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A B S T R A C T

The unprecedented accelerating urbanization in China has led to a sharp decline in cultivated land. In this paper,
the dynamics of farmland patterns during three periods (1994–2003, 2003–2009, 2009–2015) in the Shanghai
and Hangzhou Bay (SHB) area are exhibited by dynamic change models and standard deviation ellipse analysis.
Additionally, further detection of the determinants of farmland loss is carried out, through a combination of
binary logistic regression and spatial regression models. Seven proximate driving factors are selected: distance to
water; distance to coastline; distance to city center; and distance to roads (provincial road, national road,
highway, and railway). The results suggest that Shanghai experienced the most drastic changes in farmland
during the study periods across the whole city agglomeration, and this impact spatially diffused to its adjacent
cities. Meanwhile, the transportation routes, especially for provincial road and national road, are quantitatively
verified to be the most prominent determinants with a negative influence. Our research highlights that the
serious farmland loss should be addressed in highly urbanized area. Furthermore, there is an urgent need for the
government to formulate efficient policies for farmland protection and to curb the spread of this phenomenon in
the urban agglomeration.

1. Introduction

Soils are the foundation of our civilization, and they provide us with
not only a veneer for the Earth system, but also a common rendezvous
point for human activities (Haygarth & Ritz, 2009). In China, almost a
quarter of soils are agricultural land (Suet al., 2012), which guarantees
a long-lasting food supply and stable ecosystem service for human so-
ciety (Osawa et al., 2016). However, the conflict of farmland with ac-
celerating urbanization and industrialization is gradually becoming a
subject of controversy in modern China (Huang et al., 2005). Typically,
the most fertile and productive land is lost to urbanization, directly
resulting in the decrease of farmland (Zhou et al., 2017). As more
farmland is converted to other use, the question arises as to whether
this trend represents a systematic reduction in our ability to produce
food by placing our infrastructure on the valuable soil resources (Zhang
et al., 2007).

Given the composite application of remote sensing (RS),

geographical information systems (GIS), and regression analysis
methods, considerable efforts have been made to survey the spatial
pattern dynamics of agricultural land (Tan et al., 2005) and to explore
the specific driving forces under rapid urbanization (Zhang et al.,
2013). Su et al. (2014a,b,c) identified the interrelationship between
urbanization and agricultural landscape patterns at an ecoregional scale
by utilizing a series of urbanization indicators; Zhou and Li (2017)
developed an evaluation framework for urban agricultural land-use
efficiency to provide the mechanism of spatio-temporal changes in the
Xi’an metropolitan zone; Hu and Zhang (2013) introduced a post-clas-
sification change detection technique to assess the impacts of urbani-
zation on seasonal land use and land cover (LULC) changes. Some other
studies (Durina et al., 2013; Chaudhuri and Mishra, 2016) have also
hypothesized that land-use conversion could be incorporated into na-
tional and local land-use planning policies, particularly in coastal zones,
in order to achieve sustainable farmland regulation and management.

Although a myriad of evidence of the threat to farmland has been
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presented, few studies have quantitatively determined the specific
driving forces under rapid urbanization, especially for large urban ag-
glomerations. Generally speaking, the megacity within a city group
radiates and promotes the effects of urbanization to its adjacent small-
and medium-sized cities and towns (Chace and Walsh, 2006). Among
the most alarming consequences of urban sprawl onto the surrounding
areas are the steady and irreversible shrinkage of farmland and the
conflicts arising from the mixed functions performed by these areas
(Kacprzak and Maćkiewicz, 2013). The complexity of the driving forces
is closely related to the properties of the study area, and studying the
same region at different scales can identify different driving forces (Yan
and Cai, 2015). The neighborhood, physical factors, proximity, and
socio-economic factors are the universally recognized determinants of
land transition (Liao and Wei, 2014). In this paper, we focus on
quantifying the relationship between the proximate driving factors and
cultivated land loss under urbanization in a coastal urban agglomera-
tion, using a novel method of combining spatial regression and binary
logistic regression models. The findings will help to reveal the current
farmland loss resulting from rapid urbanization. More than this, our
findings will also provide a scientific basis for government to initiate
agricultural protection policies, carry out urban planning, and optimize
the land regulations of coastal cities.

To be specific, we attempt to: 1) evaluate the spatial pattern and
temporal dynamics of cultivated land at an administrative scale over
three periods (1994–2003, 2003–2009, 2009–2015) across the
Shanghai and Hangzhou Bay (SHB) area; 2) identify the potential
proximate determinants of farmland conversion, considering the spatial
aggregation and diffusion in the coastal urban agglomeration; 3) pro-
vide an innovative way to combine multiple regression methods in
driving force analysis; and 4) assist the relevant departments to trans-
late the macro farmland policy in China into local land-use practices.

2. Study area and materials

2.1. Study area

As shown in Fig. 1(a), the SHB area is located in the coastal part of
southeastern China, extending from 28.9°N to 31.2°N and from 118.3°E
to 122.3°E. Along with the urban agglomeration along the Yangtze
River, the SHB area forms the Yangtze River Delta megaregion. In this
area, there is one provincial capital (Hangzhou), one province-level
municipality (Shanghai), and four metropolises (Huzhou, Shaoxing,
Ningbo, and Jiaxing). Close business contact and frequent population
flow take place between these cities.

In addition, due to the proximity of the geographical location, the
climatic conditions and soil environments of this urban agglomeration
are very similar. The SHB area enjoys a humid subtropical climate. Its
average temperature in January is generally above 0 °C, and the tem-
perature in July is generally around 25 °C. The average annual pre-
cipitation amounts to 1460mm. Under the combined effects of rivers,
rainfall and climate, the soil in the Yangtze River Delta is moist and full
of nutrients, which give the productivity and thereby attracting a great
number of people to settle down and develop here. According to the
statistics, the population of the SHB area increased from 20.52 million
to 47.81 million during the 20 years of 1994–2015. From Fig. 1(b), it
can be seen that a large area of plains is found in the northeast and the
central part of the SHB area, which provides suitable topographic
conditions for crops to grow. The entire SHB area covers an area of
50,764 km2, and in 2015, the total cultivated land area amounted to
19.84% of it (Zhejiang Statistical Yearbook, 2016; Shanghai Statistical
Yearbook, 2016).

The SHB area is equipped with three major natural harbors
(Shanghai port, Ningbo port, Yangshan port), which provide convenient
transportation and business conditions (Fig. 1(c)). Driven by these
economic benefits, the SHB area has mushroomed to become one of the
most urbanized regions in the world. Such rapid urbanization has had a

significant impact on the soil, and especially the cultivated land.
Therefore, we chose the SHB area as a typical example to investigate
the determinants of farmland loss in the process of urbanization.

2.2. Land-use data acquisition and processing

The data for the cultivated land in Hangzhou Bay (1995, 2000,
2005, 2010) and the city of Shanghai (1995, 2000, 2005, 2010) were
obtained from Xiao et al. (2013a,b) and Su et al. (2014a,b,c), respec-
tively. On this basis, we downloaded Landsat Thematic Mapper (TM)
remote sensing images at a 30-m resolution (1994, 2003, 2009, 2015)
from http://glovis.usgs.gov/. Before the interpretation, all the images
were geometrically corrected and false-color composited. To allow us to
compare these remote sensing images, we extracted the cultivated land
data by visual interpretation in the corresponding year. Considering the
coarse resolution and the presence of mixed spectral phenomena,
farmland was not subdivided into specific categories (e.g., red soil,
paddy soil, etc.) in the process of classification. To check the result of
the interpretation, we linked Google Maps with ArcGIS 10.1 software
and selected 500 random points on the map within the scope of the
study area. The accuracy reached 78.2% for 1994, 81.1% for 2003,
83.4% for 2009, and 85.2% for 2015, respectively, satisfying the ac-
curacy requirements. After obtaining the data of farmland distribution
in each year, we further processed it and got the change maps of
farmland between 1994 and 2003, 2003–2009, 2009–2015, which are
shown in Fig. 2.

2.3. Selection of potential driving factors

A transition in land use is not a stationary pattern, nor is it de-
terministic (Lambin and Meyfroidt, 2010). Farmland loss can be caused
by the negative socio-ecological feedback that arises from a set of
structural or behavioral factors (Tayyebi and Pijanowski, 2014). In this
study, we referred to previous studies (Shu et al., 2014; Li et al., 2013),
which proposed that among the potential variables, accessibility is the
most important one. The spatial characteristics of the surface features
and the availability of the data were also taken into consideration.
Thus, in this study, we finally focused on exploring the role of the
different proximate driving factors.

More specifically, proximity determinants include the distance to
city centers, rivers and lakes, transportation routes, or some special
objects (Xiao et al., 2015). In this study, the administrative center of
each city was extracted as a representative of the city center. The early
urbanization demonstrated an expansion pattern from the city centers
into the rural areas (Wu et al., 2015). The distance to city center (Dcc)
indicates the degree of human aggregation. Located near the Yangtze
River Basin, the SHB area features an extensive water system, which
plays an important role in the agricultural production activities and
urban development. Thus, the distance to water (Dwt) was also included
in the analysis. Land use along the major roads has undergone a sub-
stantial level of change from agricultural farm land to residential and
commercial uses (Oruonye, 2014). We therefore selected four traffic
variables for complete exploration: distance to provincial road D( )pr ,
distance to national road (Dnr), distance to highway (Dhw), and distance
to railway (Drw). Furthermore, as a coastal urban agglomeration, the
coastlines affect the LULC and human societies significantly (Wu et al.,
2018), so the distance to coastline (Dcl) was also taken into account. The
spatial patterns of these determinants in the study area are shown in
Fig. 3 in detail.

All the digital geographic data were obtained from the national
basic geographic data sets (1:4000,000 scale). In particular, the coast-
line data were downloaded from https://shoreline.noaa.gov/. Using
these data sources, we calculated the distance to each factor using the
NEAR module in ArcGIS 10.1. What should be mentioned is that our
research was carried out on a large-scale basis, so census-based vari-
ables such as population density and gross domestic product (GDP)
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Fig. 1. The study area of Shanghai and Hangzhou Bay (SHB). (a) The location of the urban agglomeration around the SHB area. (b) The elevation. (c) The major
natural harbors in the SHB area.
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were not incorporated.

3. Methodology

3.1. Cultivated land change model

Changes in river systems, urban centers, coastlines, and road con-
struction can transform the farmland distribution and result in the
unsustainable development of regional agriculture. The introduction of

LULC change models are of great help to the comprehensive evaluation
of such changes. In this study, the cultivated land-use dynamics index
(CLUDI) was employed for the analysis of the farmland patterns, ex-
pressed as shown in Eq. (1). Considering the different time spans of T1
(1994–2003), T2 (2003–2009), and T3 (2009–2015), the CLUDI nor-
malizes the value of T, so as to better explore the quantity change of a
single land-use type in a certain period.

= − × ×CLUDI U U
U T

1 100%a b

a (1)

Fig. 2. The farmland changes of the Shanghai and Hangzhou Bay (SHB) area in 1994–2003, 2003–2009, and 2009–2015. a–e highlights some areas with intense
changes.

Fig. 3. The spatial patterns of selected potential determinants (water, coastline, city center, provincial road, national road, highway, and railway) in the SHB cities.
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where CLUDI represents the dynamic degree of cultivated land use in
the study area; Ua and Ub are the total area of cultivated land at the
beginning and the end of the study period, respectively; T denotes the
years of a study period, and if the period of T is set to year, the value of
CLUDI is the annual percentage change rate of the cultivated land.

In addition, the regional difference index (RDI) was also applied, to
reflect the regional synthetic differences of LULC change. If the relative
change rate of farmland in a certain city is determined as RDI > 1, it
indicates that the farmland change in this region is larger than that of
the whole region. The expression of this model is represented as shown
in Eq. (2):

= ⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

RDI K
K

C
C

b

a

b

a (2)

where RDI is the RDI of cultivated land-use change; Ka and Kb represent
the area of farmland in a particular city at the beginning and the end of
the study period, respectively; and Ca and Cb represent the area of
farmland across the whole SHB at the beginning and the end of the
study period, respectively.

3.2. Standard deviation ellipse analysis

A common way to measure the trend of a set of points or areas is to
calculate the standard distance separately in the x- and y-directions.
These two measures define the axes of an ellipse encompassing the
distribution of features. The ellipse is referred to as the standard de-
viational ellipse (SDE), since the method calculates the standard de-
viation of the x-coordinates and y-coordinates from the mean center to
define the axes of the ellipse (Gong, 2002). In this study, we applied the
mean center of cultivated land within a certain city as the center of the
SDE, and its formula is shown in Eq. (3). Recognizing the spatio-tem-
poral distribution of cultivated land using the ellipse allows us to un-
derstand the spatial characteristics of the geographic features of central
tendency, directional trends, and dispersion. The formula for struc-
turing the SDE is denoted as shown in Eq. (4) (Lefever, 1926).

=
∑

=
∑= =X

x
n

Y
y

n
,i

n
i i

n
i1 1

(3)

where xi and yi are the coordinates for feature i, and n is equal to the
total number of features.

Table 1
Results of the CLUDI and RDI models.

T1 T2 T3 T1 T2 T3

CLUDI RDI Rank RDI Rank RDI Rank

Hangzhou −0.010 −0.053 −0.028 0.499 3 0.445 1 0.214 2
Shanghai −0.007 −0.018 −0.022 0.542 2 0.243 2 0.343 1
Huzhou −0.004 −0.007 −0.010 0.181 5 0.05 5 0.1 4
Shaoxing −0.001 −0.013 −0.011 0.072 6 0.127 3 0.123 3
Ningbo 0.015 −0.004 −0.010 −0.678 1 0.042 6 0.123 3
Jiaxing −0.009 −0.013 −0.011 0.384 4 0.092 4 0.098 5
SHB −0.003 −0.018 −0.015 1 1 1

Abbreviations: cultivated land-use dynamics index (CLUDI); regional difference index (RDI); Shanghai and Hangzhou Bay (SHB). T1: 1994–2003, T2: 2003–2009, T3:
2009–2015. The underlined numbers are regions which showed greater change.

Fig. 4. The proportion of cultivated land and non-cultivated land in 1994, 2003, 2009, and 2015.
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where xi and yi are the coordinates for feature i, X Y{ , } represents the
mean center for the features, and n is equal to the total number of
features.

In detail, the position of the ellipse center is presumed to be the
most representative single position of all locations in the area occupied
by the cultivated land, and its change reflects the transfer of the mean
center of land gravity (Wang et al., 2015). The angle θ of a long half axis
deviating clockwise from the y-coordinates is deemed to be the rotation
angle of the SDE, from which the orientation of the land distribution
can be signified quantitively by Eq. (5). Another indicator of the SDE is

oblateness, which is calculated to describe the flattening degree, using
the expression of Eq. (6). In particular, the lower the value, the more
obviously an ellipse tends to be a circle.
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Fig. 5. Distribution of cultivated land in the six cities in 1994, 2003, 2009, and 2015. The standard deviation ellipse is shown in the left column and its weighted
mean center in the right column (the rotation angle of SDE(R), the oblateness of SDE(O)).
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where ∼xi and ∼yi are the deviations of the xy-coordinates from the mean
center.

= −a b
a

O (6)

where O is the oblateness of the SDE; and a b, signify the minor axis
semidiameter and major axis semidiameter, respectively.

In the recent studies, the SDE has been commonly adopted to map
the distributional trend for a set of specific behaviors, in order to
identify the relationship between particular physical features (Kent and
Leitner, 2007) or to plot ellipses for a disease outbreak over time so as
to establish the spreading model (Eryando et al., 2012), and so forth.

3.3. Binary logistic regression

Binary logistic regression (BLR) is a statistical method commonly
applied in geographic information analysis (Menard, 2012a). The goal of
BLR is to explore the relationship between a dependent variable and two
independent elements with regression models (Lee, 2005). In this study,
we established one regression model for each period. Cultivated land
change (Y) was considered as the binary dependent variable, and seven
selected potential driving forces (D D D D D D D, , , , , ,wt cl cc pr nr hw rw) were
chosen as the independent variables. If the land converted from cultivated
land to other types of LULC, we considered that change occurred and set
Y=1; otherwise, we set Y=0. Before the regression, there was a need
for all the explanatory variables to be standardized and normalized. Given
that there are m determinants, i.e., = …x i m( 1, 2, , ),i the overall prob-
ability of Y=1 is P. The BLR model is shown below.

= … =
+

+∑

+∑
Y x x x e

e
P( 1| , , , )

1m
β β x

β β x1 2
( )

( )

i i

i i

0

0

= … = ⎛
⎝ −

⎞
⎠

= + + …+Y x x x P
P

β β x β xlogitP( 1| , , , ) ln
1m m m1 2 0 1 1 (7)

where β0 is a constant, and the parameters βi (i=1, 2, …, m) are the
coefficients of each independent variable to be estimated, which can re-
veal the possible impact of each independent variable exerted on the
dependent variable (Menard, 2012b). In detail, if the dependent variable
(Y) is proportional to a factor, we consider that Y is more likely to be 1
under the influence of this factor, which means that the possibility of
transformation is greater. The adjusted R2 can be used in testing the in-
terpretability of logistic regression results (Li et al., 2013). An adjusted
R2 > 0.2 denotes a relatively good fit for the model (Shu et al., 2014). In
addition, the area under the relative (or receiver) operating character-
istics (ROC) curves (AUC-area under curve) was also used as a summary
measure to examine the quality of the forecasts with a higher or lower
possibility of farmland change (Mason and Graham, 2002). It is testified
that when the forecast system is accurate, the AUC values will exceed 0.5
(Pazúr et al., 2014). All of the calculations were undertaken in SPSS 19.0
software.

3.4. Spatial regression

If there is spatial heterogeneity between samples, the spatial re-
gression model should be used to avoid the estimation error (Jiang and
Ji, 2011). Therefore, we used spatial regression to investigate the spa-
tial heteroskedasticity and spatial dependence of the error terms for the

Table 2
Summary of the BLR models.

Variable Period Hangzhou Shanghai Huzhou Shaoxing Ningbo Jiaxing

Dwt T1 0.140** 0.020** −0.108** 0.115** 0.037*

T2 −0.017* 0.019**

T3 0.030** −0.059** −0.033* 0.050** −0.062**

Dcl T1 −0.068** −0.233** −0.127**

T2 −0.054** 0.009** −0.027** −0.109**

T3 0.010* −0.036** 0.029**

Dcc T1 −0.047** −0.111** −0.088** −0.025**

T2 −0.044** −0.027** −0.009* 0.024**

T3 −0.066** 0.041**

Dpr T1 −0.058** −0.099** −0.146** −0.053** 0.175**

T2 −0.028** −0.067** 0.035** 0.149**

T3 −0.144** −0.042* −0.063**

Dnr T1 −0.116** −0.233** −0.173** −0.064** 0.051**

T2 −0.013** 0.018** 0.037*

T3 −0.006* −0.153** −0.041* −0.017*

Dhw T1 0.143** 0.082** −0.104** −0.037**

T2 0.079** 0.017** 0.101** 0.020** −0.074**

T3 −0.054** −0.068** −0.067** −0.053**

Drw T1 −0.086** −0.039** 0.147** 0.103**

T2 −0.042* 0.022**

T3 0.026** 0.040* −0.029** −0.083**

Constant T1 −0.453* 0.555** −2.159** −1.013** 0.954* −2.293**

T2 −0.779** −0.485** −2.651** −2.211** −0.915** −3.197**

T3 −0.420** 0.633** −2.090** −0.988** −3.242** −1.418**

Period T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
AUC ROC 0.82 0.68 0.55 0.77 0.64 0.76 0.70 0.66 0.67 0.87 0.61 0.70 0.86 0.62 0.59 0.69 0.59 0.67
Adjusted R2 0.28 0.12 0.01 0.20 0.05 0.19 0.07 0.05 0.03 0.24 0.04 0.07 0.29 0.04 0.02 0.08 0.03 0.07

Abbreviations: distance to water (Dwt), distance to coastline (Dcl), distance to city center (Dcc), distance to provincial road (Dpr), distance to national road (Dnr),
distance to highway (Dhw), distance to railway (Drw), area under the receiver operating characteristic curve (AUC ROC). T1: 1994–2003, T2: 2003–2009, T3:
2009–2015.
* p < 0.05.
** p < 0.01.
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driving force analysis of changing farmland patterns (Fang et al., 2016).
The spatial regression model consisted of a spatial lag model (SLM) and
spatial error model (SEM). The former model was applicable when the
farmland in the region was affected by its neighboring regions, while
the latter model was advantageous in detecting the spatially random
error terms (Xiao et al., 2013a,b).

The formulation of the SLM is described as shown in Eq. (8)
(Anselin, 1995):

= + +y ρW Xβ εy (8)

where y represents the area of each changing farmland feature; Wy is a
spatially lagged dependent variable for the weight matrix W; X is a
matrix of independent observations; ε is a vector of error terms; and ρ
and β are coefficient vectors.

Equations characterizing the SEM are shown in Eqs. (9) and (10)
(Anselin, 1995):

= +y Xβ ε (9)

= +ε λW με (10)

where y is a vector containing the area of each changing farmland
feature; X is a matrix of independent observations; Wε is the spatial
weight matrix; ε is a vector of the spatial error terms; and β and λ are
coefficient vectors.

For these two models, if the value of β tends to be positive, then the
farther the distance to the factor, the greater the impact will be;
otherwise, it assumes an opposite relationship. All the spatial regression
models were computed in GeoDa 0.9.5-i (Beta) software, and the

independent variables were entered into the regression in a stepwise
way to avoid the potential multicollinearity among factors (Su et al.,
2013).

4. Results

4.1. Dynamic features of cultivated land change

Table 1 shows the results of the CLUDI and RDI models in the SHB
cities during the three different periods. For the CLUDI, it displays a
negative growth in all cities and periods, except for the city of Ningbo
in T1, indicating that majority of the cultivated land in the SHB area
was decreasing during the study period. Among these cities, the change
speed of Shanghai and Huzhou became faster and faster, while in other
cities, the change speed first presented an increasing trend and then
decreased, which implies that Shanghai and Huzhou were experiencing
rapid urbanization while the other cities had entered a period of sta-
bilization. As far as the whole of the SHB area, the gross area of culti-
vated land declined most significantly in T2 (2003–2009), which was
six times that of the change rate in T1 (1994–2003) and 1.2 times that
of T3 (2009–2015), revealing the divergence over time. Moreover,
significant differences happened across space, according to the value of
the RDI. From the comprehensive ranking of T1, T2, and T3, Shanghai
was found to be the region which went through the most drastic
transformation of cultivated land, followed by Hangzhou. Additionally,
in spite of the high speed of farmland reduction, Huzhou is still at the
bottom of the ranking list. Such a phenomenon is closely related to the
development of the city and is also consistent with its urbanization

Table 3
Determination coefficients of the spatial regression between areas of cultivated land and potential driving forces at the municipal level during the three temporal
intervals.

City Spatial regression model Adjusted R2

Hangzhou T1 = − × + × + × +∗∗ ∗ ∗∗ ∗∗D DY ( 32.38 39.10 ) 0. 99 WY 655564a nr rw 0.755

T2 = − × + × + ×∗∗ ∗∗ ∗∗D DY ( 41.31 28.54 ) 1. 00 WYa cl cc 0.362
T3 = − × + × +∗∗ ∗∗ ∗∗DY ( 2.96 ) 0. 99 WY 65844. 1a cl 0.805

Shanghai T1 = − × − × − × − × + ×

+

∗∗ ∗∗ ∗ ∗∗ ∗∗

∗∗

D D D DY ( 3.37 3.65 30.71 15.77 ) 0. 99 WY

644375

a wt cc nr rw 0.931

T2 = − × + ×∗∗ ∗∗DY ( 22.85 ) 0. 99 WYa pr 0.957

T3 = − × − × − × + × + ×∗∗ ∗∗ ∗ ∗ ∗∗D D D DY ( 36.89 37.84 11.04 7.62 ) 1. 00 WYa pr nr hw rw 0.302

Huzhou T1 = − × − × + × + × +D D DY ( 19.14 21.60 14.72 ) 0. 97 WY 240868a wt pr rw** ** ** ** ** 0.406

T2 = × + ×∗ ∗∗D λY (3.84 ) 0. 99b nr 0.491

T3 = − × + × − × + × +D D DY ( 12.74 5.64 6.47 ) 0. 99 WY 97635. 6a wt cc hw** ** * ** * 0.933

Shaoxing T1 = × + × − × + × + ×∗ ∗ ∗∗ ∗∗ ∗D D D λY (2.66 2.80 5.99 ) 0. 99 1.12 10b wt nr hw 6 0.995

T2 = − × + × + × + × + ×D D D DY ( 6.92 4.58 7.75 6.72 ) 0. 99 WYa cl pr nr rw** * ** ** ** 0.348

T3 = − × − × − × − × + × +D D D DY ( 8.74 8.55 7.90 6.98 ) 1. 00 WY 320442a wt pr nr rw* * ** ** ** ** 0.801

Ningbo T1 = × − × − × − × − ×

− × + × + × + ×

D D D D D

D D

Y (49.33 116.15 32.15 75.78 53.48

62.23 57.03 ) 1. 00 WY 2.38 10

a wt cl cc pr nr

hw rw

** ** ** ** *

** * ** 6**

0.377

T2 = − × − × − × + × + × +D D D DY ( 7.77 7.51 10.30 7.99 ) 1. 00 WY 395117a cl pr nr rw** ** ** * ** ** 0.350

T3 = − × − × + × +D DY ( 3.33 3.76 ) 1. 00 WY 86328. 2a nr hw* * ** ** 0.928

Jiaxing T1 = − × − × + × + × +D D DY ( 23.92 35.38 34.87 ) 0. 99 WY 488299a wt cl pr* * * ** ** 0.872

T2 = − × − × − × + × + ×

+ × +

∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ ∗∗

D D D D D

λ

Y ( 4.91 7.09 13.89 7.51 10.47 )

5. 50 358161

b cc pr nr hw rw 0.568

T3 = − × − × − × + ×D D DY ( 6.31 9.09 5.95 ) 0. 99 WYa wt nr hw* ** * ** 0.885

Abbreviations: distance to water (Dwt), distance to coastline (Dcl), distance to city center (Dcc), distance to provincial road (Dpr), distance to national road (Dnr),
distance to highway (Dhw), distance to railway (Drw), area under the receiver operating characteristic curve (AUC ROC). T1: 1994–2003, T2: 2003–2009, T3:
2009–2015.
*p < 0.05.
**p < 0.01.
aSpatial lag models.
bSpatial error models.
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characteristics in the acceleration phase.
It is also worth mentioning that the proportion of cultivated land in

Shanghai was the highest among all the cities in 1994, 2003, and 2009,
which can be seen in Fig. 4. However, in 2015, the rapid farmland loss
in Jiaxing (which also has a relatively high proportion of farmland, but

reduced slowly) resulted in it becoming the administrative area with
the highest proportion of farmland. This statistical result reflects that
Jiaxing is gradually undertaking the role of the main grain producer in
the SHB area. In contrast, as the city possesses the lowest proportion of
farmland, Hangzhou has experienced a drastic reduction in farmland.

Fig. 6. Comparison of the adjusted R2 between the three models (T1: 1994–2003, T2: 2003–2009, T3: 2009–2015; BLR: binary logistic regression, SLM: spatial lag
model, SEM: spatial error model).
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As a result, this city held only 9% of the cultivated land in 2015, which
may pose a threat to the agricultural industry in this area.

Except for the total area, the center and direction of cultivated land
also migrated, which can be clearly seen by the characteristic values of
the standard deviation ellipses. As exhibited in Fig. 5, the distribution of
cultivated land in some cities (such as Huzhou) remained almost un-
changed, while that was not the case for others. For Shanghai, the
oblateness of the ellipse was reduced from 0.49 to 0.15 during T1
(1994–2003), reflecting an increased dispersion degree of farmland,
and the spatial direction of farmland distribution was to the northeast
in 1994 and 2009 and to the northwest in 2003 and 2015, which in-
dicates a continuously changing trend. The weighted mean center
moved from the west to the east during the study periods, which may be
due to the farmland increase near the coastal areas or the farmland

decrease in the inland areas. Similar changes also occurred in Shaoxing.
With regard to Jiaxing, the strengthened directionality of the distribu-
tion signified that the influencing factors shifted toward simplification
in recent years, which is different from the diversification trend in
Shanghai. Furthermore, as a typical example under some policies, the
arable land center in Ningbo clearly shifted to the shoreline during the
first period.

4.2. Results of the BLR models

The driving forces of the farmland change identified by the BLR
models are presented in Table 2. For the six cities in the three intervals,
AUC ROC ranges between 0.55 and 0.87, and adjusted R2 reaches
0.01–0.29. This result suggests that only a few models, which were

Fig. 7. The absolute values of the coefficients of the seven potential determinants according to BLR, SLM, and SEM (only those values passing the significance test are
presented). T1: 1994–2003, T2: 2003–2009, T3: 2009–2015. (a) Hangzhou. (b) Shanghai. (c) Huzhou. (d) Shaoxing. (e) Ningbo. (f) Jiaxing.
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mainly concentrated in T1, performed well enough in explaining the
process of cultivated land change. Spatially, the models of Shanghai and
Hangzhou city fitted better than the others. Aiming at these effective
models, it can be found that the distance to water dominated in influ-
encing most cities in T1, while in T2 and T3, multiple factors, including
the distance to city center, distance to provincial road, distance to na-
tional road, and distance to railway, jointly exerted a significant im-
pact.

Moreover, some determinants only played a key role in a particular
city. For example, due to the establishment of the Land Reclamation
Policy (LRP) in 2000, offshore areas were redeveloped into arable land,
especially in Ningbo. The negative coefficient of −0.233 in T1 meant
that a closer distance to the coastline resulted in a greater possibility of
cultivated land change. Besides, the city center mainly had an effect on
its surrounding cultivated land in Shanghai and Shaoxing.

4.3. Results of the two spatial regression models

As viewed from the perspective of adjusted R2 in Table 3, more than
10 values exceed 0.7, and even the minimum value reaches 0.302,
which denotes a good predictive ability and fitting degree for these
spatial models. Higher values of adjusted R2 imply that the driving
factors in the research region are better explained by the spatial re-
gression model than the logistic regression model. The coefficient of
each factor reflects its influence over the farmland; for a negative value,
the farther the distance from the factor, the smaller the probability that
change occurred.

During the period of T1, it can be found that distance to water (Dwt)
exhibited a strong effect in most cities, except for Hangzhou, while in
T3, distance to roads (provincial road (Dpr), national road (Dnr),
highway (Dhw), and railway (Drw)) gradually became dominant in these
areas. Furthermore, the city center exhibited no appreciable effect
during the three periods, especially in T3. Apart from the temporal
differences, the spatial regression model focuses more on spatial di-
versities, which can be attributed to the various developmental modes
in each city. For instance, the distance to main traffic roads was the
most important driving force in Shanghai, while this influence was
weaker in the other cities. It is because Shanghai possesses a more
crowded road network than the other cities, which severely cuts down
the area of cultivated land. Meanwhile, the spatial regression model
also shows the remarkable impact of distance to coastline (Dcl) in
Ningbo across T1 to T2, which is similar to the results of the logistic
regression model.

5. Discussion

5.1. Response of cultivated land to urbanization

Urbanization is one of the principal characteristics and hot spot is-
sues of regional coordinative development in modern China (Yuan
et al., 2014). A common view is that urbanization is a diffusion process,
which starts from the continuously growing urban centers that affect
the remote rural villages in concentric circles (Bryant et al., 1982). The
cities encompassed in our study area have also been found to demon-
strate a similar trend. As the largest trade area in eastern China, the
SHB area has a strong economy, thereby bringing about advanced ur-
banization. However, the intensive expansion of constructed im-
pervious surfaces, spurred on by the rapid socio-economic development
(Luo et al., 2017), has greatly affected the SHB area, and consequently
resulted in large-scale farmland loss. It could be attributed to the fact
that human settlement occupied more space on farming soils, since they
were generally located in plains with better accessibility to cities or
transportation routes (Pan and Zhao, 2007). The massive loss of culti-
vated land has inevitably led to food security crises and even high
unemployment in non-urban areas (Xiao et al., 2013a,b).

Our research also proved that the megacity has a radiation effect

upon its adjacent small- and medium-sized cities and towns under the
process of urbanization (Chace and Walsh, 2006), which can be verified
by Shanghai and Jiaxing. On the one hand, the rural population of
Jiaxing flowed into Shanghai to seek job opportunities, aggravating the
local farmland loss. On the other hand, the road network radiating from
Shanghai also destroyed the arable land in the surrounding areas. A
similar phenomenon has been observed in the Beijing-Tianjin-Hebei
region (Tan et al., 2005) and Japan (Morikawa, 1990). It is also ne-
cessary to point out that some coastal cities (Shanghai, Ningbo, Jiaxing,
Shaoxing, Hangzhou) exhibited analogous variations in farmland pat-
terns (i.e., the area of cultivated land along the coastline increased to a
certain extent) mainly due to the Land Reclamation Policy (LRP).

5.2. Comparison between BLR, SLM, and SEM

Reviewing the recent relevant studies (Su et al., 2014a,b,c; Garizi
et al., 2012), it can be found that a single model (logistic regression/
spatial regression) has usually been adopted to investigate the driving
mechanisms of LULC change under urbanization. To detect and avoid
the deficiency of a certain model, we used a combination of BLR, SLM,
and SEM in this study. All three models are devised to characterize the
association between dependent variable and multiple independent
variables. However, due to the limit value (0/1) of the dependent
variable, the results of BLR are more likely to verify whether the in-
dependent variable contributes to the occurrence of the event of in-
terest (Hosmer and Lemeshow, 2000).

Compared with BLR, the spatial regression models reveal more
about the lag or error of the influence on farmland in space. Similar
changes were observed in adjacent areas, implying that notable spatial
agglomeration and spatial diffusion exist in our research region.
Therefore, the logistic regression model that covers the spatial effect
will cause deviation of the estimated results (Baus et al., 2014), which
can be confirmed by the low adjusted R2 values (Fig. 6). In summary,
spatial analysis, which serves as an efficient tool for quantitatively
modeling cultivated land changes and offers an efficacious method for
analyzing complex spatial patterns, is better suited to the SHB area.

Meanwhile, as Fig. 6 shows, the regression diagnostics also show
that only three SEMs in the spatial analysis performed better than the
SLM (T2 of Huzhou, T1 of Shaoxing, T2 of Jiaxing). Similar results were
also obtained by Zhang et al. (2013). Models with a better fitting degree
are mostly concentrated in the T3 period, while the poorer ones are
concentrated in the T2 period, which can be ascribed to the temporal
differences. Thus, the need for changing the time interval when char-
acterizing the changes of arable land patterns should be stressed.

5.3. Driving force analysis

Through combining the results obtained by the different methods,
all the potential driving factors we identified were found to play a role
in the process of farmland reduction, varying with cities and periods.
These differences appeared because of the diverse external environ-
ments and disparate soil conditions. Among the driving factors, the
traffic network exerted the greatest influence on the farmland loss, and
this influence varied with the road type (Qiu, 2009). According to
Fig. 7, our research revealed that the distance to provincial road (Dpr)
and national road (Dnr) influenced the cultivated land the most, fol-
lowed by the distance to highway (Dhw), while railways had only a
slight impact. In Shanghai, where the development of the economy
brought about a great requirement for transportation, the LULC was
severely impaired by the transportation routes (Su et al., 2014a,b,c).

River transportation was also important in the early stage. Our re-
sults suggested that distance to water (Dwt) had a significant negative
effect on farmland during T1 in various areas. However, this impact
declined with the reduction in waterway transport in T2 (Tables 2 and
3). With the demand for an improved living environment, many people
have gradually tended to settle near to rivers and lakes. In our study
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region, the districts near Hangzhou Bay and along the Qiantang River
were always the most prosperous. Consequently, the water system be-
came the main factor affecting the loss of cultivated land in recent
years. In the Balçova Delta in Turkey, Bolca et al. (2007) explored the
effect of the water on wetlands and marshes, obtaining similar con-
clusions.

The city centers were important in the early urbanization. After the
most dramatic period of construction, not much cultivated land re-
mained in the city centers, so the influence of this factor was weakened.
In addition, the incredibly high prices and crowded traffic also hindered
people from settling in the downtown areas. As for the coastline, it only
showed an evident impact on Ningbo during T1 in our research. What is
more, under the implementation of the LRP, the effect of natural phy-
sical and chemical processes was obscured. In Portugal, Freire et al.
(2009) reported that the presence of artificial surfaces homogeneously
decreased with the distance to the coastline. It would be meaningful to
further evaluate the urbanization pressure and change rates under the
framework of the “coastal carrying capacity” (Carver and Mallet, 1990),
so as to study the coastal sustainability for the SHB area.

5.4. Implications and limitations

Over the past 20 years, the rapid urbanization of the SHB area has
led to a great conversion of LULC types. To boost economic develop-
ment, the government has sold a great quantity of high-quality agri-
cultural land to real estate developers, which has caused the cultivated
land to decrease in area and fragment. The Food and Agriculture
Organization (FAO) of the United Nations proclaimed that the per ca-
pita arable land in Zhejiang province is lower than the precautious line
(Zhang et al., 2014). Hence, the government should formulate a long-
term strategy to strengthen the theoretical research on the protection of
cultivated land and enhance the constitution, implementation, and su-
pervision of the protection policy. Not only that, in view of the parti-
cular geographical location of coastal areas, the one-size-fits-all ap-
proach cannot apply in the SHB area. Local government is responsible
for incorporating the national protection policy into local land-use
practice and taking the spatial spill-over effect into account (Su et al.,
2017). Based on the SLM and SEM, we know that people prefer to dwell
near to wide roads (provincial roads and national roads) rather than in
downtown areas. Considering the impact of transportation routes, the
relevant departments should rationally design the road network in
urban planning, to avoid over-segmentation of the farmland. Mean-
while, the protection of the farmland near to the river system of the
Yangtze Delta also needs further research and vigorous land-use plan-
ning.

Despite the use of the novel method combining BLR, SLM, and SEM
in this study, several limitations exists. Firstly, we only selected seven
proximate factors as potential driving forces to conduct the investiga-
tion. Actually, for most LULC patterns, the behavioral and structural
factors are usually divided into four categories: proximity, physical
factors, neighborhood, and socio-economic determinants (Liao and
Wei, 2014). Factors such as climate, land price, inefficient cultivation,
and decreasing numbers of farmers should also be considered in future
investigations. Secondly, this study was carried at the municipal scale,
and such generalized research may mask the spatial distinctions of
smaller regions (e.g., county, town, etc.). Some researchers have pro-
posed that any modeling attempt at a regional level should integrate a
thorough analysis of the effects of the spatial scale (Kok and Veldkamp,
2001; Liu et al., 2016). Thirdly, given the poor resolution of the TM
imagery, the accuracy of the farmland distribution map is limited. Fi-
nally, we did not consider those transportation routes under construc-
tion in each period, bringing a slight roughness to our results. A deeper
understanding could be achieved by taking these points into con-
sideration in future studies.

6. Conclusion

In this study, we undertook a comprehensive application of BLR,
SLM, and SEM in exploring the spatially varying determinants of
farmland loss under urbanization at an administrative scale. China has
witnessed booming urbanization after the implementation of the “re-
form and opening-up” policy, which has directly led to cultivated land
shrinkage and indirectly caused food shortage. The urbanization of the
SHB area, the biggest urban agglomeration in the eastern coast of
China, has been not only rapid, but also shows obvious sprawl and
diversity in space. The results of this study showed that Shanghai went
through the most dramatic decline in farmland during the three periods
(1994–2003, 2003–2009, 2009–2015), followed by Hangzhou. In ad-
dition, serious farmland loss initially appeared around the city centers
and then spread to the suburbs. The regression analysis of the potential
driving forces and farmland change indicated that the farmland near to
transportation routes faced a higher risk of conversion in most cities
and periods, while the water and coastline played a role only in certain
regions and times (e.g., water played a role in Shaoxing, Jiaxing, and
Huzhou during T1 and T3, and coastline effected Ningbo during T1).
Therefore, road planning and regional differences are the primary as-
pects that the government should take into consideration when for-
mulating urban development policies.

Our study also hinted that the common BLR model failed to reflect
the real dynamics of farmland loss under the accelerating urbanization
in the SHB area, while the spatial regression models displayed a better
performance. Such findings highlight the spatial non-stationarity in
large research areas. Finally, the limitations existing in this study
should not be neglected: the data sources with a coarse resolution, the
insufficiency of the selected driving factors, and the generalized scale of
the municipal administrative district. Based on these conclusions, we
propose that further studies on farmland loss in response to urbaniza-
tion should be conducted at a smaller scale, and the scale effect should
be taken into consideration. Moreover, the impacts of farmland pattern
changes on the eco-society resource allocation, the spatial spill-over
and diffusion in large cities, and the according policy implications
should also be addressed.
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