
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

Mapping Urban Areas in China Using Multisource
Data With a Novel Ensemble SVM Method

Xin Huang , Senior Member, IEEE, Ting Hu , Jiayi Li, Member, IEEE, Qing Wang,

and Jón Atli Benediktsson , Fellow, IEEE

Abstract— The mapping of urban areas at regional to global
scales is a crucial task due to its value for environmental monitor-
ing, habitat and biodiversity conservation, and decision-making.
In most current applications, two techniques (i.e., supervised
classification and data fusion) are widely applied in large-scale
urban mapping. However, the costly training sample collection,
inadequate data-source descriptions, and diverse urban char-
acteristics (e.g., shape, size, socioeconomic status, and physical
environment) are challenging problems for the urban mapping
approaches. In this context, aiming at effectively deriving accu-
rate urban areas at a large scale, we propose a novel ensemble
support vector machine (SVM) method which consists of three
steps: 1) the automatic generation of training data to reduce
labor costs; 2) the construction of an ensemble SVM model
to effectively combine the multisource data (including remote
sensing and socioeconomic data); and 3) an adaptive patch-based
thresholding technique to tackle the diverse urban characteristics.
The proposed method is employed to map urban areas of China
in 2005 and 2010, and the resulting maps are compared with the
existing urban maps for 287 prefecture-level cities. It is found
that our results present a satisfactory superiority, especially in
challenging small cities, with a significant improvement in median
Kappa (0.174 for 2005 and 0.203 for 2010). When incorporat-
ing moderate-resolution imaging spectroradiometer multispectral
data as an additional source, the Kappa coefficient can be further
raised by 0.028 for 2010. In general, the proposed method shows
great potential for accurately mapping urban areas at regional,
continental, or even global scales in a cost-effective manner.

Index Terms— Data fusion, ensemble support vector machine
(SVM), training samples, socioeconomic data, urban areas, urban
mapping.
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I. INTRODUCTION

ALTHOUGH occupying only a small fraction (less
than 1%) of the earth’s surface, urban areas are hotspots

of human activity, containing more than 50% of the world’s
population (POP) and 70%–90% of the global economy [1].
The rapid growth of urban areas has promoted economic
growth [2] and housed the growing urban POP [3]. In turn,
it has simultaneously aggravated environmental problems such
as urban heat islands [4], air pollution, water contamination,
habitat loss, and biodiversity decline [5], [6]. In this regard,
the monitoring of urban areas, especially extracting the spatial
information (location and extent), is of great importance.

Despite the efforts made in recent decades in the mapping
and monitoring of urban areas, most of these studies have
concentrated on a local scale (i.e., within a city or sev-
eral cities) [7], [8]. However, to focus on the overview of
national/continental urbanization, deriving the spatial infor-
mation of urban areas at large-scale remains a matter of
concern [7]. To date, a number of global urban maps have
been produced (Table I) [1], [9]–[11] by the use of super-
vised/unsupervised and single/multisource data fusion [1].
In the literature, the supervised classification technique is
a popular method that uses prior knowledge collected in
advance to build rules for labeling the urban areas [e.g.,
MCD12Q1 and moderate-resolution imaging spectroradiome-
ter (MODIS) 1 km in Table I]. In general, it is believed
that both the quality of such prior knowledge (referred to
as “training samples” in the supervised classification) and
the classification algorithms are vital for the performance
of the mapping [12]. Meanwhile, by integrating multisource
data, the data fusion technique can often yield a better
mapping performance than the counterpart single-source tech-
niques [9], [11], [13] (e.g., LandScan, History Database
of the Global Environment v3, global impervious surface,
Global Rural-Urban Mapping Project, and Global Land Cover-
SHARE of year 2014, as presented in Table I). With regard
to the data fusion technique, both suitable data sources that
portray the urban areas in a complementary manner and an
appropriate fusion method that is concerned with the complex
urban characteristics are the two main research questions.
However, improving urban area extraction performance at a
large scale in a more efficient way, on the basis of the current
research, still calls for further attention.

First, alleviating the training sample collection cost can
help to facilitate large-scale urban area mapping, and can
even promote the potential for routine operation. In the
conventional approaches, the training data are derived
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TABLE I

11 MAJOR GLOBAL URBAN MAPS (ADOPTED AND UPDATED FROM [1])

by manual interpretation from high-resolution satellite
images [12]. However, with regard to the extremely high
labor expense, manual interpretation at a large scale
is not practical [14]. Automatic/semiautomatic training
sample collection is, therefore, preferred, but most of the
recent studies have addressed this issue in the local-scale
mapping tasks [14], [15]. To deal with a large-scale task, a
semiautomatic collection method was proposed [16], but the
blooming effect caused by night-time light (NTL) data still
hindered the effectiveness of the approach.

Second, the diversity of urban areas across geographic
space, in terms of shape, size, socioeconomic status, and
physical environment, aggravates the mapping challenges.
To alleviate such effects, region-specific classification methods
can be a practical solution [8], [17]. For example, in [8],
the East Asia was divided into three regions according to
their climate characteristics, and an independent classifier was
built for each region. However, it should be mentioned that
the urban areas of different cities and the different urban
patches (defined as contiguous areas of urban pixels) are also
diverse, and thus the variations need to be further considered.
To tackle this problem, several researchers have designed
object-based thresholding techniques to derive the optimal
threshold of each urban patch [18], [19]. However, in these
studies, the optimal thresholds of the urban patches were
estimated by comparing the NTL data with the reference urban
maps, and hence, the establishment of the optimal thresholds
was strongly dependent on the reference data provided in
advance.

Third, the comprehensive characterization of urban areas is
somewhat difficult to define, and the definition of urban areas

in global urban maps is inconsistent when different data types
are used [1] (Table I). In practice, maps derived from socioe-
conomic data are more closely related to POP or economic
distribution, while maps derived from physical data (e.g.,
remote sensing data) correspond to built-up areas [1], [7].
Hence, selecting the appropriate data source is of great impor-
tance. An urban area actually centralizes both socioeconomic
activities and the built environment [20], and hence, it can be
considered as a local maximum of a combination of multiple
factors [e.g., POP, gross domestic product (GDP), or buildings]
that may vary across time and space [21]. Therefore, in this
paper, an urban area is defined as the combination of socioeco-
nomic [POP, GDP, and physical factors (e.g., buildings, streets,
and other infrastructure)] [20], [21]. In view of this, combining
physical data and socioeconomic data for urban area mapping
is a logical approach. To date, a number of attempts have been
made to synthesize multiple data types for the delineation of
urban areas. Several of the global products listed in Table I
aim to fuse multisource data, but some of them mainly depend
on fusion of existing urban products (e.g., GLC-SHARE [9]),
and more intelligent data fusion methods to combine the
multisource data are therefore required [11]. For instance,
a Bayes’ rule guided fusion method that integrates NTL data
and gridded POP data with MODIS 1-km data (Table I) has
been proposed [11]. Although the fusion algorithm is based
on a hard-to-meet hypothesis (i.e., normal distribution of urban
areas), it hints at the possibility of complementary data-source
integration for urban area mapping.

Despite several studies [7], [11], [22] having focused on
multisource data fusion for urban mapping, it is worth men-
tioning that the contributions and weights of data sources for
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different urban areas (within a city or across different cities)
should be different with regard to diverse urban characteristics.
In this way, directly using a machine learning classifier,
which views the multiple sources with a relatively equal
importance, is less reasonable for such a complex mapping
task. By fully considering the issues mentioned above (i.e.,
the costly training sample collection, inadequate data-source
descriptions, and diverse urban characteristics), we propose
a novel ensemble support vector machine (SVM) method
to automatically derive accurate urban areas, by integrating
gridded POP data, GDP data, NTL data, and temperature data.
The contributions presented in this paper can be summarized
as follows.

1) The training data are automatically generated to reduce
the labor and time cost of manual interpretation.

2) A novel ensemble SVM model is constructed for assem-
bling the multisource features.

3) An adaptive patch-based thresholding technique is
designed to tackle the diverse urban characteristics (e.g.,
shape, size, socioeconomic status, and physical condi-
tions). It should be noted that, compared to the current
methods [18], [19], the proposed thresholding method
can automatically derive the segmentation threshold of
each urban patch without the assistance of reference data
provided in advance.

The proposed method was tested in China, which is a chal-
lenging and representative study region, in terms of the diverse
climate and unbalanced distributions of POP and economic
status. Multitemporal (i.e., 2005 and 2010) urban maps of
China were generated by the proposed ensemble SVM method.
A set of mainstream global data sets was compared with
the results of the proposed method. In this paper, we define
the minimum mapping unit as contiguous patches larger than
1 km2, according to [1]. This paper is organized as follows.
The study area and data sets are described in Section II. The
proposed ensemble SVM method is introduced in Section III.
The experiment results are presented in Section IV. The
proposed method and experiments are discussed in Section V.
Final conclusions are summarized in Section VI.

II. STUDY AREA AND DATA

A. Study Area

China, which covers a total land area of approximately 9.6
million km2, is one of the most populous countries in the
world. The climate of China is diverse, ranging from temperate
continental in the arid north to subtropical monsoon in the wet
south. The POP distribution is also skewed. More than 96%
of the POP lives in the eastern part of China, which comprises
only 36% of the national land area [32]. Moreover, the level of
development between cities is also unbalanced. For example,
the 16 megacities of mainland China account for less than
5% of the total number of cities in China, but contribute more
than 25% of GDP, according to the China Statistical Yearbook
2010 [33]. Thereby, China is a challenging and valuable study
area for urban extent mapping, because of the complicated
characteristics mentioned earlier.

TABLE II

CRITERIA FOR DIVIDING CITY RANKS

In addition, China has a large number of cities of various
sizes. In terms of the municipal level, these cities can be
classified into two types: prefecture-level cities and other
administrative units (i.e., prefectures, leagues, and autonomous
prefectures). In this paper, to analyze the performance of
the proposed ensemble SVM method across a range of city
sizes (Fig. 1), 287 prefecture-level cities are further stratified
into four ranks, by referring to the 2010 urban resident
POP (Table II) [33], [34].

B. Data

First, two data sets were exploited to acquire train-
ing samples: the municipal-level administrative boundary of
China in GIS format downloaded from Global Administra-
tive Areas (http://www.gadm.org/) and the MODIS Land-
Cover Type Yearly Global 500-m product (MCD12Q1) for
2001–2010 obtained from the website of Maryland Univer-
sity (http://www.landcover.org/) [28], [29]. Second, the feature
sources used in the ensemble SVM method comprised physical
data [i.e., land surface temperature (LST) and vegetation
adjusted NTL urban index (VANUI)] [35] and gridded socioe-
conomic data (i.e., POP [36] and GDP [37]). The gridded GDP
and POP data can characterize the socioeconomic properties
of urban areas, while remote sensing LST and VANUI data
can characterize the physical properties of urban areas.

Because of the thermal difference between urban and nonur-
ban areas, LST was employed to capture urban extent [7].
LST data obtained by remote sensing satellites record the
radiation energy emitted from the ground surface in the
thermal infrared band, and usually show high values in
urban areas and low values in nonurban areas [38], [39].
Compared with daytime LST, night-time LST has a stronger
ability to distinguish urban and nonurban areas [40]. In this
paper, the annual average remote sensing LST data were
generated using the MODIS 8-day 1-km night-time LST
product (MOD11A2) downloaded from the MODIS website
(http://ladsweb.nascom.nasa.gov/data/search.html).

The VANUI data were calculated by integrating NTL data
and normalized difference vegetation index (NDVI) data [35].
NTL data usually reflect the intensity of human activity,
which is closely related to built-up areas [18], [41]. In this
paper, the utilized NTL data were the version 4 DMSP/OLS
stable NTL data with a 1-km spatial resolution, derived
from the National Geophysical Data Center (NGDC) website
(http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html).
These data exclude ephemeral lights and retained persistent
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Fig. 1. Map of the study area and the prefecture-level cities in the three
biomes [8].

lights from cities, towns, and other sites (e.g., gas flare
areas) [17], [42]. In this paper, to tackle the inherent
incompatibility of the DMSP/OLS NTL time series data set,
a series of data correction steps, including intercalibration [42]
and intra-annual composition [17], was adopted. The
pseudolight pixels in the areas of water or gas flares were then
removed by utilizing a gas flare mask and water mask [19].
The gas flare mask was obtained from the NGDC [42], and
the water mask was derived from the MODIS water mask
product (MOD44W). In addition, when using NTL data to
describe urban areas, some endogenous obstacles, such as
the saturation effect and the blooming effect [35], [43], [44],
need to be addressed. In view of this, the NDVI can be used
to alleviate such problems [35] and to distinguish the urban
and nonurban areas, thereby enhancing the discriminative
ability of NTL [45]. In this paper, the MODIS 16-day 500-m
vegetation index product (MOD13A1) was used to generate
annual mean NDVI. By combining the NTL and NDVI data,
the derived VANUI data can alleviate the saturation effect of
NTL data and overcome the confusion of NDVI data between
urban areas and bare land [35], [45].

Gridded GDP data reflect the intensity of economic activi-
ties, and gridded POP data denote the density of POP. Com-
pared with census data of GDP and POP, gridded GDP and
POP data can provide detailed spatial distribution information,
and thus they are more suitable for depicting the location and
extent of urban areas from the perspective of socioeconomics.
In this paper, the gridded GDP and POP data were obtained
from the Resources and Environmental Scientific Data Center,
Chinese Academy of Sciences (http://www.resdc.cn/), with
a 1-km spatial resolution. Note that all the data sources
mentioned earlier (i.e., VANUI, LST, GDP, and POP) were
resampled to a pixel size of 500 m, the finest spatial solution
among the data sources.

III. METHODOLOGY

In this section, the proposed ensemble SVM method is
described. The proposed method (Fig. 2) consists of three
steps: 1) generation of automated training data; 2) construction
of an ensemble SVM model; and 3) implementation of an
adaptive patch-based thresholding technique.

Fig. 2. Flowchart of the proposed ensemble SVM method.

Fig. 3. Flowchart of sample set generation.

A. Automated Generation of Training Data

High-quality (i.e., reliable, diverse, and with an even spa-
tial distribution) training data are necessary to guarantee a
satisfactory classification result. In this section, an automated
approach is presented to derive high-quality training data. The
proposed approach consists of two parts: 1) creation of reliable
and various sample sets and 2) selection of evenly distributed
training data from the sample sets.

In the process of sample set generation (Fig. 3), considering
that the MCD12Q1 product contains the spatial information of
urban and nonurban classes, it is feasible to use this product as
the training sample pool. In this way, pixels in the pool labeled
as 1/0 are assigned as urban/nonurban pixels, respectively.
With regard to the uncertainty of this product [46], a purifica-
tion strategy is adopted not only to guarantee the reliability of
the samples but also to meet the physical criterion of the com-
prehension definition of urban areas. To remove the samples
with wrong labels in MCD12Q1 data, the unchanged areas of
the multitemporal (i.e., 2001–2010) images are viewed as can-
didate urban/nonurban samples by an intersection operation.

Considering the complicated urban characteristics (e.g., the
various and small sizes, as well as the diverse shapes), the
urban samples generated by previous studies have often been
skewed to big cities [47]. Therefore, an adaptive radius (R)
of the erosion operator is employed to take into account the
characteristics of different urban patches within each city.
Here, the adaptive radius (R) for each city is obtained by
a piecewise linear function (1). The piecewise linear function
consists of two geometric parameters, i.e., the area (Area) and
minor axis (Lminor) of the dominant urban patch within each
city. The dominant urban patch is selected due to its high reli-
ability. The minor axis, instead of the major axis, is considered
to prevent the elongated urban patches being entirely filtered
out. The coefficients of Lminorin (1) are determined by our
trials and experiences. The parameter sensitivity is analyzed
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Fig. 4. Flowchart of the proposed ensemble SVM model implemented for
each biome.

in Section V-B1.

R =

⎧⎨⎨⎨⎨
⎨⎨⎨⎩

0.2 × Lminor 0 < Area < 100

0.25 × Lminor 100 ≤ Area < 500

0.2 × Lminor 500 ≤ Area < 2000

0.15 × Lminor Area ≥ 2000.

(1)

In this paper, to further select evenly distributed training
data across the geographic space, the sample set of China was
divided into 10 × 10 grids. In each grid, 10% of the urban
samples were randomly picked as urban training data, and
the nonurban training samples with the same number were
randomly generated from the nonurban sample set. To reduce
the possible bias induced by the random sampling, 10 groups
of training data were individually created.

B. Multisource Ensemble SVM Model

In this section, the variations of urban areas between
the three biomes are preliminarily considered [8], and an
independent ensemble SVM model for each biome is con-
structed by synthesizing the multisource data. In this paper,
the ensemble SVM model is a collection of several individual
SVM classifiers (Fig. 4), aiming to derive the possibility of
each pixel belonging to the urban class. In the ensemble
model, each SVM classifier is trained by training samples
with the input feature (i.e., the permutation of multisource
data shown in Table III), and the unlabeled pixel is identified
by majority voting since the 10 groups of training data
are used to build each SVM. In Table III, for simplifica-
tion, LST+VANUI (LV) means combined input of LST and
VANUI data into the SVM classifier. SVM is an efficient
machine learning classifier [14], [48], [49]. Its basic principle
is to discriminate two classes by seeking an optimal linear
separating hyperplane [50]. In addition, when dealing with
nonlinear separability, a kernel trick that involves mapping the
original feature into an implicit high-dimensional space can be
exploited. In this paper, the widely used radial basis function
is employed as the kernel function.

Once all the single SVM classifiers are built, their out-
puts (i.e., the intermediate classification results in Fig. 4)
need to be combined. A satisfactory combination strategy
should pick up the desirable complementary information of the
multisource data. With regard to the comprehensive definition
of “urban area,” in advance there is no significant preference
between physical properties and socioeconomic factors. All the

TABLE III

PERMUTATIONS OF STACKING THE MULTISOURCE DATA

N intermediate classification results are summed, and pixels
with scores less than N/2 (i.e., half of N) are reset as zero.
The combination method to derive the ensemble SVM score
can be formulated as

DNen =
��N

i=1 DNtempi if
�N

i=1 DNtempi ≥ N
2

0 else
(2)

where DNen is the digital number (DN) of the ensemble SVM
score, DNtempi is the DN of the i th intermediate classification
result (labeled as 1/0), i ∈ [1, N ], N = C1

m + C2
m + . . . Cm

m
is the number of intermediate classification results, and m
represents the number of data sources. For instance, N is equal
to 15 when four data sources are considered.

In theory, the computational cost mainly consists of the
SVM training and testing. For m data sets, we suppose that the
size of the training sample is l. With the linear convergence of
the machine learning algorithm (i.e., SVM solved in [51]), for
a permutation with p(p ≤ m) data sources, the computational
complexity for the SVM training should be O (pql) (see [51,
Sec. 5.7]), where q is the number of iterations. For the testing,
we suppose that the size of the test sample is M , and the
complexity of the testing should be O (Mp). By enumerating
all permutations, the total computational cost is

O
��

� pC p
m

	
(ql + M)

	
< O

��
�C p

m

	
m(ql + M)

	
= O(2mm(ql + M)). (3)

Although roughly incorporating the data sources would
aggravate the cost, for the urban mapping task, it is believed
that m should not be larger than 10 in reality. In view of this,
when m is less than 10, it can be said that the computational
complexity is linear with the size of test sample, as ql is much
less than M (for instance, in the case study of China, q was
set to 200 by default, l was roughly equal to 1.5 × 103 per
biome, and M was roughly equal to 3.8 × 107).

C. Adaptive Patch-Based Thresholding

Considering that different urban patches exhibit diverse
characteristics, in terms of their socioeconomic status and
physical environment, a patch-based method for urban map-
ping is necessary and essential. Several studies [18], [19] have
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Fig. 5. Kappa coefficients of the mapping results for (a) 2005 and (b) 2010 in different regions, including the whole study area and the three biomes
(temperate, tropical, and arid or semiarid in Table II). The accuracies obtained by our method and the intermediate classification results are compared. Here,
dk is the difference between the Kappa of our method and the highest Kappa of all the intermediate classification results.

Fig. 6. Kappa coefficients of the mapping results for (a) 2005 and (b) 2010 for different city ranks (megacity, large city, medium city, and small city
in Table II). The accuracies obtained by our method and the intermediate classification results are compared. Here, dk is the difference between the Kappa of
our method and the highest Kappa of all the intermediate classification results.

employed an object-based thresholding method to tackle the
diverse urban characteristics and obtain urban areas from NTL
data. However, it is noted that these existing techniques require
additional reference from high-resolution land-cover data to
estimate the threshold. In this paper, based on the ensemble
SVM score, an adaptive patch-based thresholding approach,
without the assistance of high-resolution land-cover data,
is proposed to derive the final urban extent. This technique can
automatically derive the segmentation threshold of each urban
patch. In this adaptive patch-based thresholding technique,
the pixels with zero scores are filtered out and only the pixels
whose ensemble SVM scores are nonzeros are aggregated as
candidate urban patches. Second, Otsu’s thresholding method
is employed on each potential urban patch to capture the final
urban map. Therein, Otsu’s thresholding method [52] is an
adaptive thresholding technique that can automatically capture
the optimum threshold separating the two classes.

IV. RESULTS

To validate the effectiveness of our method, the national
land-use/land-cover data sets of China (CLUD) at a 30-m
spatial resolution (for 2005 and 2010) were utilized as

reference data. The CLUD data sets were produced by expert
interpretation of Landsat Thematic Mapper and HJ-1A/B
satellite images [53] and were derived from the Earth System
Scientific Data Sharing Network at the Chinese Academy of
Sciences. The overall accuracy of the CLUD data is larger
than 90%. In this paper, to match the spatial resolution of
our results, the spatial resolution of CLUD was aggregated to
500 m using a simple majority rule, and all the pixels of CLUD
were used as test samples. In this section, the intermediate
classification results by the individual SVM classifiers (shown
in Fig. 4) and the map produced by our ensemble SVM method
are validated (Figs. 5–7). Here, the intermediate classifica-
tion results are named by the corresponding abbreviations of
the data-source permutations (as shown in Table III), e.g.,
the VANUI+POP (VP) map represents the intermediate result
generated by the use of the VANUI and POP data. In addition,
the Kappa coefficient (k) [54] based on the confusion matrix
is utilized to evaluate the quantitative accuracy [55].

The Kappa coefficients of all the intermediate classifica-
tion results and our method for different regions and city
ranks are presented in Figs. 5 and 6. Moreover, the urban
extent is visually depicted in Fig. 7. The general conclu-
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Fig. 7. Comparison among the 2010 urban mapping results for eight cities. (Left–Right) Maps include the intermediate classification results, the ensemble
SVM score, the map obtained by our method, and the 2010 Google map overlaid by the final urban extent (highlighted in the red lines). The intermediate
classification results include L, V, G, P, and VP (the two source permutation results with the highest Kappa), LVP and VANUI+GDP+POP (the three source
permutation results with the highest Kappa), as well as LVGP. Note that the eight cities (superscript: the biome; subscript: the city rank) were chosen from
different biomes and city ranks.

sions regarding the results in Figs. 5–7 are summarized as
follows.

1) The Kappa values generally become higher and more
stable with the addition of data sources, and the map
obtained by our method presents the best performance,
in both visual inspection (Fig. 7) and quantitative
assessment (Fig. 5). From Fig. 5, it can be seen that,
for mapping the whole study area, our method holds
a higher Kappa (k = 0.509 in 2005 and k = 0.493
in 2010) than all the intermediate classification results
(k = 0.024–0.427 in 2005 and k = 0.040–0.470 in
2010).

2) When focusing on the single source permutations, it
is demonstrated that the V map of the whole study
area (Fig. 5) obtains the highest k (k = 0.374 in
2005 and k = 0.430 in 2010), but presents the largest
false-positive errors (Fig. 7), which is probably due to
the blooming effect partially remaining in the VANUI

data. On the other hand, the L map of the whole study
area (Fig. 5) obtains the worst results (k = 0.024 in
2005 and k = 0.040 in 2010). It is deemed that the use
of the LST difference for distinguishing urban/nonurban
areas can only play an auxiliary role, owing to the
complex temperature variation across large geographic
and climatic scales [7].

3) Due to the blooming effect remaining in the VANUI
data, the intermediate classification results aligned
with this data can only alleviate this problem to some
degree [e.g., Longyan of LST+VANUI+GDP+POP
(LVGP) in Fig. 7]. However, the ensemble SVM
score (as shown in Fig. 7) suggests that the proposed
approach has the potential to tackle this issue and
presents robust results in extracting urban areas,
as shown in the urban map obtained by our method,
which can be attributed to the fusion of the multiple
properties.
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Fig. 8. Support vectors and decision boundaries of the individual classifiers, with different feature combinations. (a) LV. (b) LG. (c) VP. (d) LVG. (e) LVP.
(f) LVGP.

4) The results in the three biomes (Fig. 5) and four city
ranks (Fig. 6) are similar to those in the whole study
area, while some subtle disparities still exist between
different biomes and different city ranks. The G map
shows a higher accuracy for the tropical biome and small

cities, while the P map is superior for the temperate
biome and other city ranks. In general, the Kappa
coefficients tend to decline from the temperate biome
to the arid or semiarid biome (i.e., from left to right
in Fig. 5), similar to the tendency presented in the
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Fig. 9. Box plots that compare the Kappa coefficients among our method, the mainstream global urban maps (Table I), and the maps obtained by four
state-of-the-art classifiers (RF, AdaBoost, SVM ensemble, and LORSAL) for (a) 2005 and (b) 2010 for four city ranks (Table II), utilizing the CLUD data
as a reference. The mainstream data sets circa 2005 include GlobCover 2005 and MCD12Q1 2005, and the mainstream data sets circa 2010 are GlobCover
2010, GLC-SHARE 2012, and MCD12Q1 2010.

four city ranks (i.e., from large cities to small cities
in Fig. 6). This indicates that mapping the urban extent
in the latter two biomes [1] and the small cities [18]
is a challenging task. In the urban map obtained by our
method, such difficulties can be alleviated, in view of
the accuracy increments (referred to as dk in Figs. 5 and
6) in the tropical (dk = 0.118 in 2005 and dk = 0.085
in 2010) and arid or semiarid biomes (dk = 0.097
in 2005 and dk = 0.069 in 2010) and small city
ranks (dk = 0.107 in 2005 and dk = 0.058 in 2010).

In order to show the diversity of individual classifiers,
the support vectors and decision boundaries of the SVMs
constructed by the training samples in the temperate biomes
in 2010 are illustrated in Fig. 8. The first and second principal
components (PCA1 and PCA2) of all the four features, i.e., L,
V, G, and P, are utilized to represent the feature space.
Fig. 8 shows the support vectors as well as the decision bound-
aries of the six individual classifiers [with LV, LST+GDP
(LG), VP, LST+VANUI+GDP (LVG), LST+VANUI+POP
(LVP), and LVGP as input features]. It can be clearly observed
that both the distributions of the support vectors and the shapes
of decision boundaries are distinct for different classifiers.
Thus, it can be said that the individual SVMs are relatively
diverse, and the proposed ensemble method has the potential
to improve the mapping performance.

To assess the computational cost, without loss of generality,
taking the urban mapping of China for 2010 as an example, the
running time (including training and testing) of the proposed
method with different numbers of multisource inputs is listed
in Table IV. The experiments were implemented in the Lib-
SVM package [51] and carried out using MATLAB R2015b on
a PC with a single i7-6700K 4.00-GHz processer and 64 GB
of RAM. Although the processing time becomes longer with
the addition of data sources (i.e., m), it is acceptable since the
study area covers the mainland of China, and it seems reason-
able to consider more inputs due to the accuracy increments.

Given four sources in this paper, the running time for m
sources is the average of all the combinations. In the study

TABLE IV

AVERAGE PROCESSING TIME OF THE PROPOSED METHOD

WITH DIFFERENT NUMBERS OF MULTISOURCE INPUTS

case of China, q was set to 200 by default, l was roughly
equal to 1.5 × 103 per biome, and M was roughly equal to
3.8 × 107).

V. DISCUSSION

A. Comparison With Existing Products and Methods

A set of mainstream global urban data sets (Table I)
was chosen as comparisons with the urban map obtained
by our method. In addition, the urban maps derived by the
state-of-the-art classifiers, including random forest (RF) [56],
AdaBoost [57], SVM ensemble [58], and variable splitting
and augmented Lagrangian (LORSAL) classifiers [59], were
also compared. The input data for the four classifiers and
the training sample set were the same as those utilized in
our method. The Kappa coefficients of the mainstream global
urban maps (Table I), the RF map (obtained by the RF
classifier), AdaBoost map, SVM ensemble map, LORSAL
map and the map obtained by our method for 2005 and
2010 for the four city ranks (Table II) are presented in Fig. 9,
using the CLUD data as reference.

Compared with the mainstream global urban data sets,
our method always provides the highest median k (median
k = 0.417–0.549 for 2005 and median k = 0.434–0.538 for
2010) for all the city ranks. With regard to the maps generated
by the four state-of-the-art classifiers (i.e., RF, AdaBoost,
SVM ensemble, and LORSAL), the urban map obtained by
our method achieves the best performance in nearly all the
cases in terms of the Kappa coefficients, showing that the
proposed method is able to exploit the multisource features
effectively to produce an accurate urban map. Moreover,
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Fig. 10. (Left–Right) Comparison among the 2010 urban extent maps of GlobCover, GLC-SHARE, MCD12Q1, RF, AdaBoost, SVM ensemble, LORSAL,
our method, CLUD (as a reference), and the 2010 Google map overlaid by the final urban extent (highlighted in red lines) in four typical cities (Top–Bottom):
Beijing, Urumqi, Longyan, and Lhasa. Note that the four cities (superscript: the biome; subscript: the city rank) were chosen from different biomes and city
ranks.

TABLE V

KAPPA COEFFICIENTS OF THE WHOLE STUDY AREA, DIFFERENT BIOMES, AND DIFFERENT CITY RANKS WITH DIFFERENT EROSION PARAMETERS

a visual comparison of the 2010 urban extent maps in the four
typical cities (Fig. 10) shows that the urban map produced by
our proposed method is in the best agreement with both the
Google map and the CLUD reference data, particularly in the
medium (e.g., Longyan) and small city ranks (e.g., Lhasa),
while underestimation can be found in the mainstream global
urban data sets and some overestimation can be observed in the
RF map, AdaBoost map, SVM ensemble map, and LORSAL
map for all the four city ranks (Fig. 10).

B. Considerations for Accurate Urban Mapping

To accurately map urban extent at a large scale in an
efficient way, three challenges need to be addressed: 1) the
costly acquisition of sample sets [14]–[16]; 2) the inade-
quate description of the multisource data [11]; and 3) the
diverse characteristics of urban areas [18], [19]. Hence,
Sections V-B1–V-B3 focus on these aspects and detail the
countermeasures proposed in the ensemble SVM approach.

1) Automated Sample Set Generation: In this section,
we investigated the influence of the adaptive erosion radius
to the accuracy of the urban mapping. The four coefficients in
(1) are set the same and the results with different coefficients
are listed in Table V. It can be seen that its value does not
significantly affect the mapping results when ranging from
0.1 to 0.3 and the peak of the overall accuracy is reached
when the parameter is set to 0.2. However, the number of
available training samples decreases sharply when the erosion
parameter increases. Therefore, in this paper, an appropriate
parameter range is around 0.2 and further fine-tuned in the
experiments, considering the satisfactory mapping accuracy
and the sufficient number of training samples available.

Subsequently, the CLUD data were utilized as a reference to
validate the reliability of the automatically generated sample
set. The validation result (Table VI) confirms the reliability
of the derived sample sets (mean Kappa > 0.8 and standard
error ∼0.004). Meanwhile, with regard to the complicated
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TABLE VI

ACCURACY ASSESSMENT OF THE 10 RANDOM SAMPLE GROUPS, UTILIZING 2005 AND 2010 CLUD DATA AS THE REFERENCE

Fig. 11. Geographic distribution of the urban sample set.

TABLE VII

URBAN SAMPLE RATE FOR THE FOUR CITY RANKS

characteristics of urban areas (e.g., various sizes and shapes),
maintaining diversity of the urban sample set is of vital
importance. To quantitatively measure the diversity, we define
it as the difference between the urban sample rates (i.e.,
the ratio between the urban samples and the total urban
area) of the four city ranks. A relatively small difference
indicates that each city rank provides approximate sample
proportions, which ensures diversity of the generated urban
samples. In Table VII, the urban sample rates for each city
rank are listed, which reveal the satisfactory diversity of the
generated urban samples, with regard to the small difference
of the sample rate [i.e., 2.4% (7.3% − 4.9%) for 2005 and
2.3% (5.5% − 3.2%) for 2010]. In addition, Fig. 11 shows
that the geographic distribution of the urban samples is com-
paratively even. To sum up, it can be stated that the automated

sample sets generated in a cost-effective manner are reliable,
diverse, and evenly distributed.

2) Multisource Data Integration: The four sample sites
in Fig. 12 are presented to illustrate the performance of inte-
grating physical and socioeconomic sources and the effective-
ness of the ensemble SVM method, by using the high spatial
resolution Google map as a reference. The regions of interest
that are highlighted by red rectangles in Fig. 12 reflect the
discrepancies between the Google map (located in the center,
with the magnified subregion circled in yellow) and the various
classification maps (located on both sides). Here, the urban
map obtained by our method and the LVGP map are chosen
to describe the significance of the multisource integration.
As a benchmark, two of the intermediate classification results
in Fig. 3 are picked to represent the urban maps produced by
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Fig. 12. Four sample sites illustrating the significance of combining both socioeconomic data and physical data. All the maps are circa 2010. The Google
images are provided as ground reference. Readers can focus on the red rectangles for observing the discrepancies between different maps, and the areas circled
in yellow are magnified. In addition, the right/wrong tick under these urban maps indicates that the map correctly/wrongly labels the region of interest.

the socioeconomic factors, and two existing urban maps (i.e.,
GlobCover and MCD12Q1) are selected to represent the urban
maps produced by the physical factors [1]. In this manner,
by observing the regions of interest highlighted by the red

rectangles, the following three conclusions can be drawn.
1) Some suburban areas omitted by physical data can

successfully be recognized by socioeconomic data. For
example, in sites A and B, correctly identify the
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Fig. 13. Distribution of the thresholds derived by the proposed adaptive thresholding algorithm.

TABLE VIII

KAPPA COEFFICIENTS OF THE WHOLE STUDY AREA, DIFFERENT BIOMES, AND DIFFERENT CITY RANKS WHEN MODIS MULTISPECTRAL

BANDS ARE ADDED IN THE PROPOSED ENSEMBLE FRAMEWORK

suburban areas, while GlobCover and MCD12Q1 misla-
bel these areas. This phenomenon is probably due to the
fact that suburban areas show moderate economic and
POP activity, but low-density buildings.

2) Similarly, consideration of physical data can reduce the
areas mislabeled by socioeconomic data. For instance,
for the mining areas with high socioeconomic values but
scarce buildings (as shown in sites C and D), they are
correctly classified as nonurban areas in GlobCover and
MCD12Q1, while they are mislabeled as urban areas in
the G and P maps.

3) To integrate the virtues of the multisource data, the urban
map produced by the proposed ensemble method
is superior to the LVGP map, which was obtained
by directly stacking and classifying all the sources.
As shown in Fig. 12, the regions of interest for all sites
are correctly labeled in the urban map obtained by our
method, while LVGP correctly labels these regions only
in sites A and B. This superiority partly comes from the
flexible combinations of the data sources in our method,
i.e., a comprehensive fusion of all the individual and
intermediate classifiers.

3) Adaptive Patch-Based Thresholding Technique: In this
paper, we have proposed an adaptive patch-based threshold-
ing method, in response to the variations of urban areas.

In Fig. 13, the distribution of the thresholds calculated by
the proposed adaptive patch-based thresholding algorithm is
presented, showing a similar threshold distribution pattern for
2005 and 2010, in spite of some local inconsistencies (e.g.,
sites C and D). Moreover, for each year, the cities with
different urbanization levels and different geographical loca-
tions present various thresholds, e.g., sites A–D in Fig. 13.
To further illustrate the heterogeneity of the thresholds of
patches within a city, Wuhan (I) and Lanzhou (II) are selected
as sample cities in Fig. 14. It is demonstrated that the
urban extent obtained by our method matches well with the
actual areas (i.e., Google map), and the proposed adaptive
thresholding algorithm presents a satisfactory capability in
detecting challenging small villages (e.g., site A in Wuhan
and Lanzhou). In addition, the adaptive thresholds for each
site in Wuhan (site A: 11, site B: 13, and site C: 12) and
Lanzhou (site A: 13, site B: 11, and site C: 13) are different,
showing that the preferred threshold of each urban patch
should be adapted to its own characteristics, rather than a
uniform criterion within a city. For example, for Wuhan, if the
threshold of site B was applied to site A, the urban areas of site
A would be overwhelmed, as the threshold of site B (i.e., 13)
is larger than the maximum DN of site A (i.e., 11). Therefore,
it is meaningful to employ adaptive thresholds to derive more
reasonable and detailed urban areas.
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Fig. 14. Two sample cities illustrating the performance of the adaptive thresholding technique. For each city, three sample sites are shown: sites A–C. Site
A shows the urban patches of village and town, site B shows the urban patches of county and district, and site C shows the urban patches of the city core.
For each site, four subimages are provided. (a) Potential urban patches, which represent the nonzero pixels of the ensemble SVM score. (b) Urban map
obtained by our method. (c) Histogram of potential urban patches, where T is the threshold, and Max is the maximum scores of potential urban patches.
(d) 2010 Google map overlaid by potential urban patches (marked in the black lines).

C. Incorporation of MODIS Multispectral Data

The MODIS multispectral bands have been considered and
incorporated as an additional feature into the proposed ensem-
ble framework. Specifically, the eight-day composite MODIS
Surface Reflectance Product (MOD09A1) at 500-m resolution
is taken into account, covering the spectrum of visible and
near-infrared: bands 1 (red: 620–670 nm), 2 (near-infrared 1:
841–876 nm), 3 (blue: 459–479 nm), 4 (green: 545–565 nm),
5 (near-infrared 2: 1230–1250 nm), 6 (shortwave infrared 1:
1628–1652 nm), and 7 (shortwave infrared 2: 2105–2155 nm).
Similar to [60], we use the percentile images extracted from
the image collection of Year 2010 to exclude clouds and cloud
shadows.

The experimental results with MODIS spectral bands incor-
porated are listed in Table VIII. Compared to the results
obtained by the four features (LST, VANUI, GDP, and POP),
mapping accuracy increments (referred to as dk in Table VIII)
can be obtained for all the biomes and city ranks (dk =
0.028 for the whole study area) when considering MODIS
multispectral data as an additional feature. On the other hand,
however, the computational time (including both training and
testing) increases. Therefore, it can be stated that the proposed
mapping framework can be further enhanced by taking more
effective input features into account.

VI. CONCLUSION

In this paper, we have proposed a novel ensemble SVM
method for deriving accurate urban areas by combining socioe-
conomic and physical data. The proposed method contains
three contributions: 1) reliable and diverse samples are gen-
erated by an automatic procedure; 2) the information in the
multisource data is effectively utilized by constructing an
ensemble SVM model; and 3) an accurate and reasonable
urban extent can be captured by employing an adaptive patch-
based thresholding method. Finally, the urban map produced in
this paper was validated with the CLUD data set and compared
with the mainstream global data sets. The results confirmed the

superiority of the proposed method, especially in challenging
areas (such as tropical and arid or semiarid biomes [1], as well
as small cities [18]). In addition, the mapping accuracy can
be further increased when MODIS multispectral data are
incorporated as an additional source to the proposed ensemble
method.

In the future, it is possible to include more data sources,
due to the high flexibility of the proposed method. More-
over, the proposed method has the potential to map urban
areas and monitor urbanization at global scale, due to its
cost-effectiveness and high accuracy. Moreover, the proposed
method can be useful for studies of the effect of urban-
ization on the environment, e.g., urban heat islands [4], air
pollution, water contamination, habitat loss, and biodiversity
decline [5], [6]. In view of this, further exploring the potential
of the proposed method and generating a global urban map
are in our future agenda.
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