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• The FP across China showed evident di-
urnal, seasonal and inter-city differ-
ences.

• The FP increased significantly in numer-
ous Chinese cities during 2003–2016.

• The temporal variations of FP correlated
to NL, EVI and WSA.

• More effective measures should be car-
ried out to restrain the FP.
⁎ Correspondence to: X. Huang, School of Remote Sens
⁎⁎ Correspondence to: Q. Tang, Key Laboratory ofWater
Sciences, Beijing 100101, PR China.

E-mail addresses: xhuang@whu.edu.cn, huang_whu@

https://doi.org/10.1016/j.scitotenv.2018.11.171
0048-9697/© 2018 Elsevier B.V. All rights reserved.
Temporal trends of the annual and seasonal (i.e. summer and winter) footprints of the surface urban heat island
effect across 302 Chinese cities over the period 2003–2016.
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The urban heat island (UHI) effect has been a concern for decades due its adverse influence on energy consump-
tion, air and water quality, and, most importantly, the health of urban dwellers. Researchers have paid much at-
tention to the magnitude of the UHI effect, but ignored its spatial extent (i.e. footprint) which is another
important aspect of the UHI effect. In this study, we systematically analyzed the footprint of surface UHI
(SUHI) effect in 302 Chinese cities, especially temporal trends of the footprint, by using multi-source remote
sensing data. The footprint of SUHI effect (FP) was estimated by the Gaussian surface, and its temporal trend
was examined by theMann-Kendal and the Sen's slope estimator non-parametric tests.We found the FP showed
evident diurnal (daytime N nighttime), seasonal (summer N winter) and inter-city (big cities N small and
medium-sized cities) differences. During the period 2003–2016, over 80% of the 302 cities exhibited increasing
trends of the FP in annual days and summer days, and the increasing trends were statistically significant (p b

0.05) in about half of these cities. In the nights, the FP increased in more than 70% of the cities, and about one-
third of the 302 cities experienced significantly increasing trends of the FP. On average, the annual daytime
and annual nighttime FPs increased at a rate of 5.0% per year and 3.8% per year, respectively. More importantly,
the correlation analysis indicated that the increase of anthropogenic heat emissions and the decrease of vegeta-
tion activities and surface albedos should take lead responsibility for the expansion of the FP in the urbanization
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process. These results reveal that the spatial extent of heat island effect has expanded significantly in numerous
Chinese cities, and this increasing trend will be sustained in the coming years if no more effective measures are
carried out.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The accelerating urbanization and the increasing anthropogenic ac-
tivities have significantlymodified the atmospheric and surface proper-
ties of the Earth, and have thus altered the energy balance in cities and
affected the urban thermal environment (Grimm et al., 2008; Hart and
Sailor, 2009; Yao et al., 2017). As a result, distinct temperature differ-
ences between urban areas and their less-developed surroundings
have been widely observed, a phenomenon which has been termed
the “urban heat island” (UHI) effect (Oke, 1982). The UHI effect is gen-
erally regarded as a result of the reduction in latent heat flux and the rise
in sensible heat flux in urban areas (Imhoff et al., 2010). The UHI effect
poses a threat to the air and water quality (Grimm et al., 2008; Rizwan
et al., 2008), it greatly increases energy consumption in summer (Cui
et al., 2017), and it results in increased thermal stress and heat health
risk for urban dwellers (Dong et al., 2014; Vargo et al., 2016). Therefore,
the UHI effect has been a concern for several decades (Oke, 1973; Oke,
1982).

Traditionally, air temperaturemonitored by in-situ stations has been
widely applied to quantify the UHI effect (Atkinson, 2003; Ren et al.,
2008). Although in-situ data have the advantage of stable and intensive
time series, the limitation of the sparse spatial coverage makes such
data unsuitable for identifying the spatial patterns of the UHI effect
(Streutker, 2003).With the development of remote sensing techniques,
land surface temperature (LST) data collected by satellites has been in-
creasingly and widely used in the surface UHI (SUHI) studies due to its
advantages of easier access, continuous coverage, andhigher spatial res-
olution. Based on remote sensing data, we can not only obtain themag-
nitude of SUHI effect (SUHI intensity, SUHII), but also delineate the
spatial extent of SUHI effect (referred as the footprint of SUHI effect in
this study, FP).

The SUHII, which is defined as the surface temperature difference
between urban and surrounding areas, is a popular indicator for the
SUHI effect, and its spatial-temporal patterns have been discussed in
majority of the SUHI studies (Cao et al., 2016; Imhoff et al., 2010; Liao
et al., 2017; Peng et al., 2018; Peng et al., 2012; Yang et al., 2017; Yao
et al., 2018; Zhang et al., 2014; Zhao et al., 2014; Zhou et al., 2017;
Zhou et al., 2018; Zhou et al., 2016; Zhou et al., 2014). The FP is another
important aspect of the SUHI effect, and it can give a picture of the spa-
tial extent of the heat island effect. However, current researches on the
FP are relatively scarce, and most of them are limited in single city. For
example, Streutker (2002) firstly fitted the FP in Houston, Texas by
using remote sensing data, and further analyzed its temporal variations
(Streutker, 2003). Santamouris et al. (2007) found the SUHI in Athens,
Greece could exert extensive influence on urban environment due to
its large footprint. The obviously seasonal and diurnal variations of the
FP were revealed both in Milan (Anniballe et al., 2014) and Shanghai
(Sun et al., 2018). Considering the conclusions from single-city re-
searches might be limited by local conditions, a few studies have
attempted to investigate the FP in multiple cities. For instance, Tran
et al. (2006) focused on the SUHI of eight Asian cities, and found the
FP was highly positively correlated to the population size. Zhou et al.
(2015) suggested large FPs in Chinese 32 major cities, and indicated
their significant spatial heterogeneities. Unfortunately, there still exist
some limitations in current multi-city investigations. Firstly, though
spatial patterns of the FP have been detailed discussed, temporal trends
of the FP and associated factors are still unclear. Secondly, researchers
paid too much attention to large cities, but ignored lots of small and
medium-sized cities. Therefore, a more comprehensive assessment of
the FP, especially its temporal trend, is in need.

China has experienced rapid urban growth during recent decades,
and the sustained urbanization has induced considerable variations in
urban climates (Grimm et al., 2008). Consequently, the SUHI effect, es-
pecially its footprint, would have probably changed a lot with the
urban development. Besides, the development level of cities in China
varies greatly due to geographical, historical, and policy factors. There
are not only big cities such as Beijing, but also a large number ofmedium
and small cities across China, which provides a good chance to discover
the different characteristics of the FP in cities with different develop-
ment levels. Therefore, we conducted a comprehensive and detailed
analysis of the FP in 302 Chinese cities. The main aims of this research
were: 1) to give a picture of the spatial patterns of the FP across
China; 2) to examine temporal trends of the FP in Chinese cities for
the period of 2003–2016; and 3) to further investigate possible factors
associated with temporal variations of the FP. Our analysis was based
onmulti-source datasets including the China's Land Use/Cover Datasets
(CLUDs), the MODIS LST product and several other remote sensing
products. The FP for each city was estimated by the Gaussian surface,
and its temporal trend was examined by the Mann-Kendal (MK) and
the Sen's slope estimator non-parametric tests.

2. Data and methods

2.1. Data

302 Chinese cities, including 4 municipalities, 27 provincial capitals,
264 prefecture-level cities, and 7 autonomous prefectures, were selected
in this study (Fig. 1 and Supplementary Table S1). For each city, we ex-
tracted one study region (see Methods and Fig. 1) made up of the
urban core area and its surrounding suburban area. All the cities were
stratified by population size which was calculated by multiplying the
size of the study region by the mean population density from the
Gridded Population Database of China (http://www.resdc.cn). The cities
were classified into three levels (Larkin et al., 2016): Level 1 (N1,000,000,
population size), Level 2 (250000–1,000,000), and Level 3 (b250,000).

The study region of each citywas extracted based on land-cover data
and surface elevation data (Table 1). The land-cover data of each city
were derived from the CLUDs (i.e. China's Land Use/Cover Datasets)
provided by the Chinese Academy of Sciences. The CLUDs (30 m spatial
resolution) were updated every five years from 1990 to 2015 using
Landsat TM/ETM+and HJ-1A/1B imagery. The original datasets contain
25 categories, and the overall accuracy of these datasets has been re-
ported to be higher than 90% (Kuang et al., 2016; Liu et al., 2017). We
reclassified the categories into six classes (built-up, cropland, vegeta-
tion, bare land, water, and other land) for further analysis. The surface
elevation data were obtained from the Space Shuttle Radar and Topog-
raphy Mission (SRTM), with a spatial resolution of approximately 90 m
(SRTM90, Table 1).

LST, which is a prerequisite for quantifying the SUHI effect, was ob-
tained from the EOS-Aqua-MODIS 8-day composite product (MYD11A2,
Table 1) during the period of 2003–2016 for each city. The MYD11A2
data were acquired in both the daytime (13:30) and nighttime (01:30),
with a spatial resolution of 1000 m. Wan (2008) reported that the accu-
racy of the MODIS LST data was better than 1 K, and the root-mean-
square difference between the MODIS LST data and the in situ LST mea-
surements was found to be b0.5 K across 39 tested cases. The advantages

http://www.resdc.cn


Fig. 1. Locations of the 302 Chinese cities, and examples of the delineation of study regions in Beijing and Chengdu. All the citieswere classified into Level 1, Level 2 and Level 3 according to
the population size. The land-covermaps on the right are based on China's Land Use/Cover Datasets (CLUDs) for 2010. The inner gray line and the outer black line in the land-cover maps
represent the borders of the urban core area and the study region, respectively.
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of the high temporal resolution, wide coverage, and high precision make
the MODIS LST data ideal for exploring temporal trends of the FP.

To explore factors affecting temporal variations of the FP, we
combined satellite observations of vegetation index, surface albedo,
and anthropogenic heat release (Table 1). The MODIS monthly en-
hanced vegetation index (EVI) product (MYD13A3, 1000 m spatial
resolution) was applied to indicate the vegetation activity for the pe-
riod of 2003–2016, and the white sky albedo (WSA) information for
2003–2016 was extracted from the MODIS Bidirectional Reflectance
Distribution Function (BRDF) albedo data (MCD43B3, 1000 m spatial
resolution, and 8-day interval). According to previous studies (Liao
et al., 2017; Peng et al., 2012), remotely sensed nighttime light
(NL) data were an ideal proxy for anthropogenic heat release. Thus
the DMSP/OLS stable NL product (version 4, 1000 m spatial resolu-
tion) after processing (Liu et al., 2012) of inter-calibration, intra-
annual composition, and inter-annual correction was used to reflect
the heat release by human activities.

2.2. Methods

2.2.1. Extraction of the study region
We focused on 302 Chinese cities in this study (Fig. 1). In each city,

we extracted one study region which was defined as the composite of
two parts: the urban core area and its equal-area surroundings. The ex-
traction of the urban core area was based on the following three steps
Table 1
Datasets used in this study.

Datasets (abbr.) Resolution Time

China's land use/cover datasets (CLUDs) 30 m 2005, 2010 and 2015
MODIS LST product (MYD11A2) 1000 m Every 8 days from 2003 to 2016
Gridded population database of China 1000 m 2010
Surface elevation data (SRTM90) 90 m /
MODIS EVI product (MYD13A3) 1000 m Each month from 2003 to 2016
MODIS albedo product (MCD43B3) 1000 m Every 8 days from 2003 to 2016
DMSP/OLS stable NL product 1000 m Each year from 2003 to 2013
(Zhou et al., 2014): 1) generating a built-up intensity (i.e. BI) map for
each city by the 1 km × 1 km moving window method based on the
reclassified CLUD land-cover map; 2) separating the BI map into high-
and low-intensity built-up land according to the 50% threshold of BI;
and 3) aggregating the high-intensity built-up polygons by an aggrega-
tion distance of 2 km,where the landwithin the aggregation borderwas
considered as the urban core area. The combination of the urban core
area and its equal-area surroundings formed the study region of a city
(Fig. 1). Note that, for each city, only one urban core area was included
in the study region. Furthermore, to reduce bias, water pixels were re-
moved from each study region, and pixels in the surrounding areas
with topographic elevations ±50 m off the mean elevation of the
urban core area were excluded from the study region of each city
(Imhoff et al., 2010).

2.2.2. Calculation of the FP
To obtain the FP (i.e. the footprint of SUHI effect) for each city, a clas-

sical method proposed by Streutker (Streutker, 2003; Streutker, 2002)
was used in this study. The overall idea of this method is that the spa-
tially distributed heat island can be described by a two-dimensional
Gaussian surface. This method has been widely used in UHI studies
(Anniballe and Bonafoni, 2015; Anniballe et al., 2014; Keeratikasikorn
and Bonafoni, 2018; Quan et al., 2014; Rajasekar and Weng, 2009;
Tran et al., 2006) due to its good performance of the heat island
modeling. Besides, the SUHI signal modeled by this method can give a
Usage

Mapping land cover and extracting study region of each city
Providing LST data for quantifying the FP
Stratifying cities into different levels
Removing the influence of topographic relief
Analyzing the relationship between the FP and associated factors (EVI, WSA and NL)



Table 2
The number of cities included in the trend analysis (the Mann-Kendal and Sen's slope es-
timator tests) during the different seasons and different city levels. Some cities were not
included in the trend analysis because there were b10 valid FP values.

City
level

The number of
all cites

The number of cities included in the trend analysis

Daytime Nighttime

Annual Summer Winter Annual Summer Winter

Level 1 65 65 62 60 65 64 64
Level 2 155 155 153 123 155 154 154
Level 3 82 78 67 41 76 74 66
All cities 302 298 282 224 296 292 284
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comprehensive representation of the urban thermal distribution (Quan
et al., 2014), which makes this method an ideal tool to investigate the
FP. The Gaussian surface used to fit the spatial distributed heat island
can be described as follows:

T x; yð Þ ¼ T0 þ a1xþ a2yþ a0 � exp½− x−x0ð Þ cosφþ y−y0ð Þ sinφð Þ2
0:5ax2

−
y−y0ð Þ cosφ− x−x0ð Þ sinφð Þ2

0:5ay2
�

where (x,y) represents the location of a pixel, T(x,y) is the LST of a pixel
at (x,y), T0 is the background LST, a1 and a2 are regression coefficients
for the planar surface of rural LST, φ is the orientation of the Gaussian
surface, x0 and y0 reflect the central position, a0 is the magnitude, and
ax and ay are the half long and short axes of the Gaussian bottom ellipse,
respectively.

The parameters in the equation were estimated by the following
steps. Firstly, in the study region of a city, the LST pixels belonging to
the urban area (i.e. built-up area) were temporarily masked out, gener-
ating an LST map consisting entirely of rural pixels. Secondly, the rural
LST parameters (T0, a1, and a2 in the equation) were estimated for all
the remaining LST pixels using linear regression. Finally, the planar sur-
face of rural LSTwas subtracted from the T(x,y) image, and the resulting
LST was fitted to the Gaussian surface. The FP can be expressed by the
area of the ellipse that cross the Gaussian surface at which the temper-
ature is higher than 1 K (Anniballe et al., 2014; Streutker, 2003). All the
analysis was based on the nls (nonlinear least squares) function which
is an effective tool to estimate parameters of a nonlinear model in the
R stats package. In addition, it is noticeable that data concurrency is nec-
essary when estimating the SUHI effect (Zhao et al., 2016). Thus, the
land cover maps extracted from CLUDs in 2005, 2010 and 2015 were
used to estimate the FPs during the period 2003–2007, 2008–2012
and 2013–2016, respectively.

For each city, both the daytime and nighttime FPs were fitted by the
Gaussian surface every 8 days from 2003 to 2016 using the MODIS LST
product. To improve the reliability of the results, the fitted FPs meeting
any of the following conditionswere removed: 1) the valid pixels in the
LST image cover b50% of the study region; 2) the correlation coefficient
between the surface temperature and the SUHI signal modeled by the
Gaussian surface is b0.5 (Quan et al., 2014); and 3) the FP is out of the
99% confidence interval in the time series. The remaining fitted FPs
after the above data filtering were used for the further analysis.

2.2.3. Temporal trend analysis of the FP
The MK (i.e. Mann-Kendal) and the Sen's slope estimator non-

parametric tests were applied in this study to examine the temporal
trends of the FP during 2003–2016. These methods have been widely
applied in the trend analysis of climatic and environmental variables
(Karabulut et al., 2008; Mondal et al., 2015; Thompson and Paull,
2017), because of the fact that they do not require any hypotheses
about the variables and they are more powerful than parametric tests
for short time series (Fernandes and Leblanc, 2005; Planque et al.,
2017).The MK test was used to decide if a significant trend of the FP
happened. The null hypothesis (H0) of the MK test assumes that the
data are independent and randomly ordered, i.e., there is no significant
trend. In a two-tailed t-test, if the significance levelwas below than 0.05,
the null hypothesis was rejected, and a significant temporal trend of the
FP was detected. Besides, the change tendency (increase or decrease)
was indicated by the sign of the Sen's slope. Therefore, the temporal ten-
dencies of the FP for cities across China include four types: significantly
(p b 0.05, the MK test) increasing trend (SIT), non-significantly increas-
ing trend (NSIT), significantly decreasing trend (SDT), and non-
significantly decreasing trend (NSDT). Besides, for cities with significant
trends of the FP, we could obtain the change rate of the FP (FPCR) by the
Sen's slope. The FPCR is robust to outliers because that the Sen's slope
calculates the median slope rather than the mean slope extracted by
parametric liner regressions. The MK and Sen's slope estimator non-
parametric tests were implemented by the mannKen function in the R
wql package.

Due to the obvious seasonal variations of the heat island effect (Peng
et al., 2012), both annual and seasonal (summer: from June to August,
and winter: from December to February) trends of the FP were ana-
lyzed. For each city, we firstly calculated annually and seasonally aver-
age FPs for each year during 2003–2016, and then analyzed the
temporal trends of the FP across years. Furthermore, to further ensure
that the results of the trend analysis were robust, only cities with at
least 10 years of available FP values were included. As a result, cities fi-
nally included in the trend analysis were part of the initial 302 cities
(Table 2).

2.2.4. Factors associated with temporal variations of the FP
To explore possible factors affecting temporal variations of the FP,

we conducted correlation analysis between the FP and three variables
(nighttime light (NL), enhanced vegetation index (EVI), and white sky
albedo (WSA)) across years in each city. These variables are able to
comprehensively reflect various aspects of cities and have been used
in numerous studies related to heat island effect (Du et al., 2016; Peng
et al., 2012; Zhou et al., 2014). In the study region for each city, we cal-
culated mean values of the EVI and the WSA for every image during
2003–2016, and then annually and seasonally averaged them in each
year. However, the NL was only annually averaged in each year during
2003–2013, as the DMSP/OLS stable NL product was annually compiled
(without seasonal information) database available until 2013. In addi-
tion, for each city, the images of these variables with too many missing
pixels (N50% of the study region) were removed from our analysis. The
FP and the above-mentioned variables (NL, EVI and WSA) were ar-
ranged in pairs by year for each city, and then the Spearman's correla-
tion analysis, a non-parametric method, was applied to assess the
relationship between the FP and these variables across years. The signif-
icance test was performed by a two-tailed t-test, and the standard 0.05
significance level was adopted. Besides, the Spearman's correlation
analysis might be no functioning in some cities due to the insufficient
number of paired values, and these cities would be labeled as “Failed”.
All the correlation analyses were finished by the cor function in the R
Stats package.

3. Results

3.1. Spatial patterns of the FP

Fig. 2 shows the spatial patterns of the FP averaged over the period
2003–2016 for Chinese 302 cities and the mean FPs of different levels
of city. The FP varied greatly among cities, from 10.8 km2 (Shigatse) to
3738.6 km2 (Shenzhen) in annual days (Fig. 2a) and from 4.16 km2

(Hechi) to 830.6 km2 (Beijing) in annual nights (Fig. 2b). Overall, the an-
nual daytime and annual nighttime mean FPs for all cities were 151.5
[106.7, 196.2] (values in parenthesis define the 95% confidence interval,
hereafter) km2 (Fig. 2c) and 61.3 [50.9, 71.6] km2 (Fig. 2d), respectively.



Fig. 2. The spatial distribution of the annual (a) daytime and (b) nighttime FPs across 302 Chinese cities, and the mean FPs of different levels of city during the (c) day and (d) night. The
vertical bars across the columns indicate the 95% confidence intervals of the FP.
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Large cities tend to experience larger FPs than small cities. For in-
stance, the annual mean FPs were in a descending order of Level 1
N Level 2 N Level 3 at both daytime (477.0 vs. 76.3 vs. 35.5 km2, p b

0.001) and nighttime (166.2 vs. 39.2 vs. 19.8 km2, p b 0.001), and
this phenomenon was also observed in summer and winter
(Fig. 2). Besides, the daytime FPs were generally lager in the summer
than the winter period (172.5 vs. 97.3 km2, p b 0.01) (Fig. 2c),
whereas the nighttime FPs were similar in both seasons (64.2 vs.
56.9 km2, p = 0.339) (Fig. 2d).

3.2. Temporal trends of the FP

The temporal trends of the FP across all cities are demonstrated in
Fig. 3, and their corresponding statistical results are shown in
Figs. 4–5. In annual days and summer days, the increasing trends of
Fig. 3. The temporal trends of the annual and seasonal (i.e. summer and winter) FPs across 30
results, and the lower rows (d, e, and f) are the nighttime results. Some cities not included in t
the FP were observed in over 80% of the 302 cities, and the increasing
trendswere statistically significant (p b 0.05) in about half of these cities
(167 of 302 for annual days, 143 of 302 for summer days) (Figs. 4–5). In
thenights, the FP increased inmore than 70% of the 302 cities, and about
one-third of the 302 cities experienced significantly increasing trends of
the FP (Figs. 4–5). The number of cities with a SIT (i.e. significantly in-
creasing trend) of the FP was much greater in summer days than that
in winter days (143 vs. 20), but this seasonal difference was much
smaller at nights (97 vs. 80) (Fig. 4). The percentage of cities with a
SIT of the FP in bigger citieswas generally higher than that in smaller cit-
ies, especially in summer days (60.0% (Level 1) vs. 51.0% (Level 2) vs.
30.5% (Level 3)) (Fig. 5). Besides, few cities showed a SDT (i.e. signifi-
cantly decreasing trend) of the FP during both daytime (no city for sum-
mer, and 3 cities for winter) and nighttime (5 cities for summer, and 9
cities for winter) (Fig. 4).
2 China's cities over the period 2003–2016. The upper rows (a, b, and c) are the daytime
he trend analysis were labeled as “Not included” in the figures.



Fig. 4. The number of citieswith different types of the temporal trends of the FP. The upper rows are the daytime results, and the lower rows are the nighttime results. “Not included” in the
legend represents some cities not included in the trend analysis.
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3.3. Change rates of the FP

Due to the rareness of cities with a SDT of the FP (Figs. 3–5), we
would only focused on the FPCR (i.e. change rate of the FP) of cities
with a SIT of the FP. The FPCR varied greatly among cities, and grew lin-
earlywith the FP (Fig. 6). Similar to the FP, the FPCR also showedobvious
difference among cities at different levels (Level 1 N Level 2 N Level 3, p b
0.001), and differed significantly among seasons (summer Nwinter, p b

0.01) (Fig. 6). For all the cities with a SIT of the FP, the FPCR was 6.2 [4.8,
7.6] km2/year in annual days, and 2.7 [1.9, 3.5] km2/year in annual
nights during the period 2003–2016 (Fig. 6).

In addition to absolute values of the FPCR, we paid more attention to
the relative rate of the FP (i.e. relative FPCR). The relative FPCR was de-
fined as the ratio of FPCR to FP because of the positive relation between
the FPCR and FP (Fig. 6). Overall, the relative FPCR was 5.0% [4.7%, 5.3%]
per year in annual days, and 3.8% [3.4%, 4.1%] per year in annual nights
(Fig. 7). However, the seasonal difference in the relative FPCR was not
significant during both daytime (summer: 5.7% vs. winter: 6.8%, p =
0.068) and nighttime (summer: 4.9% vs. winter: 4.5%, p = 0.145)
Fig. 5. The percentage of cities with different types of the temporal trends of the FP during th
included in the trend analysis.
(Fig. 7). Besides, there was no significant difference in the relative FPCR
among cities at different levels (p N 0.05).

3.4. Factors associated with temporal variations of the FP

The FP correlated positively with the NL in most cities (Fig. 8 and
Supplementary Fig. S1–2). Positive correlations between the FP and
the NL were found in over 90% of the cities in annual days (283 of
302, Table 3) and summer days (278 of 302, Supplementary Table S2),
and more than 80% of the cities in the nighttime (Table 3 and Supple-
mentary Table S2–3). More importantly, the positive correlations be-
tween the FP and the NL were statistically significant in about one-
third cities in both annual daytime (131 of 302, Table 3) and summer
daytime (103 of 302, Supplementary Table S2). These indicated the in-
creasing NL would probably contribute to the enlarging of the FP.

In contrast, the FP was negatively correlated to the EVI andWSA in a
large number of cities (Fig. 8 and Supplementary Fig. S1–2). Negative
correlations between the FP and the EVI were observed in about 80%
of the cities in summer (235 of 302 at daytime, and 264 of 302 at nights,
e (a) daytime and (b) nighttime. “Not included” in the legend represents some cities not



Fig. 6. The scatter plots of the annual and seasonal (summer and winter) FPCR against the FP. The mean FPCR (with 95% confidence intervals in parenthesis) of cities at different levels are
listed in the gray panel of each plot. The upper rows are the daytime results, and the lower rows are the nighttime results.
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Supplementary Table S2),while about 60% of the cities inwinter (193 of
302 for both daytime and nighttime, Supplementary Table S3). Mean-
while, the FP correlated negatively to theWSA in about 70% cities in an-
nual daytime (222 of 302) and annual nighttime (209 of 302) (Table 3).
However, only a small part of these negative correlations were statisti-
cally significant (Table 3 and Supplementary Table S2–3).

4. Discussion

4.1. Extensively expanding FPs across Chinese cities

The spatial patterns and temporal trends of the FP across 302 Chi-
nese cities were systematically analyzed. Our findings corroborated
the extensive FPs in numerous Chinese big cities as revealed in previous
researches (Tran et al., 2006; Zhou et al., 2015). For instance, the annual
daytime FP reached up to 3738.6 km2 in Shenzhen and 2985.1 km2 in
Beijing (Fig. 2). Besides, considerable FPs were also observed in several
medium and small cities such as Jinhua (510.5 km2) and Shaoguan
Fig. 7. The boxplots of the annual and seasonal (summer and winter) relative FPCR during (a)
represent the 25th and 75th percentiles, with the whiskers extend to the minimum and max
represent the mean values, and the red line segments represent the 95% confidence interva
reader is referred to the web version of this article.)
(275.0 km2) (Fig. 2). The large extent of the FP would no doubt cause
heat stress to large amount of urban dwellers, especially during hot
summer.We estimated the number of people suffered from the SUHI ef-
fect by calculating the populationwithin the footprint of the SUHI effect
across 302 cities according to the Gridded Population Database of China
(http://www.resdc.cn). The results indicated that during the period
2003–2016, the daytime and nighttime SUHI effect influenced over
100 million people and about 50 million people, respectively, each
year (Fig. 9). Note that these were merely the total population affected
by the SUHI effect in these 302 Chinese cities, and in fact there shall be
much more people enveloped by the heat island effect across China. To
alleviate the influence of the SUHI effect, it is necessary to reduce the
spatial extent of the heat island effect.

Unfortunately, we found the FP showed a significantly increasing
trend in a large number of cities during the past decade. The annual day-
time FP increased significantly in about half of the 302 cities (Fig. 5),
with a relative increasing rate of 5.0% [4.7%, 5.3%] per year (Fig. 7). In
the annual nighttime, the FP increased significantly in approximately
daytime and (b) nighttime. The relative FPCR is equal to the ratio of FPCR to FP. The boxes
imum values. The horizontal black lines inside the boxes are the medians. The red points
ls around them. (For interpretation of the references to colour in this figure legend, the

http://www.resdc.cn


Fig. 8. Spearman's correlation analysis between the annual daytime and annual nighttime FPs and the nighttime light (NL), the vegetation index (EVI), and the white sky albedo (WSA)
across years. The significance test was performed by a two-tailed t-test, and the standard 0.05 significance level was adopted. The “Failed” in the legend represents cities that failed in the
correlation analysis.
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one-third of the 302 cities (Fig. 5), and the average relative increasing
ratewas 3.8% [3.4%, 4.1%] per year (Fig. 7). In contrast, few cities showed
a significantly decreasing trend of the FP (Fig. 5). The significant in-
crease of the FP would further expand the influence of the SUHI effect.
According to the results of trend analysis, we could clearly find that
the total population suffered from the SUHI effect has increased signifi-
cantly (p b 0.01) in all seasons (except for winter days) from 2003 to
2016 (Fig. 9). This means that more people might be influenced by the
heat island effect in the coming years as the rapid urbanization in
China would be sustained. More importantly, as the population
enveloped by heat island effect grows, energy consumption by human
activities will also increase, especially during hot summer when people
need more electric power for air-conditioning cooling, which will in
turn deteriorate the heat island effect. Therefore, it is indeed necessary
for us to decrease the FP or at least restrain the expansion of the FP.
Table 3
Statistical results of the Spearman's correlation analysis between the annual daytime and
annual nighttime FPs and the nighttime light (NL), the vegetation index (EVI), and the
white sky albedo (WSA). Both the number and percentage of cities with different types
of the correlation were represented in the following table. The types of the correlation in-
cluding significant positive correlation, non-significant positive correlation, significant
negative correlation, and non-significant negative correlation. The significance test was
performedby a two-tailed t-test, and the standard0.05 significance levelwas adopted. Cit-
ies that failed in the correlation analyses were labeled as “Failed”.

NL EVI WSA

Days Nights Days Nights Days Nights
Positive
Significant 131

(43.4%)
114
(37.7%)

52
(17.2%)

24
(7.9%)

12
(4.0%)

24
(7.9%)

Non-significant 152
(50.3%)

145
(48.1%)

66
(21.9%)

61
(20.2%)

62
(20.5%)

65
(21.6%)

Negative
Significant 0 (0%) 11

(3.6%)
26
(8.6%)

31
(10.3%)

21
(7.6%)

22
(7.3%)

Non-significant 17
(5.6%)

30
(9.9%)

157
(52.0%)

185
(61.3%)

201
(66.6%)

187
(61.9%)

Failed 2 (0.7%) 2 (0.7%) 1 (0.3%) 1 (0.3%) 4 (1.3%) 4 (1.3%)
4.2. Factors associated with the temporal variations of the FP

As revealed by the correlation analysis, the FP generally correlated
positively to the NL, and negatively to the EVI andWSA (Fig. 8 and Sup-
plementary Fig. S1–2). The NL is able to indicate the heat released by
human activities in cities, the positive correlation between the FP and
the NL signified more anthropogenic activities would probably induce
larger spatial extend of the heat island effect. The EVI can reflect vegeta-
tion activities in cities, thus the FP was negatively correlated to the EVI
as the presence of vegetation has a cooling effect on the surface temper-
ature via transpiration (Peng et al., 2012).Materials with high albedo at-
tain lower temperatures when exposed to solar radiation (Prado and
Ferreira, 2005), this might be the reason for the negative relation be-
tween the WSA (an index of albedo) and the FP.

Rapid urbanization in China has largely modified the land cover and
aggregated more people in urban areas. As a direct consequence of ur-
banization, the replacement of natural vegetation with man-made im-
pervious surface resulted in the weakening of vegetation cooling effect
and the decreasing of surface albedo (Zhou et al., 2014). Besides, the ag-
gregation of urban dwellers increased more anthropogenic heat emis-
sions in cities. In addition to the factors discussed in this research, the
expansion of the SUHI effect could be related with several other phe-
nomena during the rapid urbanization process. For instance, Zhou
et al. (2017) found that the UHI effect was closely related with city
size and urban form, which was supported by Sobstyl et al. (2018)
and Bonafoni et al. (2017). Conclusions from Du et al. (2016) and Yao
et al. (2018) suggested that climate condition variations played an im-
portant role in the heat island change. Besides, the deterioration of air
pollution (Cao et al., 2016) and increase of population density (Zhou
et al., 2018) were also driving factors of the heat island effect. Overall,
the combination of these factors has led to the expansion of the heat is-
land extent.

More attentions should be paid to the mitigation action of the heat
island effect as the urbanization is expected to sustain in future decades
(Seto et al., 2012). For restraining the spatial expansion of the heat is-
land effect, we recommend several measures to urban planners and
government officials. Firstly, increasing the coverage of plants in urban
areas and protecting the existing urban green space, such as urban
parks, are themost directmitigationmeasures due to vegetation cooling



Fig. 9. The temporal trends of the total population affected by the (a) annual, (b) summer and (c) winter SUHI across 302 Chinese cities over the period 2003–2016. The population
information was extracted from the Gridded Population Database of China (http://www.resdc.cn), and the trend analysis was based on the Mann-Kendal and Sen's slope estimator tests.
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effect. Secondly, increasing urban surface albedo via adopting solar-
reflective materials and landscape configuration is an effective way to
relieve the heat island effect, which has been empirically verified
(Mackey et al., 2012). Finally, the most important way is to reduce an-
thropogenic heat emissions by several measures including promoting
energy-saving consciousness, improving energy consumption efficiency
and advocating for public transportation.
4.3. Uncertainties

Some uncertainties in the present study need to be addressed.
Firstly, only cities with at least ten-year available FPs were included in
the trend analysis for ensuring the robustness. Most of the cities ex-
cluded from the trend analysis were small hilly cities located in the
west of China (Fig. 3). The missing of LST data in these cities was very
serious, which should take lead responsibility for the absence of the
trend analysis. Besides, the FP in this study was fitted by the Gaussian
surface. The performance of the fitting was assessed by the correlation
coefficient between the initial LST and the fitted signals, and the results
of poor fittings (r b 0.5) were excluded. The Gaussian surface performed
very well in all cities except several small cities, and this is part of the
reason that some cities were not included in the trend analysis. There-
fore, future studies need to pay more attention to the LST data quality
and the performance of the Gaussian surface when estimating the spa-
tial extent of the SUHI effect.

Secondly, as we stated, the footprint of SUHI effect was fitted by the
Gaussian surface. However, the associated factors (NL, EVI and WSA)
were averaged in the study region of each city rather than fitted by
the Gaussian surface. This is mainly due to following reasons. 1) The
DMSP/OLS stable NL product was annually compiled database, and it
means that only one Gaussian fitting surface can be obtained per year.
This would induce insufficient number of available fitted NLs if the
fitting effect is poor in several years. 2) The Gaussian assumption does
not always apply to the vegetation and albedo data, which has also
been revealed in a previous study (Quan et al., 2014). Therefore, as an
alternative strategy, average values of these factors (NL, EVI and WSA)
were used in this study. This strategy was thought to be reasonable be-
cause that the change of the footprint of these factors shall be much re-
lated to the variation of their average values. As expected, the FP
correlated positively to the NL, and negatively to the EVI and WSA in
most cities (Fig. 8). However, we should note that the conceptions of
the footprint and the average value were not completely consistent,
which would probably cause uncertainties to our results, e.g. positive
relationship between the FP and the EVI and WSA in a few cities.
Thirdly, in several previous studies, the land coverwas assumed con-
stant and the analysis of the temporal trend of SUHI effect was based on
a static land cover map (Peng et al., 2018; Zhou et al., 2016). However,
the land cover was in deed changeable over time, especially in Chinese
cities with rapid urbanization over past years. Therefore, in this study,
dynamic land cover maps (2005, 2010 and 2015) were used when esti-
mating the FPs during the period 2003–2016. To assess the uncer-
tainties caused by the difference of using dynamic and static land
covermaps,we conducted a comparison experiment. In the comparison
experiment, we replaced the dynamic land covermapswith a static one
(CLUD in the year of 2010), and kept the other experimental data and
steps were exactly the same. The results of the comparison experiment
corroborated the FP increased significantly in a large percentage of cities
(Fig. 10). Besides, conclusion that few cities showed a significantly de-
creasing trend of the FP was also supported by the comparison experi-
ment (Fig. 10). Moreover, the FPCR of the two experiments were
highly (r N 0.9 for most cases) and significantly (p b 0.01) correlated
(Supplementary Table S4). Though the results of the two experiments
were generally consistent, there were still some differences need to be
noticed. For instance, the number of cities showed a SIT of the daytime
FPs based on the static land cover map was smaller than that based on
the dynamic land cover maps (136 vs. 167 in annual days, and 111 vs.
143 in summer days). This stressed the necessity of dynamic land
cover maps when conducting trend analysis of the SUHI effect in Chi-
nese cities with rapid urbanization.

5. Conclusion

In this study, we systematically analyzed temporal trends of the FP
(i.e. the footprint of SUHI effect) across 302 Chinese cities during the pe-
riod 2003–2016, usingmulti-source remote sensingdata. The FPwas es-
timated by the Gaussian surface, and its temporal trend was examined
by the MK and the Sen's slope estimator non-parametric tests. The
Spearman's correlation analysiswasused to investigate the possible fac-
tors associated with temporal variations of the FP.

The FP varied greatly among cities, and big cities tended to have
larger FPs than small and medium-sized cities. Besides, daytime FP
was generally larger than nighttime FP, and the FP in summer was usu-
ally bigger than that in winter. Most cities (over 80%) experienced in-
creasing trends of the FP in annual days and summer days, and the
increasing trends were statistically significant (p b 0.05) in about half
of these cities (167 of 302 for annual days, 143 of 302 for summer
days). In the nights, the FP increased in more than 70% of the 302 cities,
and about one-third of these cities experienced significantly increasing
trends of the FP. Similar to the FP, the change rate of the FP (i.e. FPCR)

http://www.resdc.cn


Fig. 10. The percentage of citieswith different types of the temporal trends of the FP during the (a) daytime and (b) nighttime based on a static land covermap (CLUDs in the year of 2010).
“Not included” in the legend represents some cities not included in the trend analysis.
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also showed evident diurnal (daytime N nighttime), seasonal (summer
Nwinter) and inter-city (big cities N small andmedium-sized cities) dif-
ferences. However, the relative FPCR, defined as the ratio of FPCR to FP,
seemed to be similar between seasons and cities at different levels. On
average, the FP increased at a rate of 5.0% per year and 3.8% per year
in annual days and annual nights, respectively, from 2003 to 2016. Im-
portantly, we found that the FP was positively correlated to the NL,
and negatively correlated to the EVI andWSA for most cities, which in-
dicated that the increase of anthropogenic heat emissions and the de-
crease of vegetation activities and surface albedos in the process of
urbanization should take lead responsibility for the expansion of the FP.

In summary, Chinese cities are experiencing extensive heat island ef-
fect, and the spatial extent of the heat island effect is expected to be
expanding in the coming years. Therefore, urban planners and govern-
ment officers must be serious about this and take more effective mea-
sures to prevent the deterioration of our living environment.
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