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An Active Relearning Framework for Remote
Sensing Image Classification
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Abstract— Classification is an important technique for remote
sensing data interpretation. In order to enhance the performance
of a supervised classifier and ensure the lowest possible cost of
the training samples used in the process, active learning (AL)
can be used to optimize the training sample set. At the same
time, integrating spatial information can help to enhance the
separability between similar classes, which can in turn reduce
the need for training samples in AL. To effectively integrate
spatial information into the AL framework, this paper proposes
a new active relearning (ARL) model for remote sensing image
classification. In particular, our model is used to relearn the
spatial features on the classification map, which contributes
significantly to enhancing the performance of the classifier.
We integrate the relearning model into the AL framework, with
the aim to accelerate the convergence of AL and further reduce
the labeling cost. Under the newly developed ARL framework,
we propose two spatial–spectral uncertainty criteria to optimize
the procedure for selecting new training samples. Furthermore,
an adaptive multiwindow ARL model is also introduced in this
paper. Our experiments with two hyperspectral images and two
very high resolution images indicate that the ARL model exhibits
faster convergence speed with fewer samples than traditional
AL methods. Our results also suggest that the proposed spatial–
spectral uncertainty criteria and the multiwindow version can
further improve the performance when implementing ARL.

Index Terms— Active learning (AL), classification, high
resolution, hyperspectral, relearning.

I. INTRODUCTION

IN RECENT years, a variety of supervised classification
methods have been proposed to increase the classification

accuracy when analyzing remotely sensed images [1]–[7].
However, classification performance is strongly dependent
on the quality of the samples used to train the classifier.
In the last few years, active learning (AL) methods have
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been successfully applied to efficiently select training sample
sets, by minimizing the number of training samples that are
necessary to keep the discriminative capabilities as high as
possible [8]–[11]. Starting from a small-size and suboptimal
training set, AL repeatedly selects the most informative unla-
beled samples, according to a certain criterion computed on
a model outcome. The chosen candidates are then presented
to the user, who determines their labels. These new queried
samples are then added to the training set. This procedure runs
iteratively until a stopping criterion is met, e.g., a predefined
accuracy level on an independent test set, or a given training
set size [12].

In this regard, how to define the uncertainty criterion is
crucial for AL heuristics, and this can be roughly defined as
the reciprocal of the confidence of a classifier on the label
assignment on an unlabeled sample set [13]. Thus, various AL
approaches differ in the definition of the uncertainty criterion
for the model. The first group of AL approaches is based
on multiclass-level uncertainty (MCLU), such as the support
vector machine (SVM). The samples distributed close to the
separating hyperplane are defined as the uncertain ones [10],
[14]–[16], i.e., the ones with lowest classifier confidence on
a given set of candidates. A second group of AL approaches
are based on a classifier that can output the posterior prob-
ability. In [17], the breaking ties (BT) criterion [17], [18]
was introduced to find the samples with the minimum differ-
ence between the two highest posterior probabilities. In [19],
the samples that mostly change the existing belief in the class
distributions were selected. A third group of AL approaches
define the uncertain samples as the ones that show the
maximum disagreement between the predictions of different
classification models. For instance, in [20], the entropy of the
predictions was used as the criterion to select new samples.
In [21], a multiview-disagreement-based AL framework was
used to define each subset of the feature space as a committee,
and the samples with the maximum disagreement between dif-
ferent committees were then selected as the most informative
samples.

As pointed out in [22] and [23], it is necessary to consider
a batch of samples in order to reduce the computational
burden and iterations. However, the pixels close to the border
of an object are usually mixed pixels. Thus, using only an
uncertainty criterion will inevitably result in sampling several
mixed pixels lying close to the discriminative hyperplane and
close to each other. To overcome such proximal sampling
issue, a diversity constraint is enforced. The unlabeled samples
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are clustered into many clusters, and only one sample in
each cluster can be chosen to represent the cluster. There are
different ways of selecting the most informative sample added
in the query sample set. For example, in [22], the centroid of
each cluster was chosen. In [23], the kernel k-means is used
to extract the centroid of each cluster, which has been proved
better results than k-means clustering way. In [20], the sample
with the minimum support vector (SV) distance in each cluster
was selected as the informative sample.

AL approaches have been widely used in remote sensing
imagery classification, and have demonstrated great potential
in improving the quality of the training sample set [24]. In par-
ticular, integrating spatial information into the AL framework
has been shown to be able to further reduce the number of
samples needed by the classifier and, at the same time, lessen
the time and effort of manual image interpretation by experts.

A commonly used approach for exploring spatial informa-
tion is to optimize the selection criterion for the classifier. With
the assumption that the training sample set should represent
the whole image (not only in the spectral domain but also
in the spatial domain), the distribution of the query samples
in the geographic space is also taken into consideration. In [25]
and [26], the uncertain samples selected from the spectral
domain were reselected in the spatial domain, and the samples
with a larger spatial distance to the current sample set were
identified as new query samples. This method for increasing
the distances between the query points generally encourages
the querying of fewer correlated and more representative
samples.

A second group of approaches aim at achieving AL in
a region-based manner. In [27] and [28], region-based AL
heuristics were developed to guide the sample selection toward
a limited number of compact spatial batches rather than
scattered points. In this way, the uncertainty can be evaluated
based on both the spectral and spatial domains. In [29],
the pixels located within a homogenous object were assumed
to be similar to each other, and thus this property can be
considered as the diversity criterion to encourage a spatially
uncorrelated sample set. In [30], with the assumption that the
samples belonging to the same clusters share the same label,
the homogenous patches were used as the reference to label the
new samples located in the same homogeneous patch. In [31],
the new samples were used to guide the process to generate a
more optimized hierarchical clustering tree.

The aforementioned AL methods use spatial information to
guide the selection of the new samples. The ultimate purpose
of selecting these new samples is to enhance the performance
of the classifier while minimizing the labeling cost. It is worth
noting that spatial features can be directly used as a source of
complementary information to further accurately describe the
similarity between samples is an appropriate approach.

In such a process, the improvement in the classification
accuracy is significant in the early iterations; however, when
the quality of the training sample set has increased to a
certain level, the learning rate of the AL process will start
to decrease. The separating hyperplane begins to adjust with
small change, and as a result, the classification accuracy
increases gently. Thus, we called this stage as “fine-tuning

state.” In this state, despite continually adding a comparable
number of samples, the improvement in the accuracy becomes
insignificant. Unfortunately, the time-consuming fine-tuning
state cannot be avoided due to the low starting accuracy,
which is usually much less than the given accuracy. Therefore,
in order to reduce the labeling cost needed for a given accu-
racy, it is crucial to improve the starting accuracy and shorten
the period of the fine-tuning state. To achieve that purpose,
a direct and powerful approach is to improve the predictive
performance of the classifier. To this end, instead of designing
complex classification algorithms, effective utilization of the
spatial information to further accurately describe the similarity
between samples is an appropriate approach.

In summary, an AL framework for remote sensing image
classification should not only select the most informative
samples according to the uncertainty from the spatial and
spectral domains, but should also construct a more powerful
classification model with sufficient consideration of the spatial
information. There are many ways to improve the classification
accuracy with the help of spatial information [3], [32]–[39].
The most common way is to extract spatial features on the
image, for example, morphology texture features [3], [32],
GLCM features [33], and so on. By adding spatial features,
the feature space can be optimized, and the similarity between
samples can be accurately described. Another kind way to
utilize the spatial information is based on the assumption that
spatial neighborhood samples prefer to share the same label,
for example, Markov random field (MRF) [36], condition
random field [37], and so on. And the third type is object-
based methods, which segment the spatially adjacent pixels
into spectrally similar objects and then conduct image analysis
on the objects as the minimum unit of information [38], [39].
Meanwhile, the semisupervised learning methods can also be
used to improve the classification map. And [40] proposed
the integration of concepts of AL and SSL, and as a result,
it jointly leverages the advantages of both approaches.

In this paper, we focus on extracting spatial features to
improve the classification accuracy. In order to enhance the
class separability and improve the classification accuracy for
each iteration in the AL process, a recently developed iterative
learning strategy, which is known as “relearning” [41], can
be integrated into the AL framework. The relearning model
aims to extract a new spatial feature that could describe the
spatial arrangement of the land-cover classes based on the clas-
sification map, and, therefore moreover, as reported in [41],
the classification accuracy can be dramatically improved
after only a few iterations, with the aid of the primitive
co-occurrence matrix (PCM) considered in the relearning
process. We should note that the improvement in classification
accuracy is achieved without adding additional samples into
the classifier. Thus, the relearning model can improve such
accuracy at each iteration in AL. By integrating the relearning
model into the AL framework, we propose a novel application,
called hereinafter “active relearning” (ARL). It should be
stressed that ARL is a new concept and not a simple combina-
tion of two methods. AL improves the classification accuracy
by adding new training samples in each iteration; on the other
hand, the relearning model can enhance the separability of



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: ARL FRAMEWORK FOR REMOTE SENSING IMAGE CLASSIFICATION 3

different land-cover classes according to the classification map
in each iteration in AL. We should also note that the ability to
enhance the separability can be constantly increased because
of the improvement of the classification map as the iterations
are increased. Furthermore, the relearning process results in
an improvement in the classification performance, by not only
improving the starting accuracy of the fine-tuning state in AL
but also speeding up the rate of the convergence process.

In order to improve the adaptability and stability of the
newly introduced ARL framework to different scenes, we also
propose an adaptive window size algorithm, the so-called
adaptive ARL model, which can adaptively select an appro-
priate window size for each pixel to properly characterize the
spatial arrangement. On the other hand, in terms of designing
two kinds of uncertainty criteria from both the spatial and
spectral domains, we make full use of the homogeneous
regions’ output by the relearning model. A lower confidence
for a spatial region indicates probable serious misclassification
between these similar samples, and thus sampling these uncer-
tain regions can help to effectively distinguish these similar
samples and make the discriminant hyperplane more accurate.
Thus, we consider both the uncertainty of the spatial regions
and the uncertainty of the unlabeled samples.

In summary, when only spectral information is used,
the learning rate of AL will fall into a fine-tune state at
a lower accuracy level, which will waste large number of
samples in the subsequent iterations. Thus, spatial information
is necessary for AL process. The relearning model is a
novel spatial feature extraction way, and we first proposed
the concept of “ARL,” which embeds the relearning process
into the AL framework in an iterative manner. Under this
framework, we can improve the performance of AL in two
ways: 1) we propose an adaptive window size to enhance the
stability and adaptability of the relearning model and 2) we
propose a new spatial–spectral criterion to select new samples
under the ARL framework.

The remainder of this paper is organized as follows.
Section II introduces the background knowledge. Section III
describes the newly proposed ARL framework, which consists
of two parts: 1) the spectral–spatial uncertainty strategy and
2) the adaptive multiwindow ARL model. Section IV presents
the experimental results. Section V concludes this paper with
some remarks.

II. BACKGROUND

This section introduces the background to the relearning
model and the AL framework, based on which we propose a
new ARL method.

A. Relearning Model

The relearning model aims at optimizing or relearning the
labeling that is derived from an initial classification, according
to some implicit rules related to the spatial arrangement of the
image primitives [40].

Let us consider a remote sensing image I = {xi }N
i=1, which

is composed of N samples (arranged in ncol columns and
nline lines) with ns spectral bands. The classifier trained by

Fig. 1. Flowchart illustrating the relearning model.

the given training set L trn is deployed to provide classification
map IC , which contains nc information classes. Based on the
classification IC , PCM feature IP = {pi }N

i=1 can be generated.
In each PCM feature pi , the element chct calculates the co-
occurrence relationship between class h and class t in the s×s
window centered by xi . This co-occurrence relationship can be
represented by the times of co-occurrence between class h and
class t. And h, t ∈ {1, 2, . . . , C}, and thus there are nc × nc

elements in the pi .
As shown in Fig. 1, with the inclusion of the PCM fea-

ture IP , Isp represents the composed image when stacking I
and IP . Based on the new data representation, the classifier
is retrained and the new classification map I ∗

C is generated by
assigning a predicted label to each sample in imageIsp. IC is
updated by I ∗

C , and the process of relearning is repeated until
the difference between IC and I ∗

C is minimized.
The basic principle of the PCM is illustrated in Fig. 2. Its

calculation is described in the following steps.
Step 1: The classes defined in classified image IC are

viewed as the primitives of the image, providing an implicit
representation of a scene.

Step 2: For each sample xi , the PCM feature can be
calculated based on the classification map IC . In the win-
dow centered at sample xi , cht,dir represents the number of
times that classesh and t occur in the given window, with
dir. And dir = (0◦, 45◦, 90◦, 135◦,180◦, 225◦, 270◦, 315◦),
h, t ∈ {1, 2, . . . , nc}.

Step 3: The element cht on all directions is summed as
follows:

cht =
∑

dir

cht,dir. (1)

And pi = {cht}nc
h,t=1, which means that pi is the set of cht

in the given s × s window centered at xi .
Step 4: The PCM feature can be represented by Ip =

{pi }N
i=1. Thus, the spectral feature I and PCM feature IP are

combined to generate new representation. And based on the
training sample set L trn, the postclassification map I ∗

C can be
generated.

It is important to note that the relearning model can suppress
the pixelwise classification noise (salt-and-pepper) and smooth
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Fig. 2. Illustration of the PCM. PCM feature was extracted on the classification map Ic . There are two classes in Ic . The window size is set as 3. And we
calculate the occurrence of class pair [c11, c12, c21, c22] on eight different directions. And then, we sum the occurrence value on all the directions. For the
sample x33, c11 = 4, c12 = 10, c21 = 10, and c22 = 16. Thus, the PCM feature for x33 is [c11, c12, c21, c22] = [4, 10, 10, 16].

Fig. 3. AL procedure.

the raw classification. More significantly, the relearning model
can also reduce misclassification (i.e., enhance class separa-
bility) by learning the implicit correlations or rules from the
spatial arrangement of the labels and the class outputs within
a neighborhood.

B. Active Learning

We first describe the overall AL framework. As shown
in Fig. 3, AL is carried out in an iterative way, where
the supervisor S interacts with the system by labeling the
most uncertain samples from the pool U at each iteration.
At the first stage, an initial training set L trn

0 with a few
labeled samples is used for training the classifier G. After
initialization, the uncertainty criterion F is used to select a set
of uncertain samples. Then, based on the diversity criterion D,
the most representative samples are selected from the uncertain
samples. The supervisor S assigns the true class label yi to
these new selected samples. These new labeled samples Titer
(where iter refers to the iteration number) are then added to
L trn

iter(L trn
iter = L trn

iter−1 + Titer), and the classifier G is retrained
using the updated training set. L tst is the test sample set.
This closed loop of querying and retraining continues until
the classification accuracy of L tst is higher than the given
accuracy.

The uncertainty criterion and diversity criterion used in this
paper are further described as follows. The uncertainty is eval-
uated by the confidence of the classifier in correctly classifying
the considered samples. In this paper, the SVM [42] and sparse
multinomial logistic regression (SMLR) [43] are used as the
classifiers to test the performance of the ARL framework.
MCLU is adopted based on the SVM classifier used to analyze
the uncertainty within the one-against-all (OAA) architecture.
The MCLU technique selects the most uncertain samples

Fig. 4. Removing the redundancy in the uncertain sample set. The filled cir-
cles represent the uncertain samples selected by the uncertainty criterion, and
they are divided into many clusters. The samples closest to the discrimination
plane in each cluster are selected as the most representative ones.

according to their distance to the hyperplanes of the binary
SVM classifier with the OAA strategy. Meanwhile, the BT,
which focuses on analyzing the boundary regions between two
classes, is used as the uncertainty criterion for SMLR, in order
to obtain more diverse sample sets. The aforementioned uncer-
tainty criteria are described in detail in the following.

1) Multiclass-Level Uncertainty: For the samples xi ,
the distance value to the n hyperplanes can be represented
by { f1(xi ), . . . , fn(xi)}. The difference between the first- and
second-largest distance values to the hyperplanes can then be
represented as

di = fr1 max(xi ) − fr2 max(xi ). (2)

If di is small, the decision for r1max is not reliable, and there
is a possible conflict with class r2max . Therefore, the uncer-
tainty of xi is high.

2) Breaking Ties: The BT criterion focuses on analyzing
the boundary regions between two classes, with the goal
of obtaining more diverse sample sets [23]. Suppose pia
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Fig. 5. Proposed ARL framework.

is the largest and pib is the second-largest probability for
a sample xi , where ia represents the index of the largest
probability for sample xi and ib represents the index of the
second-largest probability for sample xi . The decision criterion
is then

di = pia − pib . (3)

Intuitively, if the value of di is small, the tie between pia and
pib is strong, which indicates that the classification confidence
is low.

We sort di by ascending order and select the nspectral samples
in the front part of the sorting as the new samples, which are
represented by Titer, with iter representing the iterations.

Clustering-based diversity (CBD) is used as the diversity
criterion in this paper. As shown in Fig. 4, k-means clustering
is used to divide the uncertain samples Titer into a series
of clusters Citer . In [23], k-means clustering in the kernel
space is used to find the clusters. In the diversity criterion,
it selects the batch of samples at each iteration according to
the identification of the most uncertain sample of each cluster.
And this way has been performed better than selecting the
center of the cluster, which is called enhanced CBD (ECBD).

III. ACTIVE RELEARNING

This section introduces the newly proposed ARL model.
As mentioned above, the relearning model can effectively
enhance the performance of the classifier by describing the
spatial arrangement; as a result, the accuracy of the classifica-
tion map can be significantly increased. However, the relearn-
ing model changes only the data representation, and does not
update the labeled sample set. At this point, the AL model can
enlarge the training sample set in an interactive way with the
classifier. Thus, we can utilize the relearning model and the
AL model to jointly improve the classification accuracy.

As shown in Fig. 5, the proposed ARL framework can be
briefly described as follows. In the beginning, it is classified
with the initial training sample set L trn

0 , generating raw clas-
sification map IC . PCM feature Ip can be generated by the
relearning model based on classification map IC . The new
representation of can be transferred as Isp by stacking the
spectral bands Is and the PCM feature Ip . Thus, the new
classification map I∗

C can be generated with the same training
sample set. At this time, we test the accuracy of I∗

C using test
sample set L tst. If the classification result has achieved a given

accuracy, the AL process can be stopped, and classification
map I∗

C is the final classification map. If the accuracy is less
than the given accuracy, we select the most uncertain samples
from unlabeled sample set U .

Algorithm 1 Proposed ARL Framework
Inputs:
I: the image to be classified;
Ltrn

0 : initial training sample set;
Ltst : test sample set;
U : unlabeled sample set;
t : number of new samples added to Ltrn at every iteration
of the AL process;
size: the window size to caculate the PCM feature;
Output:
Classification map I∗

C

Repeat
1. Train the SVM classifier with the current training

set Ltrn , while estimating its free parameters by cross
validation, and classify the image to obtain classification
map IC ;

2. Calculate the PCM feature based on classification
map IC and retrain the classifier to obtain the new classifi-
cation map I∗

C ;
3. Select the most informative sample set Titer accord-

ing to the uncertainty criterion and the diversity criterion;
4. Label the selected sample set Titer ;
5. Add the labeled samples Titer to the training set

Ltrn and remove them from U
Until the accuracy of I∗

C obtains the given accuracy on Ltst

Under the newly introduced ARL framework, we make
full use of the homogeneous regions in I∗

C to optimize the
design of the uncertainty criterion. Based on both the region
and sample uncertainty, we introduce new spectral–spatial
uncertainty criteria to select the most informative samples,
which are described in Section III-A. On the other hand,
in order to improve the adaptability and stability of the ARL
process with regard to different scenes, we propose an adaptive
window size to measure the spatial arrangement, described in
Section III-B.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

A. Spectral–Spatial Uncertainty Criteria

Due to the smoothing effect of the relearning model,
the class labels present in the new classification map I∗

C
can show a form of homogenous representation in the local
regions. Therefore, we extract these homogeneous regions
according to the distribution of the class labels. We use region
grow algorithm to segment postclassification map to generate
patches. To guarantee the representativeness of the spatial
regions, we merge the regions whose number of pixels is
smaller than 40 pixels. Euclidean distance is used to describe
the similarity between the samples. We set the similarity
threshold value as 20.

The spatial confidence of each region is not only related to
the confidence of the pixels in each patch but also related to
the homogeneity of the class labels appearing on the original
classification map IC . The spatial confidence index dp j of each
region R j can be calculated as

dp j = var j ×
m j∑

t=1

dt j/m j (4)

var j = max(count j c)/m j (1 < c < nc) (5)

where m j is the number of samples in patch R j , count j c is
the total number of the cth class labels in patch R j , and nc

is the number of class labels. dt j is the uncertainty of the t th
sample in the j th patch on the raw classification map.

In this paper, we assume that uncertain samples with a
lower predicted confidence dt j , located in spatial regions with
a lower spatial confidence dp j , are more likely to be the infor-
mative samples for the remote sensing image classification.
Two different criteria are proposed to integrate the spatial
information in the process of training sample collection.

Algorithm 2 Spa1 Uncertainty Criterion
1. Compute the uncertainty of each sample xi based on

the spectral uncertainty criterion, and select the most
uncertain sample set Tspectral ;

2. Cluster the Tspectral sample set into nk clusters Kiter_i ;
3. Calculate the spatial uncertainty dp j of the homoge-

nous region R j which corresponds to the h-th sample
xh in Kiter_i ;

4. Select the samples with the smallest dp j in each Kiter_i

as the uncertain sample set Tspe_spa;

1) Similar to the traditional batch mode AL method [23],
the first step is to select a batch of samples based on the
spectral uncertainty. The second step is then to cluster
these samples into a set of clusters, with each cluster
represented by Kiter_i . We assume that sample xh in the
i th cluster Kiter_i corresponds to a homogeneous patch
R j with uncertainty dp j . The sample corresponds to the
smallest dp j in each cluster, which is selected to repre-
sent Kiter_i . Since this is the first way to combine the
spatial information, we refer to it as “Spa1.” Algorithm 2
summarizes the proposed selection strategy.

2) The spectral and spatial uncertainty can be consid-
ered simultaneously. Thus, we calculate the spectral

uncertainty and the spatial uncertainty for each sample
in the unlabeled set U . Considering sample xi in patch
R j , the new uncertainty can be represented as

dspi = di + dp j (6)

Thus, a batch of samples can be selected according to
the value of dspi . We then cluster these samples into many
clusters, and the most uncertain sample with the smallest
dspi in each cluster is selected as the most representative
sample. We call this selection strategy “Spa2.” Algorithm 3
summarizes the proposed selection strategy.

Algorithm 3 Spa2 Uncertainty Criterion
1. Compute the uncertainty of each sample xi based on

the proposed uncertainty and select the most uncertain
sample set Tspe_spa;

2. Cluster the Tspe_spa sample set into nk clusters Citer_s

(1 ≤ s ≤ NS);
3. Select the smallest dspi in each Citer_s as the uncertain

samples;

B. Adaptive Multiwindow Active Relearning Model

According to Section II, the relearning model can effectively
enhance the classifier’s performance because the local spatial
arrangement of the class labels is taken into consideration.
Since, in most cases, nearby pixels have a similar spatial
arrangement in local patches, the PCM features of nearby
pixels will exhibit high similarity. Consequently, the relearning
model often leads to a smoother classification result. Further-
more, describing the spatial arrangement in a local patch can
also enhance the separability between adjacent ground classes.

However, when the window size is set larger, the simi-
larity of the spatial arrangement between nearby pixels also
increases. As a result, the PCM features between nearby pixels
are more similar, which is not appropriate for distinguishing
the edges of ground objects. In contrast, if the window is set to
a smaller size (such as 3 × 3), then the similarity of the PCM
features between nearby pixels would be reduced. As a result,
a weaker smoothing effect would be applied, which is not
effective for noise removal purposes. However, in this case,
the edge information in the image can be better preserved.
Therefore, from the above analysis, we can see that a fixed
window size is not suitable for the whole image, and thus,
a small window size should be applied on the edges between
two ground classes, while a larger window size should be
applied in the homogenous regions.

To address this problem, in this paper, we propose a direct
way to search for the most suitable window size for each
sample.

As shown in Fig. 6, pixel 1 is located in a homogeneous
region and pixel 2 is located in the border area between two
objects of interest. The homogeneity of each sample xi can be
measured by calculating and comparing the label consistency
in different window sizes. The consistency is calculated by the
frequency of the occurrence of the central pixel’s label in the
local window.
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Fig. 6. Example of consistency in two situations.

For the classification map IC , in order to extract the main
structural information and suppress the influence of noise,
the PCM features extracted from the larger window size
(size0 = 13) on all the pixels are first used to generate
a smoother classification map I ∗

R . We therefore treat the
new classification map I ∗

R as the reference to calculate the
homogeneity of each sample.

According to the example in Fig. 6, we calculate the
consistency of the spatial arrangement with an increasing
window size. The label consistency can be calculated as

homoi =
nall_i∑

j=1

nsame_i/nall_i (7)

where nall_i = sizei × sizei and nsame_i is the number of
samples whose label is the same as xi in the local window. We
calculate homoi from the smallest window size (sizei = 3).
In most cases, when the window size becomes larger, homoi

becomes smaller due to the occurrence of other class labels.
Thus, we apply a threshold H (0 ≤ H ≤ 1) to the consistency
criterion: when homoi is less than H from the very start,
the corresponding window size gives the optimal one for
pixel xi .

As seen in Fig. 6, for pixel 1, the neighborhood samples
located in a 3 × 3 window show 100% consistency, those
located in a 5 × 5 window show 96% consistency, and those
located in a 7 × 7 window show 89.8% consistency. For pixel
2, the neighborhood samples located in a 3 × 3 window show
only 55.56% consistency. If we set the homogeneity threshold
as 0.8, the local window size for pixel 1 is 7 × 7, whereas the
window size for pixel 2 is 3 × 3.

When a smaller threshold H is used, a larger sizei is
generated. Thus, we set the bound value as sizei = size0
to avoid setting the value of H too small. Algorithm 4
summarizes the strategy adopted for determining the window
size for each pixel.

IV. EXPERIMENTS

Our experimental section is divided into four parts. First of
all, the remote sensing data sets used in the experiments are
introduced in Section IV-A. The following parts correspond to
the contributions of this paper. The main contribution is the
proposed ARL framework, and thus, we compare the perfor-
mance of the ARL model and the AL model in Section IV-B.
Under the ARL framework, we propose new spectral–spatial
uncertainty criteria and an adaptive multiwindow version, and
thus, we assess their effectiveness in Sections IV-C and IV-D,
respectively.

Algorithm 4 Proposed Multiwindow Relearning Model
Inputs:
IC : the raw classification map;
H :the threshold of the homogeneity of neighborhood
samples;
Outputs:
The si zei of each sample xi

The PCM feature of each sample xi

Set the window si ze0 = 13, calculate the PCM feature based
on classification map IC , and retrain the classifier to obtain
the new classification mapI ∗

R 'G
For each sample xi

Initialization:
si zei = 3;
Repeat

1) On the reference classification map I ∗
R , calculate the

label homogeneity homoi of the neighborhood samples
located in window si zei × si zei ;

2) If the homogeneity of the neighborhood samples is
larger than the given threshold: homoi > H , increase
the window size: si zei = si zei + 1;

Until homoi ≤ H or si zei = si ze0
Calculate the PCM feature of xi with the window si zei ×
si zei .

A. Data Description

Experiments were conducted on a series of remote sensing
data sets to validate the performance of the proposed method.

1) Hyperspectral Data Sets: The airborne visible infrared
imaging spectrometer (AVIRIS) image collected over the
Indian Pines test site is a widely used hyperspectral data
set for classification applications. The image consists of
145×145 pixels, with 220 spectral bands [see Fig. 7(a)],
and contains 12 crop types and a total of 10 171 labeled
pixels for algorithm testing. Classification of this image
is a very challenging problem because of the highly
mixed class signatures and the unbalanced number of
labeled pixels per class [44].

2) The second hyperspectral image data set was acquired
by the airborne reflective optics system imaging spec-
trometer and covers an urban area of Pavia, northern
Italy [see Fig. 7(b)]. The image scene, with a size
of 610 × 340 pixels, is centered at the University of
Pavia. After removing 12 noisy/water absorption bands,
103 spectral channels were utilized in the experiments.
Nine ground-truth classes, with a total of 43 923 sam-
ples, were considered in the experiments. Several groups
of classes in this data set have similar spectral properties,
such as trees-grass and roofs-trails-roads, which reduces
the spectral separability and increases the classification
difficulty.

3) HSR Data Sets: High spatial resolution (HSR) data pro-
vide detailed ground information. In this paper, two HSR
data sets were used for the validation and comparison of
the various algorithms addressed in this paper. For the
QuickBird Wuhan and WorldView-2 Hainan data sets,
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Fig. 7. Data sets and their reference samples. (a) AVIRIS Indian Pines image.
(b) Pavia University image. (c) QuickBird Wuhan image. (d) WorldView-2
Hainan image.

Fig. 8. Trends of the overall accuracy of AR and ARL with regard to the
training iterations.

the challenge when interpreting these HSR images is to
discriminate between the spectrally similar classes, e.g.,
grass-trees, water-shadow, and roads-buildings-soil.

We separate the data set into two disjoint sample sets:
learning set and testing set. The training samples are selected
from the learning set, while the test set was used to test the
performance of different AL methods. We use two ways to sep-
arate the data set. For the hyperspectral data set, we separate

TABLE I

NUMBER OF LEARNING AND TEST SAMPLES USED IN EXPERIMENTS.
(a) AVIRIS INDIAN PINES IMAGE. (b) PAVIA UNIVERSITY IMAGE

the data set in a random way. This randomly separating way
can make train sample set and test sample set satisfy the same
distribution. While for the HSR data set, we separate the data
set in the way of selecting region of interest (ROI), which
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Fig. 9. Original classification maps IC generated in different iterations on AVIRIS data set. The first number denotes the iterations, the second number is
the number of samples used for the classification, the third number is the classification accuracy, and the fourth number in brackets is the improvement in
accuracy achieved in the last 20 iterations.

Fig. 10. Classification maps I∗C generated in corresponding iterations on AVIRIS data set.

Fig. 11. Original classification maps Ic generated in different iterations on PAVIA data set. The first number denotes the iterations, the second number is
the number of samples used for the classification, the third number is the classification accuracy, and the fourth number in brackets is the improvement in
accuracy achieved in the last 20 iterations.

is shown in Fig. 7(c) and (d). And this selecting way is more
closed to practical application. The numbers of training sample
sets and testing sample sets are shown in Table I.

B. Comparison of the Performance of ARL and AL Models

The objective of this section is to show the superiority of
the proposed ARL model over the AL model. To show the
performance in a more intuitive way, we use the AVIRIS
Indian Pines data set as an example. The classifier is the SMLR
algorithm. The sparsity parameter was empirically fixed to
0.001 and the smoothness parameter to 2. The learning and
test samples are shown in Table I(a).

We use 200 training samples as the initial samples. And
we add 20 samples in each iteration for the AL and ARL.
The window size of PCM feature is set as 7. The overall
accuracy on the test sample set in each iteration can be shown
in Fig. 8. Figs. 9 and 10 present the classification map for
every 20 iterations.

As shown in Fig. 8, the accuracy of ARL is significantly
higher than that of AL. One of the most important observations
is that the starting accuracy of the fine-tuning state of ARL is
about 90%, which is much closer to the full accuracy, whereas
the starting point of AL is only 73.5%. Furthermore, we can
see that within about 65 iterations, the fine-tuning state of ARL
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Fig. 12. Classification maps generated in corresponding iterations on PAVIA data set.

has finished and the learning process converges to the given
accuracy. However, the fine-tuning state of AL still continues
over 200 iterations.

We also show the evolution of classification map IC with the
increase in iterations in Fig. 9. First, the accuracy increases
in the first 20 iterations (22.13%), which is higher than the
following iterations. Meanwhile, between 40 and 60 iterations,
the rising tendency shows a steep fall (from 8.87% to 4.15%),
after which the falling tendency starts to show a steady state.
Comparing the classification maps with the ground truth,
the misclassifications on the first two classification maps
are widespread over the whole image, and some areas are
even totally classified to wrong classes. However, in the
third classification map (#40 iterations), which is in the fine-
tuning state, the misclassified pixels are more like speckles
distributed over the whole image. More importantly, from
the classification maps shown in the following classifications,
we can see that most of the new samples added in the process
of AL are used to overcome the specklelike noise on the
classification map IC . At this time, the direct benefits from
the spectral bands are very limited. However, the specklelike
noise can be removed with great precision by the relearning
model, which can be clearly observed from classification map
I∗

C in Fig. 10. As shown in Fig. 10, the third classification
map (#40 iterations) of the ARL process, with just the first
600 samples, can give a high accuracy (96.7%).

We also present the result of PAVIA_U data set in Fig. 11.
First, the accuracy increase in the first 20 iterations (12.37%)
is higher than the following iterations. Meanwhile, between
10 and 15 iterations, the rising tendency shows a steep fall
(from 4.45% to 1.32%). About 20 iterations, the overall
accuracy of classification map IC is 91.06%. However, we still
can find many noises on the classification map IC . As shown
in Fig.12, the overall accuracy of relearning model could get
97.03% by only 10 iterations. Thus, the relearning model can
get higher accuracy with less samples.

C. Effectiveness of the ARL Model and the Proposed
Spectral–Spatial Uncertainty Criteria

In this section, we focus on the ARL performance and the
proposed uncertainty criteria.

TABLE II

LEARNING ALGORITHMS INVESTIGATED IN THIS PAPER

1) Design of the Active Learning Experiments: In the exper-
iments, for all the data sets, all the available samples were
split into two sets, corresponding to learning set L trn and test
set L tst. The specific numbers of learning and test samples are
shown in Table II. The initial training samples were selected
randomly from the learning set U for both data sets, starting
with five samples per class; in each iteration, 40 most uncertain
samples are selected in the uncertain stage, and 10 samples are
selected after diversity criterion. Thus, 10 samples are added
at each iteration.

The AL algorithm runs until the accuracy of the learning
sample set achieved full accuracy. As the bound of the
ARL, full accuracy was achieved by the classification map
I∗

C generated with all the available sample sets. As the low
bound on the accuracy, passive learning (or random sampling)
was evaluated by random sampling from the pool of candi-
dates. The performances were assessed by the average overall
accuracy and its standard deviation in 10 independent runs.
In each run, the initial training samples were chosen randomly.

At each iteration, all the approaches sampled the same
number of pixels. In the experiments, SMLR algorithm and
SVM were used to evaluate the performance of compared
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Fig. 13. AL curves achieved on the AVIRIS Indian Pines data set with
different sample selection strategies.

methods. According to our experience, SMLR could present
better performance on the hyperspectral image, and SVM
does better on HSR image set. Thus, SMLR was used as the
classifier for the hyperspectral image set, while SVM was used
as the classifier for the HSR image set.

For the SVM classifier, a radial basis function (RBF) kernel
was adopted, and the values for the regularization parameter
C and the spread γ of the RBF kernel parameters were
chosen by performing grid-search model selection. For the
other classifier, SMLR, as noted in [17], the sparsity parameter
was empirically fixed to 0.001 and the smoothness parameter
to 2.

Batch mode selection was used in the experiments.
As mentioned in Section II, BT and MCLU, which are two
typical ways to select informative samples, were used as the
most basic ways to select new samples. ECBD [23] was
used as the typical method to remove the redundancy in
the uncertain samples selected by the uncertainty criterion.
Considering the structure of the batch mode selection, we
refer to the traditional batch mode AL models as BT-ECBD
and MCLU-ECBD. After we add the relearning models to
the AL process, we refer to them as BT-ECBD-PCM and
MCLU-ECBD-PCM. Furthermore, we used two selection
methods to consider the spatial information, Spa1 and Spa2,
and thus, we refer to the proposed methods as BT-Spa1-PCM
and BT-Spa2-PCM, which are based on the BT selec-
tion method, and MCLU-Spa1-PCM and MCLU-Spa2-PCM,
which are based on the MCLU selection method. PCM fea-
tures were added in the feature set, which could contribute to
improving the classification accuracy, as a result, reducing the
iterations of AL model. In Section IV-C2, we also compare
other ways to extract spatial features. For example, gray-
level cooccurrence matrix (GLCM) is used to extract the
texture information for image. Meanwhile, we also compare
the MRFs, which is an effective postprocessing way, since they
are able to smooth the classification. Thus, GLCM and MRFs
are also added into AL model to compare with PCM feature.
Table II shows the algorithms investigated in this paper.

2) Experimental Results: The experimental results obtained
for all the data sets confirm the superiority of the ARL model.
Compared with the AL model, the ARL model gives a faster
rate of convergence; at the same time, the converged accuracy
is higher than in the AL model.

Considering the AVIRIS Indian Pines image, the full accu-
racy for the SMLR classifier is equal to 98.2%. In Fig. 13,

Fig. 14. Comparison of the postprobability maps of the second iteration
according to the different strategies by adding 30 samples on the AVIRIS
data set. (a) Initial classification map in the first iteration (OA: 68.49%).
(b) BT-ECBD (OA: 72.31%). (c) BT-Spa1 (OA: 74.28%). (d) BT-Spa2
(OA: 75.67%).

the AL curves show the results as a function of the number
of training samples, averaged over 10 runs of the algo-
rithm, each with a different initial set. The shaded areas
represent the standard deviation over the 10 considered runs.
From the results shown in Fig. 13, it can be seen that the
uncertainty criteria considering the spatial uncertainty show
a better performance. BT-ECBD-GLCM and BT-ECBD-MRF
could get higher accuracy compared with BT-ECBD; however,
they are still lower than BT-ECBD-PCM. In particular, only
about 900 samples (19% of the entire set) are needed by
BT-Spa1-PCM, BT-Spa2-PCM, and BT-ECBD-PCM.

The performance of BT-Spa2-PCM is better than that of
BT-Spa1-PCM. In BT-Spa1-PCM, spectral uncertainty is first
used to select a batch of samples Tspectral from the unlabeled
set U , and spatial uncertainty is used to reselect these uncertain
samples from Tspectral. The spectral uncertainty therefore plays
a dominant role in BT-Spa1-PCM. In BT-Spa2-PCM, however,
the spatial uncertainty and spectral uncertainty are equally
important. Thus, BT-Spa2-PCM can give a more informative
sample set for the classifier.

To better understand the proposed strategies, a detailed
comparison of the selection of new training samples with
the different strategies is shown in Fig. 14, which depicts
the spatial confidence dp j for each pixel in the image.
Fig. 14(b)–(d) shows the new spatial confidence dp j after
adding 30 new training samples by the different strategies
(BT-ECBD, BT-Spa1, and BT-Spa2). We marked four regions
with low spatial confidence in the first iteration and observed
the improvement of these regions in the second iteration.

After adding 30 new training samples, the spatial confidence
in rectangle 1 improves using all three strategies. However,
when comparing the confidence improvement in rectangles 2
and 3, the superiority of BT-Spa1 and BT-Spa2 over BT-ECBD
is obvious. Furthermore, in rectangle 4, only BT-Spa2 shows
an obvious confidence improvement. Thus, BT-Spa2 shows
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TABLE III

OA, KAPPA, AVERAGE CLASS ACCURACIES, AND STANDARD DEVIATIONS (�) FOR (a) 10 AND (b) 50 ITERATIONS
OF THE AL PROCESS ON THE AVIRIS INDIAN PINES DATA SET

the best performance in selecting new samples, BT-Spa1 is
second, and BT-ECBD last.

The obtained results are shown in greater detail in Table III.
In particular, we consider the performances obtained after
[see Table III(a)] 10 and [see Table III(b)] 50 iterations of
the iterative process, which correspond to [see Table III(a)]
160 and [see Table III(b)] 560 samples used to train the
classifier, respectively. From the results in Table II, we can
see that BT-Spa1-PCM and BT-Spa2-PCM show higher classi-
fication accuracies than BT-ECBD-PCM. In the 10th iteration,
the improvement in overall accuracy based on BT-Spa1-PCM
is 2.3%, and for BT-Spa2-PCM, it is 4.3%. When the iter-
ations increase to 50, the accuracy difference between the
different selection strategies decreases, with improvements
in overall accuracy for BT-Spa1-PCM of 1.5% and for
BT-Spa2-PCM of 1.95%. From Table III, we can see that
BT-Spa2-PCM shows the highest improvement. Compared
with BT-ECBD-PCM, the superiority of BT-Spa1-PCM and
BT-Spa2-PCM is obvious in the early iterations.

For the Pavia University data set, SMLR was used as
the classifier, and the full accuracy for ARL is as high
as 99.2%. The Pavia University data set contains rich spa-
tial information, and Fig. 15 shows the learning curves
of the Pavia University data set. Once again, the pro-
posed BT-Spa1-PCM and BT-Spa2-PCM perform better than
BT-ECBD-PCM. And the performance of BT-ECBD-PCM is
better than BT-ECBD-GLCM and BT-ECBD-MRF. In particu-
lar, in the 19th iteration (about 273 samples), the improvement
of BT-Spa1-PCM and BT-Spa2-PCM is more obvious, at about
2% and 3%, respectively.

Fig. 15. Learning curves achieved on the Pavia University data set with the
different selection strategies.

Table IV shows the overall accuracy, kappa, and averaged
accuracy for each class, based on the different strategies after
10 iterations (145 samples) and 50 iterations (545 samples).
From the numeric comparison, in the 10th iteration,
the improvement in overall accuracy based on BT-Spa1-PCM
is 2.29% and the improvement based on BT-Spa2-PCM is
3.32%. When the iterations increase to 50, the improvement
in overall accuracy based on BT-Spa1-PCM is 1.4% and
the improvement based on BT-Spa2-PCM is 1.92%. Overall,
we can again see that BT-Spa2-PCM shows the best
performance.

The learning curves for the two HSR data sets are shown
in Fig. 16. For the QuickBird Wuhan data set, SVM was used
as the classifier, and the full accuracy of ARL is 98.41%. As
shown in Fig. 16(a), MCLU-Spa1-PCM needs about 400 sam-
ples to converge to full accuracy, and MCLU-Spa2-PCM
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TABLE IV

OA, KAPPA, CLASS ACCURACIES, AND STANDARD DEVIATIONS (�) FOR (a) 10 AND (b) 50 ITERATIONS
OF THE AL PROCESS ON THE PAVIA UNIVERSITY DATA SET

Fig. 16. Learning curves on the two HSR data sets with different selection
strategies. (a) QuickBird Wuhan data set. (b) WorldView-2 Hainan data set.

needs only 380 samples, whereas MCLU-ECBD-PCM needs
about 560 samples. As shown in Fig. 16(b), after adding
1000 samples, the full accuracy for ARL is 99.43%; how-
ever, the converged accuracy of MCLU-ECBD is about
97.21%, and the converged accuracies of MCLU-Spa1-
PCM and MCLU-Spa2-PCM are about 99.72%. We can

see that the relearning process can effectively improve
the converged accuracy. Meanwhile, the samples needed to
obtain convergence are clearly fewer than in the original
AL process.

The obtained results are shown in greater detail
in Tables V and VI. In particular, we consider the perfor-
mances obtained after [see Tables V(a) and VI(a)] 10 and
[see Tables V(b) and VI(b)] 30 iterations of the iterative
process, which correspond to [see Tables V(a) and VI(a)] 135
and [see Tables V(b) and VI(b)] 335 samples used to train
the classifier, respectively. For the QuickBird Wuhan data set,
in the 10th iteration, the improvement in overall accuracy for
BT-Spa1-PCM is 1.10% and for BT-Spa2-PCM, it is 2.36%.
In the 30th iteration, the improvement in overall accuracy
based on BT-Spa1-PCM is 1.07% and the improvement based
on BT-Spa2-PCM is 1.04%. BT-Spa2-PCM obtains the highest
accuracy in all classes. The accuracy comparison shows that
BT-Spa1-PCM and BT-Spa2-PCM can converge to a satisfac-
tory accuracy faster, with fewer samples.

Considering the WorldView-2 Hainan data set, in the
10th iteration, compared with BT-ECBD-PCM, the accuracy
improvement based on BT-Spa1-PCM is 0.33% and the
improvement based on BT-Spa1-PCM is 0.96%. In the 30th
iteration, the accuracy improvement based on BT-Spa1-PCM is
0.21% and the improvement based on BT-Spa1-PCM is 0.29%,
which is a smaller improvement than the results obtained
in the 10th iteration. We can see that the performance on
the two HSR data sets again proves the effectiveness of the
proposed ARL process and the corresponding spatial–spectral
uncertainty criteria.

We also compare the processing time of different AL
methods. There are two kinds of stop conditions for iterations.
The first one is that the overall accuracy on the test sample
set has achieved the given accuracy, while the second one is



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE V

OA, KAPPA, CLASS ACCURACIES, AND STANDARD DEVIATIONS (�) FOR (a) 10 AND (b) 30 ITERATIONS
OF THE AL PROCESS ON THE QUICKBIRD WUHAN DATA SET

TABLE VI

OA, KAPPA, CLASS ACCURACIES, AND STANDARD DEVIATIONS (�) FOR (a) 10 AND (b) 30 ITERATIONS

OF THE AL PROCESS ON THE WORLDVIEW-2 DATA SET

TABLE VII

PROCESSING TIMES OF DIFFERENT AL STRATEGIES (SECONDS)
WHEN ACHIEVING A GIVEN ACCURACY

that the iterations have got the maximum. Thus, we evaluate
the AL algorithms under these two kinds of the situations.

Table VII shows the processing time of AL curves under the
condition that when the overall accuracy is getting the given

accuracy, the iteration could stop. And the given accuracy of
AVIRIS and PAVIA_U data set is set as 96%. Meanwhile,
the given accuracy of QB and WV data set is set as 97.5%.
AL could not get the given accuracy on QB and WV data
sets. Table VII shows the processing time of AL under fixed
iterations.

From Tables VII and VIII, we can find that the processing
time of ARL is larger than AL when iteration times are
fixed. However, under the condition that the overall accuracy
should achieve the given accuracy, the processing times of
AL are larger than AL. Thus, we can find that though the
processing time of ARL per iteration is larger than ARL,
the total processing time is far less than the AL.

Comparing ARL and ARL + MultiSize, we could find
that the processing times of these two ways are close, which
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TABLE VIII

PROCESSING TIMES OF DIFFERENT AL STRATEGIES (SECONDS)
WHEN ACHIEVING FIXED ITERATIONS

Fig. 17. Classification image with two classes (distinguished by black and
white colors).

indicate that calculating the window size for each sample does
not costing much time. Comparing ARL and ARL + Spa2,
we can see that the processing times of two processing ways
are close. Thus, the processing time of running new uncertain
criterion is short. And we can find that ARL + spa2 needs less
iterations. And corresponding processing time to get satisfied
accuracy is least compared with other strategies in Table VII.

D. Performance of the Adaptive Multiwindow
(Multiscale) ARL Model

ARL enhances the performance of the classifier by consider-
ing the spatial arrangement of the labels. However, the window
size is the most influential parameter in the relearning model.
In this regard, we further propose an adaptive multiwin-
dow (multiscale) ARL model, which was validated by the
experiment.

1) Simulation Experiments: Simulation experiments were
conducted with a classification map with two classes, in order
to allow us to intuitively analyze the results.

Fig. 17 shows a classification map consisting of a black class
and a white class, where the black class shows rich structural
information and the white class consists of a homogeneous
patch, but with two outliers. This example demonstrates a
typical challenge for sizei to generate the PCM feature. On the
one hand, the spatial structure information and class separa-
bility should be well preserved, and in this case, the PCM
feature generated by a small sizei would be more suitable.
On the other hand, the noise and outliers should be removed
to correct the wrong classification, so a larger sizei would be
more suitable in this circumstance to smooth the area. Thus,
a simple and intuitive classification map was used to validate
the superiority of the proposed adaptive relearning model.

We compared the PCM features generated by the mul-
tisize window and fixed size window. The PCM feature
consists of three bands. In particular, band1 includes the
spatial arrangement of a class2–class2 pair, band2 represents a
class1–class2 pair, and band3 represents a class1–class1 pair.
We represent the PCM feature visually in Fig. 18.

Fig. 18. PCM feature map generated by a fixed window size and the
multisize window process (R: band1, G: band2, and B: band3). (a) sizei = 3.
(b) sizei = 5. (c) Multisize window process. (d) sizei for each pixel.

Fig. 19. Separability between the two classes when different window sizes
are used to generate the PCM feature. (a) ROI. (b) Sizei = 3 (dis = 0.4643).
(c) Sizei = 5 (dis = 0.1435). (d) Multiwindow (dis = 0.4601).

Fig. 20. Learning curves obtained using different window sizes for the Pavia
University data set.

First, we present the denoising effects of the PCM feature.
As shown in Fig. 18(a), when sizei is set as 3, the two
outliers are still apparent. As shown in Fig. 18(b), when sizei

is set as 5, the outliers can be removed; however, the border
between the two classes is obscured. As shown in Fig. 18(c),
the multiwindowsize PCM feature can not only preserve the
border between the two classes but also remove the outliers
in the classification map. Fig. 18(c) represents the window
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Fig. 21. Classification maps for the relearning algorithms with different window sizes for the Pavia University data set. (a) Raw. (b) Sizei = 3. (c) Sizei = 5.
(d) Sizei = 7. (e) Sizei = 9. (f) Sizei = 11. (g) Multiwindow. (h) SizeImage (H = 0.7). (k) Quantitative comparison.

size used for each pixel. Clearly, sizei = 3 and sizei = 5 are
suitable for the border between two classes, and sizei = 7 is
suited to the homogeneous regions.

To further investigate the separability between the two
classes with the PCM feature, we selected border regions
[the red and blue regions in Fig. 19(a)] between the two
classes as the ROIs. As shown in Fig. 19(c), when sizei = 5,
the PCM features of the blue regin on and the red region
are seriously confused. As shown in Fig. 19(b) and (d), when
sizei = 3 and the multiwindow process is used, the PCM
features of the blue region and the red region can be well
separated. This intuitive performance can also be proved by
numerical calculation. We calculated the Euclidean distance
between the mean vectors of the two classes. When sizei = 3,
the Euclidean distance is 0.4696, which is close to the distance
under the case when the multiwindow process is used. When
sizei = 5, the Euclidean distance is 0.1375, which is clearly
smaller than the cases above.

2) Real Data Experiments With the Adaptive Multiwindow
(Multiscale) Window ARL: This section describes the real
data experiments undertaken with the adaptive multiwindow
ARL model. Two typical high-resolution images were used to
validate the effectiveness of the adaptive multiwindow ARL
model.

The SMLR classifier was used for the Pavia University data
set and BT-Spa2-ECBD was used as the uncertainty criterion.

Meanwhile, the SVM classifier was used for the WorldView-
2 Hainan data set and MCLU-Spa2-ECBD was used as the
uncertainty criterion. We compared the adaptive multiwindow
ARL model with different fixed window sizes (sizei = 3, 5,
7, 9, 11, and 17). For the adaptive multiwindow ARL model,
parameter H was experimentally set as 0.7 for each iteration.
We discuss below the influence of H on the experimental
results.

For both data sets, starting from five samples per class
and adding 10 samples at each iteration, the ARL algorithm
was run until the learning sample set achieved full accuracy.
To show a more detailed comparison for each data set, we also
present the classification map in the 30th iteration for both data
sets.

For the Pavia University data set, as shown in Fig. 20,
the learning curves of the adaptive multiwindow ARL present
a faster convergence rate than the fixed window size cases.
In particular, when a larger window size is used, the model
shows a smoothing effect on the classification map. However,
when the window size is increased to 17, the performance of
ARL decreases.

A visual comparison of the classification maps is shown
in Fig. 21. The raw classification map shown in Fig. 21(a) was
generated by 345 samples in the 10th iteration. Fig. 21(b)–(f)
shows the classification maps generated by the relearning
process. When a smaller window size is used, there is still
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Fig. 22. Classification maps for the relearning algorithms with different window sizes for the WorldView-2 Hainan data set. (a) Original image. (b) Raw.
(c) Sizei = 3. (d) Sizei = 5. (e) Sizei = 7. (f) Sizei = 9. (g) Sizei = 11. (h) Multiwindow. (i) SizeImage. (k) Quantitative comparison.

extensive noise in the classification map. However, when a
larger window size is used, some detailed information disap-
pears. As shown in Fig. 21(g), since the proposed adaptive
relearning model can effectively determine the window size
for each pixel, it can give a more satisfactory classification
map, with less noise and richer ground detail. The sensitivity
of parameter H in the adaptive multiwindow ARL model
was also investigated, and is shown in Fig. 21(k). By setting
different values of H from 0.55 to 0.95, it can be seen that
the accuracy of the adaptive multiwindow ARL model is
consistently higher than the accuracy of the fixed window size.

Considering the WorldView Hainan data set, as shown
in Fig. 22, the classification maps produced by the adaptive
multiwindow ARL model can not only preserve the detailed
structures of the objects but also increase the separability
between classes, and hence improve the classification accu-
racy. To show the details in the image, three rectangles are
marked on the images. In the rectangle in the top of the image
in Fig.22(a), two small paths stretch onto the grass. In the
rectangle in the right of the image, there is a narrow green
belt in the middle of the road. Meanwhile, in the rectangle
in the left of the image, the shadow class is misclassified
as the water class on the raw classification map. From the
results shown in Fig. 22(b)–(g), the detailed information is still
obvious when the window size is smaller than 7. When the
window size is larger than 7, the road and the green belt are not
very clear on the classification map, but the misclassification
phenomenon between the water and shadow classes is reduced.
However, when the adaptive multiwindow ARL model is
used, the green belt and the two small paths are still clear,
and the misclassification is reduced. From this performance,
we can conclude that the adaptive multiwindow ARL model
can obtain a smoother and more accurate classification map
than when a fixed window size is used. As shown in Fig. 22(h),
it can be seen that the accuracy of the adaptive multiwindow
ARL model is consistently higher than the accuracy of the
fixed window size.

Considering the Worldview Hainan data set, as shown
in Fig. 23, the performance of multisize ARL is better than the
model with fixed window size. When the fixed window size is
getting larger, the overall accuracy is getting higher. However,

Fig. 23. Learning curves of the relearning algorithm with different window
sizes for the WorldView-2 Hainan data set.

when the window size was approaching 13, the accuracy began
to decrease.

V. CONCLUSION

Many researchers have paid close attention to improving AL
performance by incorporating spatial information for remote
sensing image classification. Most of the studies to date have
focused on how to select the most informative samples when
utilizing the spatial information, which is very important to
increase the AL rate. However, with the addition of spatial
information, the separability between similar classes can also
be enhanced. In this paper, we have proposed a novel ARL
model that embeds the relearning model into an AL frame-
work. On the one hand, the relearning model can optimize the
classification result by adding the PCM features, which are
generated by heuristically exploiting the spatial arrangement
between the class labels on the current classification map.
However, this improvement is limited by the quality of the
initial classification map. To improve the classification even
further, AL is utilized to update the training sample set
iteratively. Thus, AL improves the classification accuracy in
terms of increasing the training samples; meanwhile, it also
improves the classification result in terms of optimizing the
data representation. It should be underlined that AL and
the relearning model interact to promote each other. The
experimental results prove that the ARL model shows a faster
convergence speed with fewer samples.
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Under this framework, we have further improved the per-
formance of ARL in two ways. First, we have proposed
new spatial–spectral criteria to select new samples under the
ARL framework. The experimental results confirm that the
proposed spatial–spectral selection criteria can provide faster
learning rates than only considering the spectral uncertainty.
Second, we have proposed a strategy to adaptively calculate
the window size to enhance the stability and adaptability of the
relearning model. The experimental results also confirm the
effectiveness of this approach.
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