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Simplicity and few finely tuned parameters are the main advantages of alternating projection (AP) methods, a
fundamental class of phase retrieval (PR) methods in the optical imaging field. However, AP methods often suffer
from low-quality imaging when few diffraction patterns are recorded. Regularized PR methods avoid this defi-
ciency by using some proper regularization models, but many finely tuned parameters are needed. In this work,
we propose a novel unified framework called constrained PR (ConPR), which brings the AP method and the
regularization approach together. The proposed ConPR framework not only can recover high-quality images
from few diffraction patterns, but also does not need fine-tuning of the parameters. Our proposed generalized
constrained PR optimization model consists of a relation function term, a regularization term, and a measurement
constraint. The measurement constraint ensures that the recovered image matches with the measurement, and the
regularization term can impose some desirable properties on the recovered image. The relation function promotes
the approximation of the two underlying variables. The sparsity under the block-matching and 3D filtering frame
is incorporated into the proposed ConPR framework. The problem formulation consists of an image updating
sub-problem and a constrained optimization sub-problem. The epigraph set of the data fidelity function is de-
fined, and the constrained optimization sub-problem is solved via the epigraph concept. Diffraction imaging from
one noisy coded diffraction pattern demonstrates the effectiveness of the proposed algorithm. © 2018 Optical

Society of America

OCIS codes: (100.5070) Phase retrieval; (110.1758) Computational imaging; (110.3010) Image reconstruction techniques;

(100.3200) Inverse scattering; (100.3190) Inverse problems.

https://doi.org/10.1364/JOSAB.35.001271

1. INTRODUCTION

Phase retrieval (PR) aims to recover the object or image of in-
terest from the diffraction pattern without phase. PR arises in
various imaging fields, such as optical imaging [1], coherent
diffractive imaging [2], and ultrafast non-linear optics [3], to
name just a few. The PR problem is an old but challenging
problem for its non-convex and non-linear property. In the past
decades, various efforts of exploiting priors to address this prob-
lem were developed.

A longstanding of PR algorithms is the alternating projec-
tion (AP) method [4,5]. This class of PR algorithms often starts
from an initial estimation, and projects the estimation onto
two constraint sets (the measurement constraint set and the
spatial domain constraint set) alternatively. The measurement

constraint set is defined based on the sampling model. For
instance, the measurement constraint set is the Fourier magni-
tude constraint set in the far-field PR regime. The spatial do-
main constraint set can exploit the inherent prior information
of the underlying image. Particularly, the seminal AP method
Gerchberg and Saxton (GS) [4] exploits the magnitude con-
straint of the complex-valued image, and the popular alternat-
ing projection methods error reduction (ER) and hybrid
input output (HIO) [5] exploit the support constraint. These
three algorithms are simple, but the inherent priors of the
underlying image are ignored in these algorithms. Recently, in-
spired by compressed sensing [6], a sparse constraint was incor-
porated into the spatial domain constraint set. Experimental
simulations demonstrate that these sparsity-based AP methods
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can improve the reconstruction performance compared to their
original AP methods without utilizing sparsity [7,8]. AP meth-
ods mainly have an advantage that few finely tuned parameters
are needed. However, this class of algorithms often suffers from
low-quality imaging when the recorded diffraction patterns are
few [9,10].

A more recent PR approach is to formulate a non-convex
but smooth least-squares estimation problem. This type of al-
gorithm often exploits the gradient descent method to solve the
formulated problem, examples like Wirtinger flow (WF) [11]
and truncated Wirtinger flow [12]. The strict theoretical guar-
antee of the convergence to stationary points leads these two
algorithms to popular ones. Unfortunately, this class of algo-
rithm also has a drawback of low-quality imaging in the case
of few diffraction patterns [13,14]. The neglect of the priors
about the underlying image should account for this deficiency.

To exploit the inherent prior information for PR, regular-
ized PR algorithms were proposed [9,10,13–15]. The regular-
ized PR algorithms often formulate a non-convex problem that
combines a data fidelity term and an elaborate regularization
term. The regularization term can enforce some desirable prop-
erties on the recovered image. The regularized PR algorithms
that exploit proper regularization models can obtain better
reconstruction accuracy, compared to the PR algorithms with-
out regularization models [13,14]. Moreover, the data fidelity
term can be designed based on the distribution type of the
noise. Therefore, the regularized PR algorithms are often robust
to noise. Since regularized PR algorithms can perform high-
quality imaging in the case of few noisy diffraction patterns,
they have become popular in recent years. Many finely tuned
parameters (such as regular parameters or thresholding param-
eters) in regularized methods are needed. Moreover, the opti-
mal parameters often vary with the sampling ratios and noise
levels [13]. Therefore, fine-tuning of the parameters in regular-
ized PR algorithms is a difficult, but not a trivial task.

Keeping the advantages and disadvantages of these two
classes of PR algorithms (AP methods and regularized methods)
in mind, we propose a unified framework called constrained
phase retrieval (ConPR). The ConPR framework not only
can exploit priors for diffraction imaging via an image denoising
operator, but also does not need fine-tuning of the parameters.
The AP methods usually solve a PR feasible problem that con-
tains two constraint sets. From the optimization perspective,
this feasible problem can be rewritten as a bivariate optimiza-
tion problem. Based on this fact, we develop a generalized
ConPR model, and it is a bivariate optimization model. We
should mention a similar work by Pauwels et al. in a preprinted
literature [16]. Pauwels et al. [16] showed that AP methods
could lead to smoothly converging sequence of estimates theo-
retically when used with Fourier transform and convex priors.
On the practical side, they derived a fast gradient descent
method based on the l1 regularization. The main differences
between their work and our work are twofold, as follows.
(1) We consider the generalized PR problem, but the authors
in [16] only consider the Fourier PR problem; and (2) our gen-
eralized ConPR framework can exploit any proper regulariza-
tion model, but the authors in [16] only exploit the l 1
regularization.

The proposed generalized ConPR model combines a rela-
tion function term, a regularization term, and a measurement
constraint. The relation function is utilized to promote the
approximation of the two variables, i.e., the estimated image
and the auxiliary variable. The regularization term enforces
some desirable properties on the recovered image, while the
measurement constraint promotes the data fidelity. To present
a concrete PR algorithm, we exploit the sparsity under a certain
frame for diffraction imaging. Motivated from the block-
matching and 3D filtering (BM3D) algorithm [17,18], an ad-
vanced image denoising algorithm in the last decade, we select
the BM3D frame as the representation frame. The proposed
BM3D-based problem formulation consists of two sub-prob-
lems, i.e., the image updating sub-problem and the auxiliary
variable updating sub-problem (constrained optimization
sub-problem). The image updating sub-problem can be solved
by the BM3D image denoising algorithm. To solve the con-
strained optimization sub-problem effectively, we define the
epigraph set of the data fidelity function and translate the
sub-problem into a projection problem. By doing so, the regu-
lar parameter is unnecessary. In fact, our algorithm consists of
two steps: one is the BM3D image denoising step, and the
other one is the projection step. For BM3D, the default param-
eters except for the noise standard deviation are utilized in our
algorithm, and the noise standard deviation is estimated from
the recovered image at each iteration.

The advantages of our proposed ConPR framework are
summarized as follows:

• Flexibility: our proposed framework is flexible, and it is
twofold, as follows: i. plug-and-play: any effective image
denoising operator can be incorporated into this model via ad-
justing the regularization term. In other words, various prior
information can be utilized in ConPR for diffraction imaging;
ii. feasible for the generalized PR problem: any non-linear sam-
pling operator whose gradient is computable can be incorpo-
rated into the proposed generalized PR framework.

• Effectiveness: coded diffraction imaging of utilizing the
ConPR algorithm with BM3D is simulated. With one noisy
diffraction pattern, the proposed ConPR algorithm can pro-
duce both higher imaging quality and faster imaging speed,
compared with the existing sparsity-based PR algorithms.

In what follows, in Section 2, we review the AP methods and
the regularized PR algorithms. In Section 3, we introduce the
proposed constrained PR framework. In Section 4, we present
our experimental results. Finally, concluding remarks and direc-
tions for future research are discussed in Section 5.

2. AP METHODS VERSUS REGULARIZED
PR METHODS

A light illuminates an image or object of interest x ∈ RN (we
consider the recovery problem of real images in this paper).
Through the propagation of the light in the space, the infor-
mation of the arrived light is recorded by sensors. Due to the
limitations of modern sensors, only the intensity or magnitude
of the complex-valued light field can be recorded. Therefore,
the sampling process is non-linear. Mathematically, the sam-
pling model can be described as
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y � G�Φ�x��, (1)

where Φ�•� is a non-linear operator. The non-linear sampling
operator Φ�•� describes the theoretical sampling process. In
particular, the non-linear sampling operator Φ�x� � jFxj
(here, F represents the Fourier transform matrix, and j • j is
the magnitude operator) for the far-field scenario, and Φ�x� �
jF�I ⊙ x�j2 (here, I represents the random mask, and ⊙ is the
element-wise product) for the coded diffraction pattern (CDP)
model [19]. y is the non-linear measurement, and G�•� repre-
sents an operator that adds some noise onto the clear measure-
ment. Recovering the image x from the measurement y is the
goal of the PR algorithm. Since the non-linear sampling oper-
ator exists in the PR problem, this problem is ill-posed. To ad-
dress this challenge, researchers usually oversample the signal or
exploit the priors for phase retrieval [7–10,13–15].

A. AP Methods

The AP method of solving the PR problem usually formulates a
feasible problem:

find x ∈ M ∩ S, (2)

where M and S represent the measurement constraint set and
the spatial domain constraint set, respectively. For a general PR
problem, the measurement constraint set can be written as
M � fx ∈ RN jky −Φ�x�k22 ≤ ϵg (here, ϵ > 0, and we assume
that Gaussian noise exists in the measurement device). The set
M can promote the data fidelity. The spatial domain constraint
set S can be designed based on the priors of the underlying
image. The most commonly utilized priors are support,
smoothness, and sparsity [5,7,8]. Given an initialization for
the specific PR feasible problem, the AP method optimizes
this problem by projecting the iterated estimation onto these
constraint sets alternatively. Define the indicator function
IC�x� � 0 if x ∈ C; IC�x� � �∞ otherwise. Here, C repre-
sents a certain constraint set. Equation (2) can be rewritten
as a non-convex optimization problem:

min
x
IM�x� � IS�x�: (3)

In fact, the AP method, such as the GS method or ER
method, solves the above problem via incorporating an aux-
iliary variable, namely,

min
x, z

IM�z� � IS�x� � kx − zk22, (4)

where z is the auxiliary variable. Essentially, the GS method or
ER method solves the above problem via alternating minimi-
zation, namely, updating one variable while keeping the other
one fixed. To solve Eq. (4), alternating minimization for each
variable is essentially projecting the estimation onto the two sets
alternatively. For Eq. (4) itself, there is not a parameter, which is
the main advantage of the GS or ER method.

B. PR-Based Regularization Methods

AP methods often suffer from low-quality imaging in the case
of noisy and few measurements [9,10,14]. Regularized PR
algorithms have attacked this deficiency. They often combine
a data fidelity term and a regularization term to formulate an
optimization problem:

min
x
ky −Φ�x�k22 � λR�x�, (5)

where λ is the regular parameter. Here, the first term is called
the data fidelity term, and the second term is the regularization
term. The data fidelity term ensures that the recovered image
agrees with the measurement, whereas the regularization term
enforces some desirable properties onto the unknown image.

Recent trends [9,10,13–15,20,21] are concentrated on
exploiting an elaborate regularization term for PR, and devel-
oping high-quality imaging algorithms in the case of noisy mea-
surements. For the far-field PR field, l1 regularization term
[20], sparse representation regularization under the translation
invariant Haar pyramid tight frame [9], and the regularization
term based on transfer orthogonal sparsifying transform learn-
ing [10] were proposed for Fourier phase retrieval. For a CDP
model, the sparse representation model based on synthesis
dictionary learning [13], the sparse models under the BM3D
frames [14], the total variation regularization term [15], and the
regularization model based on orthogonal dictionary learning
[21] were proposed for coded diffraction imaging. Although
the regularized PR algorithms have performed better
reconstruction performance compared to AP methods, they
have a drawback that fine-tuning of many parameters is needed.
In the literature [13], the authors discussed the importance of
the regularization parameter to the final reconstruction result,
and showed that this parameter varied with sampling ratios and
noise levels. To avoid this difficult process of tuning the regular
parameter, we propose a novel constrained PR framework. The
proposed framework is simple as the AP framework, and it can
be fused with any regularization term that characterizes the
proper prior of the underlying image.

3. CONSTRAINED PHASE RETRIEVAL

A. Generalized ConPR Framework

For the optimization model [Eq. (3)], the prior, such as sparsity,
is utilized via the spatial domain constraint set S, while for
the optimization model [Eq. (5)], the prior is utilized via the
defined regularization term R�x�. We attempt to construct a
unified framework that fuses the regularization term and the
measurement constraint. Since the AP method can be regarded
as solving Eq. (4) via the alternating minimization method, one
can incorporate the regularization term into Eq. (4):

min
x, z

IM�z� � kx − zk22 � λR�x�: (6)

We rewrite the above optimization model as a constrained
optimization model, and propose the generalized ConPR
optimization model as follows:

min
x, z

kx − zk22 � λR�x� s:t: f �z� ≤ ϵ: (7)

Here, f represents the data fidelity function, which is defined
based on the noise distribution type. In this paper, we consider
that Gaussian noise exists in the optical measurement device.
Therefore, the data fidelity function is defined as f �z� �
ky −Φ�z�k22, which promotes the robustness of the algorithm
to Gaussian noise. The first term in Eq. (7) is a smooth func-
tion that characterizes the relationship between the underlying
image and the auxiliary variable. We denote this function as the
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relation function. The second term is the regularization term
that can incorporate the priors into the image recovery model.
The constraint guarantees that the recovered auxiliary variable
matches with the measurement. Through the relation function,
the recovered image can be constrained by the measured data.
The above optimization model is a generalized model, which is
suitable for any non-linear sampling operator. Moreover, any
effective regularization term can be utilized in this model theo-
retically. The proposed ConPR model [Eq. (7)] is suitable for
any effective regularization term and any non-linear sampling
operator; therefore, we term the model [Eq. (7)] as the gener-
alized ConPR model. Indeed, Eq. (7) can be solved via dividing
it into the following two sub-problems (to the tth iteration):

x�t� � arg min
x

fkx − z�t−1�k22 � λR�x�g, (8)

z�t� � arg min
z

fkx�t� − zk22g s:t: f �z� ≤ ϵ: (9)

Equation (8) is essentially an image denoising problemwhose
regularization term can be written explicitly. Theoretically, any
proper image denoising algorithm can be utilized to solve Eq. (8)
with a certain regularization term R�x�. In general, the image
denoising algorithms with their original parameters can produce
good denoising performance. Therefore, Eq. (8) can be solved by
using an effective denoising algorithm with default parameters.
Equation (9) is a constrained optimization problem, and we
solve it by using the epigraph concept [22].

B. ConPR Problem Formulation Based on BM3D
Sparse Model

The BM3D algorithm is an advanced image denoising algo-
rithm in the last decade. Motivated from the successful denois-
ing performance of the BM3D algorithm, we exploit the
sparsity under the BM3D frame for the proposed generalized
ConPR model. The core idea of BM3D is exploiting the non-
local similarity and the 3D transform sparsity for image denois-
ing. Based on the frame interpretation of the BM3D algorithm
[18], the algorithm can be split into three steps: analysis, process-
ing, and synthesis. In the analysis step, the image is partitioned
into small overlapping patches, and then these patches are
grouped to form the 3D groups. The formed groups are decor-
related by using an invertible 3D transform. The 3D transform
coefficients are called 3D group spectra. Mathematically, the
analysis process can be modeled as

α � ΨBM3Dx: (10)

Here, α is the 3D group spectra. The analysis operation ΨBM3D

models the group and the 3D transform process. The processing
step is filtering the obtained 3D group spectra by using the hard
thresholding operator: α̂ � Tτ�ΨBM3Dx� (here, Tτ�•� �
max�•, τ� represents the hard thresholding operator, and τ is
the thresholding value). In the synthesis step, the estimates
for each group are provided via inverting the filtered spectra.
These patch-wise estimates are aggregated to construct the final
image reconstruction. Mathematically, the synthesis sparse
model of utilizing the BM3D frame can be described as [18]

x̂ � ΦBM3Dα̂, (11)

where ΦBM3D is the synthesis operation. The explicit represen-
tations of the BM3D synthesis operation ΦBM3D and the

analysis operation ΨBM3D are defined in [18]. With the synthe-
sis operation and the analysis operation, the BM3D image
denoising process can be described as x � ΦBM3DTτ�ΨBM3Dx�.
The frame interpretation of BM3D [18] is beneficial for con-
structing BM3D-based image recovery optimization models.

Our problem formulation based on the BM3D frame in the
case of Gaussian noise is as follows:

min
x, z

kx − zk22 � λkΨBM3Dxk0 s:t: ky −Φ�z�k22 ≤ ϵ: (12)

Since the non-linear sampling operator exists in the con-
straint of Eq. (12), it is a non-convex optimization problem.
Solving this challenging problem effectively is also one of
our main contributions, and the next sub-section will introduce
the effective numerical method that has few finely tuned
parameters to solve this problem. It should be noted that finely
tuned parameters in other image denoising algorithms utilized
in the proposed framework may be needed. Nevertheless, for
BM3D, the default parameters in the BM3D image denoising
algorithm of the proposed PR algorithm are suitable for most
noise levels. This is one of the reasons why finely tuned param-
eters are not needed in the proposed PR algorithm of utiliz-
ing BM3D.

C. BM3D-Based ConPR Algorithm without Extra
Hand-Tuned Parameter

We solve Eq. (12) by dividing it into the following two sub-
problems (to the tth iteration):

x�t� � arg min
x

fkx − z�t−1�k22 � λkΨBM3Dxk0g, (13)

z�t� � arg min
z

fkx�t� − zk22g s:t: ky −Φ�z�k22 ≤ ϵ: (14)

Through solving the above two sub-problems alternatively,
the final recovered image can be obtained. The above two sub-
problems are called the image x updating sub-problem and the
auxiliary variable z updating sub-problem, respectively.

1. x Sub-Problem

Equation (13) can be considered as a denoising problem with a
regularization term defined over the BM3D analysis frame
ΨBM3D. In our algorithm, we attempt to use the following
equation as an approximate solution for Eq. (13):

x�t� � ΦBM3DTτ�ΨBM3Dz�t−1��: (15)

The above equation is the BM3D image denoising process
where the auxiliary variable z�t−1� is the noise image and x�t� is
its denoised version [18]. For BM3D image denoising, the
thresholding value τ is often set as τ � Cσ, where C is a con-
stant and σ is the noise standard deviation. For realistic appli-
cations of our algorithm, the default parameters (such as the
constant C , patch size, group size, and so on) in the original
BM3D algorithm are utilized. The input noise standard
deviation for BM3D is evaluated based on the noise image
z�t−1� via the robust median operator [23]. Therefore, keeping
the default parameters of the original BM3D image denoising
method fixed, the image updating process has not a finely tuned
parameter.
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2. z Sub-Problem

Equation (14) is a constrained optimization problem where the
constraint is the measurement constraint. With x�t� fixed, this
problem can be regarded as a projection problem, namely, pro-
jecting the estimated image x�t� onto the measurement con-
straint set fz ∈ RN kjy −Φ�z�k22 ≤ ϵg. For the far-field
regime, we can set the magnitude of the Fourier spectrum
of the denoised image x�t� to the recorded noiseless measure-
ment, and inverse the updated spectrum to obtain the projected
solution. In this work, we consider the general PR problem.
Under this scenario, the sampling operator is a general non-lin-
ear sampling operator.

Different from the regularized PR problem [Eq. (5)], the
regularization parameter in the constrained problem
[Eq. (14)] is unnecessary. However, fine-tuning of the param-
eter ϵ that is an upper bound on the error in the measurement
domain is needed. Moreover, a fixed ϵ is not always optimal for
each noise level or each sampling ratio. Therefore, fine-tuning
of the parameter ϵ is a difficult, but not a trivial task. To avoid
the tedious tuning process, we solve Eq. (14) via the epigraph
concept and select this parameter adaptively. We extend the
epigraph set concept of convex cost functions in [22] to the
non-convex cost functions. We attempt to solve Eq. (14) via
projecting an estimated point onto the defined epigraph set.
Through the successive projections, the value of the error func-
tion f �z� is decreased. We plan to use the final projected sol-
ution as the approximated solution of Eq. (14).

Specifically, we define an epigraph set of the function
f �z� � ky −Φ�z�k22, and select the parameter ϵ based on
the estimated auxiliary variable z�t� (for the tth iteration).
Define the epigraph set of the error function f �z� via increasing
the dimension by one:

C error � fz � �zTq�T : q ≥ f �z�g: (16)

Here, q is a positive constant, which is determined based on the
estimation z. The set C error is the set of column vectors with
N � 1 dimensional whose (N � 1)th components are greater
than f �z�. Keeping the epigraph set concept in mind, Eq. (14)
can be solved via attacking the following projection equation:

z�t� � proj�u�t�� � arg min
z∈C error

fku�t� − zk22g, (17)

where u�t� � �x�t�T0�T. Equation (17) is essentially the orthogo-
nal projection of u�t� onto the set C error. In other words, the goal
of the above optimization model is to search for the nearest vec-
tor z to u�t�. Through the orthogonal projection onto the sup-
porting hyperplanes of the epigraph set C error iteratively, we can
obtain the solution to Eq. (17). To present a concrete PR algo-
rithm, in this work, we consider the coded diffraction imaging
problem, and focus on recovering the image of interest from one
coded diffraction pattern corrupted with Gaussian noise. Under
this scenario, the non-linear sampling operator isΦ�x� � jAxj2,
where A describes the propagation process of the illuminate light
from the object plane to the sensor plane [19]. In the case of one
diffraction pattern, the matrix A and its conjugate transpose ma-
trix are defined as [13]

Ax � F�I ⊙ x�, AHc � 1

M
Ī ⊙ �FHc�: (18)

Here, I is the illumination mask, and Ī represents its dual filter.
M is the number of the measurements, and c is a vector
with size M . FH is the conjugate transpose matrix of the
Fourier transform matrix. ⊙ represents the element-wise prod-
uct. For the CDP model, the error function is f �z� �
ky − jAzj2k22. To solve Eq. (17), we project u�t� onto the sup-
porting hyperplanes of the epigraph set C error successively.
For the jth projection, the projected point on the supporting
hyperplane is [22]

�vTj f �vj��T, vj � vj−1 −
f �vj−1�

k∇f �vj−1�k22 � 1
∇f �vj−1�:

(19)

The initial value is v0 � u�t�. The gradient ∇f �vj−1� in
Eq. (19) is defined as

∇f �vj−1� � realfAH�Avj−1 ⊙ �jAvj−1j2 − y��g, (20)

where real�•� is the operator that extracts the real part of a com-
plex-valued vector element-wise. For the total J times succes-
sive projections, the final orthogonal projection onto the
supporting hyperplane of the epigraph set can be represented
as �vTJ f �vJ��T. Therefore, an approximate solution of Eq. (17)
is achieved:

proj�u�t�� � �vTJ f �vJ��T, (21)

where vJ � vJ−1 −
f �vJ−1�

k∇f �vJ−1�k22�1
∇f �vJ−1�. Although the Jth

projected point is an approximated solution to Eq. (17), the
effectiveness of this method is validated in the experimental
simulation section. Obtain the projection of u�t� onto the sup-
porting hyperplane of the epigraph set C error, then the solution
to Eq. (14) is z�t� � vJ . Essentially, Eq. (14) can be regarded as
a projection problem. Based on the aforementioned epigraph
set of the data fidelity function, we can solve Eq. (14) via
attacking Eq. (17). We solve Eq. (17) by using the orthogonal
projection onto the epigraph set, and let u�t� � �x�t�T0�T,
z�t� � �z�t�Tf �zt��T. By doing this, we can obtain the solution
to Eq. (17) as well as Eq. (14).

So far, all issues to solve the x sub-problem and the z sub-
problem are attacked. The method of solving these two sub-
problems consists of two steps, i.e., the image denoising step
and projection step. We can obtain a satisfied solution to
the proposed formulation Eq. (12) via performing these two
steps iteratively. We summarize the proposed ConPR algorithm
of utilizing the BM3D frame in algorithm 1.

Algorithm 1: Constrained Phase Retrieval (ConPR) Algorithm

1: Input: non-linear measurement y.
2: Initialization: initial image z�0� � x�0�, maximum iteration

tmax , J .
3: Outer Loop: for t � 1,2,…, tmax do
4: Obtain the denoised image x�t� via Eq. (15). ▹ BM3D image

denoising step
5: Set the initial point v0 � x�t�.
6: Inner Loop: for j � 1,2,…, J do
7: Compute the gradient at vj−1 via Eq. (20).
8: Obtain the projected point via Eq. (19). ▹ Projection step
9: End Inner Loop
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10: Let z�t� � vJ , and output the recovered image if t � tmax or
kx�t�−x�t−1�k22

kx�t�k22
≤ 10−4.

11: End Outer Loop
12: Output: image x�t�.

4. EXPERIMENTAL SIMULATIONS

In this section, we discuss various numerical experiments in the
case of few measurements to study the effectiveness of the pro-
posed ConPR algorithm. To that end, we consider recovering the
real image of interest from one noisy coded diffraction pattern at
several noise levels. The details of the experimental setup and our
concrete implementation are given in the first sub-section. The
next sub-section will present the results achieved by the proposed
ConPR algorithm and the existing PR algorithms. The final
sub-section presents the convergence behavior of the ConPR
algorithm and the comparison of the running time.

A. Experimental Setup and Our Concrete
Implementation

We consider sampling the testing images via the CDP model.
The size of the testing image is 512 × 512, and each image is
scaled to [0,1]. The eight original gray-scale images are pre-
sented in Fig. 1. The first six natural images can be downloaded
from http://www.cs.tut.fi/~foi/GCF-BM3D/. The original cell
images can be downloaded from http://www.cellimagelibrary.
org/pages/project_20269, and we translate the two cell images
to the gray-scale versions with size 512 × 512.

An illumination mask is placed behind the image of interest
in the coded diffraction pattern realistic setup, and the sensor
records the coded diffraction pattern. Concretely, we use the
quaternary illumination mask, namely, each element of the il-
lumination mask is selected randomly from the set f�1, � ig.
Mathematically, we sample the image via the following model:

y � jF�I ⊙ x�j2 � n: (22)

Here, n represents the Gaussian noise vector, and the noise level
is controlled by signal-to-noise ratio (SNR) defined as [14]

SNR � 10 log10�kȳk22∕kȳ − yk22�dB, (23)

where ȳ � jF�I ⊙ x�j2 (x is the original image) represents the
intensity of the theoretical diffraction pattern.

Four recent publicly released PR algorithms are selected as
the benchmark algorithms to demonstrate the effectiveness of

the proposed ConPR algorithm. They are WF [11], DOLPHIn
(DictiOnary Learning for PHase retrIeval) [13], BM3D-
prGAMP (BM3D denoiser within the generalized approximate
message passing framework for phase retrieval) [24], and sparse
phase amplitude reconstruction (SPAR) [14]. The codes
of WF and DOLPHIn can be found in the DOLPHIn pack-
age (https://www.graphics.rwth-aachen.de/media/resource_files/
DOLPHIn.zip). Moreover, we use the BM3D-prGAMP algo-
rithm from the D-AMP_Toolbox package (https://github.com/
ricedsp/D-AMP_Toolbox/tree/master/Algorithms). The code of
the SPAR algorithm can be downloaded from the SPARSE
project homepage (http://www.cs.tut.fi/sgn/imaging/sparse/). The
concrete implementations of the proposed ConPR algorithm and
the four benchmark PR algorithms are as follows.

The WF algorithm only exploits the non-linear measure-
ments for diffraction imaging, and its maximum iteration is
set as 100. The DOLPHIn algorithm exploits the sparsity
under an adaptive synthesis dictionary for diffraction imaging,
and optimizes the dictionary and the image simultaneously
from the non-linear measurements. The default parameters
of the original DOLPHIn algorithm were utilized. The
BM3D-prGAMP algorithm incorporates the BM3D image
denoising method into the iteration of the GAMP (generalized
approximate message passing) algorithm. The SPAR algorithm
exploits the BM3D frame to design the sparse model, and a
variational approach is utilized to formulate the optimization
model. The maximum iteration for BM3D-prGAMP is 70
and for SPAR is 50. For the proposed ConPR algorithm,
we set the maximum iteration of the outer loop tmax � 20,
and the inner loop J � 2. For the BM3D image denoising
process in our algorithm, the default parameters are utilized.
Essentially, only the maximum iteration is needed to be speci-
fied in ConPR, and finely tuned parameters are not needed.

All the tests are performed on a desktop computer with a
Core i7-7700 CPU, 3.6 GHz, with 8 GB of RAM, and
running the Windows 10 64-bit operating system and
MATLAB 2017a software (MathWorks, USA). The code of
the proposed ConPR algorithm can be downloaded from
https://raw.githubusercontent.com/shibaoshun/Sparsity-based-
Phase-Retrieval/phase-retrieval/ConPR.zip.

B. Comparison with the Previous PR Algorithms

Diffraction imaging from one noisy diffraction pattern was si-
mulated, and we conducted the four previous PR algorithms
and the proposed ConPR algorithm at various noise levels.
All PR algorithms start from the same random initial guess.
To assess the quality of the recovered image, we consider
two measure metrics: the peak signal-to-noise ratio (PSNR)
of a reconstruction and its feature similarity (FSIM) value [25].
The PSNR value of a reconstruction w with size 512 × 512 is
defined as

PSNR � 20 log10�512∕kw − xk2�dB, (24)

where x represents the original image. For PSNR, larger values
are better, and a FSIM value (ranging from 0 to 1) closer to 1
indicates better visual quality.

Figure 2 presents the recovered PSNR and FSIM values
achieved by the five PR algorithms in the case of one coded
diffraction pattern. From Fig. 2, one can see that the proposed

Fig. 1. Original images. Top row (left to right): Lena, Barbara,
hill, boat; bottom row (left to right): couple, fingerprint, acinar cell,
chromaffin cell.
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ConPR algorithm can provide the highest average PSNR and
FSIM value at each noise level. As can be seen from the figure,
the WF algorithm without any prior is the worst, and the
DOLPHIn algorithm of exploiting sparsity is better than the
WF algorithm. These two algorithms are extremely worse than
the other BM3D-based PR algorithms. The BM3D-prGAMP
algorithm and the SPAR algorithm can obtain relatively good
reconstructions, but still worse than the proposed ConPR
algorithm. For the most part, the proposed ConPR algorithm
can achieve the best reconstructions among the five algorithms.
For the average PSNR and FSIM values, the proposed ConPR
algorithm is the highest among the five algorithms.

To further demonstrate the effectiveness of the proposed
ConPR algorithm, some recovered images by the five algo-
rithms are presented in Figs. 3–5. For comparing clearly,
Fig. 3 gives the parts of the recovered Lena images at
SNR � 20 dB. As can be seen from Figs. 3–5, the reconstruc-
tions by the WF algorithm and the DOLPHIn algorithm are
extremely worse, and many noise-like components exist in their
reconstructions. The BM3D-prGAMP algorithm and the
SPAR algorithm suppress these components and provide better
reconstructions than the WF algorithm and the DOLPHIn

algorithm. However, from Fig. 3, the reconstruction by
BM3D-prGAMP still contains some noise-like components,
and much detail information is lost in their reconstructions.
The SPAR algorithm is slightly better than the BM3D-
prGAMP algorithm, but its reconstructions still lose some
detail information. The proposed ConPR algorithm not only
suppresses many noise-like components but also preserves
much detail information, such as the texture information on
the hat (see Fig. 3). Moreover, from Figs. 4 and 5, one can see
that the proposed ConPR algorithm suppresses the noise-like
components, and its reconstructions preserve both the edge in-
formation and the texture information. Therefore, from the vis-
ual perspective view, the proposed ConPR algorithm can
produce the best reconstructions among the five PR algorithms.

C. Convergence Behavior and Running Time

The proposed ConPR algorithm solves Eq. (12) via alternating
between updating the image x and updating the auxiliary var-
iable z. Indeed, the image x is updated via the BM3D image
denoising algorithm. The auxiliary variable z is updated via
solving a constrained non-convex optimization problem. We
solve this problem based on the epigraph concept, and give
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Fig. 2. Comparison with the previous algorithms in the case of one diffraction pattern. Top: the plot of PSNR versus SNR; bottom: the plot of
FSIM versus SNR. In each case, results are the average PSNR or FSIM values of the eight testing images.

Research Article Vol. 35, No. 6 / June 2018 / Journal of the Optical Society of America B 1277



Fig. 3. Lena images recovered by the five PR algorithms at SNR � 20 dB. For comparing clearly, the parts of the images are presented. From left
to right and top to bottom: the original image, the image recovered by WF (PSNR � 10.93 dB, FSIM � 0.8967), DOLPHIn (PSN
R � 21.36 dB, FSIM � 0.9819), BM3D-prGAMP (PSNR � 31.94 dB, FSIM � 0.9972), SPAR (PSNR � 31.82 dB, FSIM � 0.9966),
and ConPR (PSNR � 33.51 dB, FSIM � 0.9985).

Fig. 4. Hill images recovered by the five PR algorithms at SNR � 25 dB. From left to right and top to bottom: the original image, the
image recovered by WF (PSNR � 10.94 dB, FSIM � 0.9129), DOLPHIn (PSNR � 24.04 dB, FSIM � 0.9921), BM3D-prGAMP (PSNR �
31.97 dB, FSIM � 0.9984), SPAR (PSNR � 31.89 dB, FSIM � 0.9980), and ConPR (PSNR � 33.73 dB, FSIM � 0.9992).
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an approximated solution to the problem. Updating these two
variables alternatively can obtain a satisfied solution to the for-
mulated problem. However, the convergence is yet to be proved
rigorously. Since the PR problem is non-convex, the strict
convergence proof is difficult to provide. Empirically, PSNR
converges to a stable point as the iteration increases. The curves
of PSNR versus iteration for the testing images at SNR �
15 dB and SNR � 20 dB are presented in Fig. 6. For observ-
ing clearly, the convergence curve of the seven testing images

are presented. As can be seen from Fig. 6, with the growth of
the iteration number, the proposed ConPR algorithm becomes
stable through about 10 iterations. The fast convergence speed
demonstrates good convergence behavior of the proposed
ConPR algorithm. Nonetheless, one can see some slight per-
turbations on the curves for some images. The non-convexity
of the optimization problem should account for this behavior.

To compare the imaging speed between the proposed
ConPR algorithm and the four benchmark PR algorithms,

Fig. 5. Acinar cell images recovered by the five PR algorithms at SNR � 25 dB. From left to right and top to bottom: the original image, the
image recovered by WF (PSNR � 13.16 dB, FSIM � 0.9891), DOLPHIn (PSNR � 17.19 dB, FSIM � 0.9960), BM3D-prGAMP
(PSNR � 24.39 dB, FSIM � 0.9994), SPAR (PSNR � 25.80 dB, FSIM � 0.9995), and ConPR (PSNR � 27.36 dB, FSIM � 0.9997).
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Fig. 6. Convergence curves of the proposed ConPR algorithm for recovering the testing images at (a) SNR � 15 dB and (b) SNR � 20 dB.
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we give the average running time of recovering the eight testing
images in Table 1. As can be seen from the table, the proposed
ConPR algorithm is faster than the sparsity-based algorithms
including DOLPHIn, BM3D-prGAMP, and SPAR, but
slower than WF. The BM3D image denoising process should
account for the slower imaging speed of the proposed algo-
rithm, compared to the WF algorithm. However, the WF al-
gorithm is extremely worse than the proposed algorithm in
terms of PSNR and FSIM. Therefore, compared with the
WF algorithm, the proposed ConPR algorithm is more suitable
for applications. One can see from the table that the ConPR
algorithm is nearly 1.2 times, 14.2 times, and 10 times faster
than the DOLPHIn algorithm, the BM3D-prGAMP algo-
rithm, and the SPAR algorithm, respectively. For both the
reconstruction quality and the imaging speed, the proposed
ConPR algorithm beats the three sparsity-based benchmark
PR algorithms.

5. CONCLUSION

In this paper, we introduced a novel framework called ConPR.
The ConPR framework is a unified framework that brings
the AP method and the regularization approach together. We
formulated the generalized ConPR optimization model that
consists of a relation function term, a regularization term,
and a constraint. The generalized ConPR optimization model
is plug-and-play, and any image denoising method can be
incorporated into this model. In particular, the BM3D frame
was utilized for constructing the regularization term. We for-
mulated the BM3D-based ConPR optimization model and
solved it via updating the image and the auxiliary variable al-
ternatively. The two sub-problems were solved by using the
BM3D image denoising method and the epigraph concept,
respectively.

The proposed ConPR algorithm can exploit the non-local
similarity and the 3D transform sparsity of the underlying
image implicitly for PR. Coded diffraction imaging was simu-
lated, and the experimental results showed that the ConPR
algorithm could perform higher-quality imaging compared
with previous PR algorithms. Moreover, our proposed algo-
rithm is faster than the sparsity-based PR algorithms, such as
DOLPHIn, BM3D-prGAMP, and SPAR. Most importantly,
with the default parameters of the image denoising algorithm
fixed, the finely tuned parameter in our algorithm is unneces-
sary, and it is suitable for realistic applications. Future work will
focus on applying the deep learning method to our proposed
ConPR framework. Moreover, applying the ConPR framework
to other imaging fields is also our main research direction in
the future.
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