, and
in the second stage, the increase is caused by the introduction of
transformed spectral information such as PCA and ICA. These
enhancements are shown in Fig. 17 with different combinations
of spatial features.

For comparisons, MLC was employed as the fusion classifier
of PSI and ICA features, and all the inputs were also normalized
in advance. The accuracy statistics of Table VIII shows that
SVM has a better capability of interpreting complex input
features than MLC. This is due to the fact that the distribution
of multiple features in the feature space may not be normal and
SVM overcomes the defect of MLC where the dominant effects
of spectral information may occur.

In order to verify that the integration algorithm based upon
both PSI and ICA works stably, the image of Fig. 10(a) was
also tested. First, the classification results for spectral features
including RGB, PCA, and ICA are shown in Table IX, in which
ICA and PCA really acquire the same accuracy. In this test,
the accuracy improvement is not very apparent. The Kappa
coefficients of PCA and ICA are higher than that of RGB by
just 0.05. Subsequently, the spatial features were investigated.
In this test, the classification results were obtained based on
the respective spatial measures and the RGB bands fused by
SVM. Comparable spatial features included the variance, mean,
dissimilarity, and contrast measures of GLCM; the two bands
LWEA features; the length and width bands that are separate
features of LWEA [8]; and also, the orientation-independent
WT feature. All the feature bands had to be normalized in
advance. The classification statistics are listed in Table X,
where the PSI obtains the best result. The accuracy increase
from LWEA to PSI verifies that more direction lines can extract
the contextual features more effectively. Considering that PSI
has only one feature band but LWEA has two, so the proposed
PSI is a meaningful extension of the latter.

At last, the integration of PSI and the transformed spec-
tral bands based on SVM were tested. Results are shown
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TABLE X
CLASSIFICATION ACCURACIES FOR SPATIAL FEATURES OF FIG. 10(a)

TABLE XI
CLASSIFICATION ACCURACIES FOR THE INTEGRATION

BETWEEN PSI AND PCA OR ICA

in Table XI. Similar conclusion is drawn that the Kappa co-
efficient is slightly improved when ICA is employed.

VI. CONCLUSION

A shape feature index PSI, which presents a novel extension
to LWEA, was proposed in this paper. PSI can effectively
describe the contextual information through a simple method.
This is especially true considering the huge quantity of HSRRS
data. The proposed PSI leads to a notable increase of classifica-
tion accuracy as compared to other spatial measures. The three
parameters of PSI were also calibrated.

PCA and ICA have been utilized to extract spectral features
in order to replace the original spectral signals in the classifi-
cations. In the experiments, ICA performed just slightly better
than PCA because only a few spectral bands are available. How-
ever, it is exciting to find that the transformed spectral features
can improve the classification accuracy with original bands for
the multispectral images with the high spatial resolution.

In addition, an efficient algorithm capable of swiftly inte-
grating spatial and spectral features using SVM has been also
developed. This is based on the recognition of the fact that
only spectral or spatial features are inadequate for classifying
HSRRS data. The approach of a single classifier with multiple
features was attempted and in this way, the input features should
be normalized beforehand, and then SVM is employed to avoid
the spectral dominance effect in the feature space. Our exper-
iments showed that the combination of transformed spectral
bands such as PCA or ICA and PSI based on SVM performed
well. A single classifier cannot fully exploit the spectral and
spatial features, yet it is a good approach providing that both
computation time and accuracy are considered. While the use
of PSI in conjunction with PCA or ICA and SVM improves
the classification accuracy considerably, PSI also has some
weakness. For example, it provides contextual information with
a single scale; however, it could be overcome by the method of
multiple profiles [10], [11] with different values of T2. This will
be investigated in our future work.
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