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Abstract— Land-cover mapping over urban areas using Land-
sat imagery has attracted considerable attention in recent years as
it can promptly and accurately reflect the biophysical composition
status of the urban landscape and allow further applications
such as urban planning and risk management. However, due to
the large diversity across different urban landscapes, adequate
training sample collection for urban area mapping is both
challenging and time-consuming. In this paper, we propose a
novel unsupervised sample collection method for mapping urban
areas using Landsat imagery. Specifically, the idea is to select
reliable, representative, and diverse training samples from the
images in a two-stage and iterative manner, based on a set
of spectral indices (vegetation, impervious surface, soil, water).
To validate the effectiveness and robustness of the proposed
method, a synthetic data set was designed and a series of
Landsat images over 39 representative cities from different
biomes across the world was employed. The effectiveness of the
proposed algorithm was quantitatively validated by assessing the
quality of the automatically collected samples and the accuracy
of the mapping results. In terms of the mapping performance,
the proposed automatic approach can achieve a comparable
mapping accuracy to supervised classification with manually
collected samples. On the basis of the freely accessed Landsat
data, the proposed approach demonstrates a promising potential
for automatic large-scale (i.e., global) mapping over urban areas.
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spectral index, unsupervised learning, urban.
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I. INTRODUCTION

AS A reflection of human development, urbanization is
taking place around the world at an unprecedented rate.

With the increasing pressure of economic and population
growth, the conversion from natural to anthropogenic land-
scapes has sharply increased, and the biophysical composition
of urban areas has dramatically changed [1]. Although the
rapid pace of recent urbanization has brought significant social
and economic benefits (e.g., improved quality of life and
economic prosperity [2]), it has also led to a number of
negative effects (e.g., natural habitat loss [3] and urban heat
islands [4]). Therefore, in order to provide reliable data for
urban planning and management, it is imperative to automat-
ically and accurately map the distribution and characteristics
of urban areas.

Remote sensing imagery with various resolutions and flex-
ible acquisition modes can provide us with synoptic views of
the earth’s surface, which in turn provide us with the potential
to measure, analyze, and hence understand urban areas world-
wide. The medium spatial resolution data (i.e., 10–100 m)
with multispectral bands (i.e., 4–40 bands ranging from near
infrared to visible), such as the free-access Landsat imagery,
are appropriate data sources, in terms of the spatial detail,
area coverage, revisit frequency, availability, and historical
archives [5]. A number of methods have been proposed for
the land-cover mapping of urban areas using Landsat imagery,
which can basically be divided into three categories. The first
category is based on spectral indices, e.g., the normalized dif-
ference built-up index (NDBI) [6], the normalized difference
water index (NDWI) [7], the modified NDWI (MNDWI) [8],
the normalized difference vegetation index (NDVI) [9], and the
bare soil index (BI) [10]. These indices have the potential to
highlight a set of land-cover classes in terms of their physical
characteristics. In this kind of method, a threshold is usually
used to determine the land-cover class, i.e., a pixel whose
index value is larger than a specific threshold is labeled as the
associated class, and vice versa. However, these information
indices can be subject to a large number of commission or
omission errors [5].

The second category is the supervised machine learning
methods, which aim at establishing mapping criteria
with the spectral/spatial features from the remote sensing

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5625-0338
https://orcid.org/0000-0003-0950-1648
https://orcid.org/0000-0001-9916-6382
https://orcid.org/0000-0003-0621-9647


3934 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 6, JUNE 2019

images and the collected training samples [11]. However,
the manual collection of adequate training samples is a
time-consuming process [5], [12]–[14], and the subjectivity
of human intervention further limits the sample diversity [15].
Hence, training sample extraction from the existing products
(e.g., the National Land Cover Database (2001–2011)
[16]–[18] or the GlobeLand30 data sets (GLC30 for
2000 and 2010) [19]) is a practical alternative approach,
especially when dealing with large-scale land-cover mapping.
In this case, however, the registration error and date gap
between the satellite Landsat images and the existing
reference products still requires attention. For instance, it is
still possible to extract erroneous samples from the existing
products, due to land-cover change or spatial misregistration.
In such a case, data cleaning, i.e., deleting the samples that
appear in several classes [15], is needed to purify the training
samples collected from the existing products. In summary,
both the high cost of the manual sampling and the sample
uncertainty of the existing products restrict the performance of
the machine learning-based mapping methods. In this regard,
direct and automatic sample collection from the target Landsat
imagery has the potential to eliminate the aforementioned
obstacles.

This paper presents a novel automatic sample collection
method for land-cover mapping over urban areas using Landsat
imagery. In this paper, we focus on the four basic categories in
urban areas: (bright and dark) built-up (BU), vegetation (V),
water surface (WS), and bare soil (BS). In particular, the
category of BU is related to man-made structures, i.e., build-
ings, streets, impervious surfaces, and urban shadows [5]. The
aim of our study was to propose an unsupervised training
sample selection method based on a set of spectral indices.
In the proposed method, the characteristics of the spectral
indices, as well as the property of the label uniqueness for each
pixel, are used to collect samples from the Landsat images in
an iterative manner. The proposed method, without requiring
training samples in advance, initializes the sample set with the
pixels with the largest spectral index values, and sequentially
collects samples in the order of the index values. In the main
body of the proposed method, the sample collection process
in each iteration includes an informative sample selection
procedure and a label checker. The former procedure is similar
to active learning [37], [44], [45], which is a supervised
machine-learning paradigm that aims to discover the most
suitable instances for labeling. However, as an unsupervised
learning method with neither training samples nor human
supervisor, the label checker is designed to ensure the label
reliability of the augmented samples, based on the property
of label uniqueness, i.e., each pixel belongs to only one
category.

The rest of this paper is organized as follows. Section II
presents the methodology of the automatic sample collection
and classification method. Section III describes the
experimental setup, including the real Landsat images
and the synthetic data set. The results and analysis are
reported in Section IV. Finally, our conclusions are given in
Section V.

TABLE I

SPECTRAL INDICES CONSIDERED IN THIS PAPER

II. METHODOLOGY

A. Physical Characteristics of Spectral Indices and
the Basic Principle

The first basic idea of the proposed sample collection algo-
rithm originates from the physical characteristics of spectral
indices, i.e., pixels with a large index value usually have a
high confidence of being associated with the related land-cover
class. In this paper, NDVI, MNDWI, and BI were used to
produce the index images of V, WS, and BS, respectively.
Detailed descriptions of each spectral index are provided
in Table I. Owing to the high spectral variation caused by
different structures, colors, and materials, the BU category is
divided into bright BU and dark BU [20]. It is noted that
NDBI can indicate bright BU; however, there is no customized
spectral index to describe dark BU. To tackle this issue,
a synthetic dark BU image (SDBI for short) is designed
during the sample collection to describe dark BU, based on the
principle that NDWI can highlight the dark BU after the water
surfaces have been masked out [21]. For instance, the NDBI
image in Fig. 1 is transformed into a histogram, where the
pixels with higher index values are more likely to be bright
BU pixels than those with lower values [from right to left
in Fig. 1(b)].

Label uniqueness is another basic principle, i.e., only one
label can be assigned to each pixel. It implies that not only the
spectral index associated with the potential class, but also those
indices related to other classes, can be utilized for labeling a
pixel in a synergistic manner. For instance, given a pixel whose
NDBI and NDVI values are 0.8 and 0.05, respectively, this
conveys the information that this pixel has a high probability
of being bright BU and a low probability of being vegetation.
In this way, the sample collection for multiple classes can be
performed in an interactive manner.
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Fig. 1. (a) Spatial distribution and (b) histogram of the NDBI image (Wuhan).
The proposed approach is sequentially carried out by selecting the candidate
samples from the ones on the right with high values (in red) to the ones on
the left with low values (in blue).

Based on the physical characteristics of the spectral indices,
the proposed method initializes the sample set with the pixels
with the largest spectral index values, and sequentially collects
samples in the order of the index values. The collection
process includes an informative sample selection procedure
to maximize the sample set diversity, and a label consistency
constraint to ensure the label reliability of the sample set.
In view of this, the proposed sample collection procedure can
be formulated as a quadruple (Q, S, T, U). U is the sample pool
based on the physical characteristics of the spectral indices,
and Q is the query function used to select the most informative
unlabeled samples from U. S is the label checker that can
classify the informative unlabeled samples of U and add them
to the updated training sample set T. The proposed approach
is an iterative process, where S interacts with U by labeling
the most informative samples selected by the query function
Q at each iteration. At the beginning, for each class, the initial
training set T is composed of the pixels with the highest index
values. After initialization, the query function Q selects a set
of samples from the pool U, and the label checker S adds the
reliable samples into T and excludes the outliers of T. Please
kindly note that both Q and S are constructed on the basis of
the current T. The iteration continues until the stopping criteria
are met.

B. Candidate Pool, Query Function, and Label
Checker Construction

1) Candidate Pool U: For the multiple-class sample collec-
tion, each iteration consists of several operations (each for one
class). In this paper, the class set is defined as C = {c: bright
BU, dark BU, V, WS, and BS}. For the sake of simplifying
the description, we hereinafter take class c as an example.
For the proposed approach, every index image is linearly
normalized to [0, 1]. It is important to keep in mind that: 1)
pixels with large index values should have a high probability
of being assigned to the associated class and 2) pixels with
close index values should have similar likelihoods with respect
to the associated class. In view of this, for the i th iteration of
class c, pixels whose associated index values in [1−(i +1)/K ,
1 − i /K ] (K is set as 1000 in this paper) are assigned to the
candidate pool U of class c, e.g., all points in Fig. 2(b). Each
pixel ps j in U of class c sized Nuc can be denoted by a triple
{ps j , ws j = 1, c}, s j ∈ {1, 2, . . . , Nuc}, which represents the

feature, the reliability (i.e., weight), and the label of pixel ps j ,
respectively. For Landsat imagery, the spectral bands (i.e.,
bands 1–5 and 7 for Landsat 5 and 7 images; bands 1–7 for
Landsat 8 images) and five indices (MNDWI, NDVI, NDBI,
NDWI, and BI) are considered as the input features, following
the suggestions in [38] and [39]. The weight of each candidate
pixel is initialized as 1.

2) Query Function Q: The query function Q, which aims
to not only extract the most informative samples from U, but
also update the reliability of T, is built on the current training
sample set T. Each pixel pmi in T of class c can also be
denoted as a triple {pmi , wmi , c}, where mi ∈ {1, 2, . . . , Ntc},
e.g., all points in Fig. 2(a). The second component of the
triple, i.e., the weight, which is a measure to estimate the
reliability of the samples in T, is first initialized as 1, and
is then updated during the query process. Given the training
sample set sized Ntc, the average of the weighted spectral angle
distance (WSAD) of all the pair-wise samples of class c, called
WDc(T), can be denoted by

WDc(T) =
2

∑Ntc
mi =1

∑
nk=1,nk �=mi

(wmi · wnk )

(
p1

mi
·pnk‖pmi

‖2·‖pnk
‖2

)

ntc(Ntc − 1)
(1)

where pT
mi

means the transpose of feature pmi . WDc(T),
i.e., the intraclass average WSAD, is inversely proportional
to the average similarity of the pair-wise samples in T of
class c. Considering that the Q function aims to pick out
the unlabeled samples which can bring new information to T,
the samples whose distance to the current training sample set T
is larger than the intraclass average similarity are desirable.
Thus, the distance between the unlabeled sample ps j in U
and the current training sample set T of class c, shortened to
WDc(ps j ), is modeled in a similar fashion as

WDc(ps j ) =
∑Ntc

mi =1 (wmi × 1)

(
pT

mi
×ps j

‖pmi
‖2×‖ps j

‖2

)−1

Ntc
(2)

where WDc(ps j ) is inversely proportional to the average
similarity between ps j and all the samples in T of class c.
In this way, all the samples in which the distance to T is
larger than WDc(T), e.g., the solid points ps1, ps2, and ps3
in Fig. 2(b), comprise a set Utemp, which should be further
checked in the next step.

Meanwhile, there are still some pixels [e.g., the hollow
points ps5, ps6, and ps7 in Fig. 2(b)] that cannot increase
the sample diversity [i.e., WDc(ps j ) � WDc(T)]. This implies
that, for a pixel ps j in U, there is already a sample pmi in T
whose spectral property is very similar to ps j , and pixel pmi

has the smallest distance to ps j . In such a case, owing to the
redundancy, pixel ps j should not be selected. However, on
the other hand, the similarity between ps j and pmi actually
verifies the reliability of sample pmi in T. Therefore, in order
to strengthen its importance, the weight of sample pmi should
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Fig. 2. Demonstration of the proposed sample selection process in one iteration for class c. (a) Tin means samples that have been selected in previous
iterations, e.g., samples pm1, pm2, and pm3. The weight of each sample is listed at the right side of (a), and the intraclass diversity measured by WDc(Tin)
is also presented. (b) Pixels in the candidate pool U, where the solid points denote the samples whose distance to Tin is larger than WDc(Tin), and the hollow
points represent the others. (c) Union of Tin and Utemp, i.e., samples after the Q query step, with the weight of each sample in Tin updated. To be more
specific, the three hollow points (ps4, ps5, andps6) are similar to pm3, and one point, called ps7 is similar to pm2. In this way, the weight of pm3 has been
increased by three, and that of pm2 has been increased by one. The newly added points are weighted as 1. (d) Tout, i.e., samples after the elimination of the
S label checker step (e.g., samples pm1 and ps3 are removed, as they cannot be labeled as c by S).

be enlarged, as follows:

pmi = arg max
pmi

pT
mi

× ps j

‖pmi
‖2 × ‖ps j

‖2
, for pmi ∈{pm1, . . . , pNtc}

wmi = wmi + 1. (3)

As in (2), a sample with a larger weight will have a larger
impact during the collection. Thus, the weight of the existing
samples in T can be updated, e.g., the points pm2 and pm3
in Fig. 2(c).

3) Label Checker S: After the query process, ambiguous
pixels from other classes might still be included. Therefore,
the label checker S is designed to eliminate the unreliable
samples, by considering the following criteria.

1) The uniqueness of the label: ambiguous samples in
Utemp that simultaneously exist in at least two categories
are removed.

2) The consistency of the sample: we import Utemp into
T and check the label of each pixel in T in an iter-
ative manner. For the kth iteration, Ek means the set
of currently excluded samples, which is initialized as
empty; and T′

k denotes the updated training samples after
exclusion, where T′

0 is equal to T. In the kth iteration,
for each sample pmi , we build a spectral angle mapper
classifier, by using all the other samples in T′

k−1, except
for pmi itself, as the reference spectra. If the temporary
classification result is consistent with its label c, pmi

is assigned to T′
k ; otherwise, it is imported into Ek .

The stopping condition of the iteration refers to the
number of samples in Ek of class c being much less than
those in T′

k of class c (i.e., less than 1% in this paper).
In this way, the possible outliers, whether selected by

the current query function, or wrongly collected by the
previous iterations, can be further checked.

In this way, through the query process and the label check
of the current iteration, the updated training sample set is
input into the next iteration [e.g., pm2, pm3, ps1, and ps2
in Fig. 2(d)], until the stopping condition is reached.

C. General Framework and Stopping Condition

Due to the lack of a ready-made spectral index to describe
dark BU, four-category (bright BU, V, WS, and BS) sample
collection is implemented in the first few iterations. The SDBI
is then generated on the basis of the current samples, and
five-category (bright BU, V, WS, BS, and dark BU) sample
collection is finally put into practice with all five index images.
In summary, the framework consists of the four-category stage
(Q1, S1, T1, U1), the SDBI generation, and the five-category
stage (Q2, S2, T2, U2) (see Algorithm 1):

As can be seen in Algorithm 1, there are two iterative stages
with specific stopping conditions and an SDBI generation
approach. As suggested in [8], compared with NDWI,
MNDWI is more capable of highlighting the representative
water surfaces with large MNDWI values. Thus, candidate
pixels with large MNDWI values, i.e., the ones to be collected
in the first few iterations, should be representative samples.
As the goal of this stage is to produce the sample set for
the following water mask, a smaller number of iterations
for the first stage is appropriate. In this paper, we refer to
the 50th iteration as the threshold for each class in the first
stage. Next, the guidelines for setting Tc, i.e., the stopping
conditions for each class of the five-category stage, are
illustrated in Fig. 3 and summarized as follows.
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Algorithm 1 The Proposed Unsupervised Training Sample
Collection Algorithm
1. Input: Landsat image, NDBI, NDVI, MNDWI, BI, and
NDWI
2. The four-category stage

Initialization: Linearly normalize NDBI, NDVI, MNDWI,
and BI

Build the sample set (T1) with the largest spectral
index value for each class

Repeat for each class in alphabetical order:
Query a set of samples (with the query function Q1) from

the pool U1
Label the selected samples and exclude the outliers of T1

by a label checker S1
Update the sample set T1

Until a stopping criterion is satisfied
Output: temporary sample set T1 for bright BU, V, WS,

and BS
3. SDBI generation

Build a binary urban water mask by a classifier trained
with T1

Refine the urban water mask by a morphological dilation
operation

Retain the value of each non-water pixel in the NDWI
image and assign the values of all the water pixels to zero

4. The five-category stage
Initialization: Linearly normalize the SDBI

Build the sample set (T2) by combining T1 and
an initial sample set with the largest SDBI index values for
the dark BU class

Repeat for each class in alphabetical order:
Query a set of samples (with the query function Q2)

from the pool U2
Label the selected samples and exclude the outliers of

T2 by a label checker S2
Update the sample set T2

Until a stopping criterion is satisfied
Output: T2 for bright BU, dark BU, V, WS, and BS

5. Output: Sample set T2, made up of BU (by merging the
bright and the dark subclasses), V, WS, and BS

1) Considering the spectral variation of the BU category,
we suggest that the thresholds for NDBI and SDBI are
set in the range of 50 to 500.

2) For the V and WS categories, the suggested threshold
value is 50, based on their homogenous spectral charac-
teristics.

3) As the BS category has diverse spectral characteristics
in urban areas, a reasonable value is between 50 and
200.

Please note that the thresholds for both stages are further
analyzed in Section IV-D.

As shown in Fig. 4, the SDBI generation approach can
be summarized as follows. A binary urban water mask can
be produced by building a classifier (see Section II-D) with

samples collected in the four-category stage (T1). The derived
water mask is then refined by a morphological dilation oper-
ation to reduce the noise and false alarms. The SDBI is then
generated by retaining the value of each nonwater pixel in the
NDWI image and assigning the values of all the water pixels
to zero. In this way, the SDBI can be used to indicate the dark
BU class.

D. Classification

In the proposed approach, with the automatically selected
sample set as the training data, collaborative representation-
based classification (CRC) [22] is adopted to produce the final
land-cover map. CRC is an effective supervised machine learn-
ing method, which has achieved outstanding performances
in various fields, e.g., face recognition [22], [23], human
action recognition [24], visual tracking [25], and hyperspectral
image classification [26]–[28]. In CRC, for a labeling task,
each test signal p can be linearly and densely represented by
the collaborative codebook Aconstructed by stacking all the
training samples [27], [28]. Thereafter, a regression algorithm
(e.g., least squares) is employed to assign the label with the
smallest sub-regression residual. The mathematical expression
is represented as follows:

Collaborative representation: α = argmin
α

(||p − Aα||2
+ λ||α||2) (4)

Classification: class (p) = argmin
(i=1,...M)

||p − Aiαi ||2 (5)

where λ is a tradeoff between the data-fidelity term and the
coefficient prior, which is often set as a small nonzero value
by default, to avoid a trivial solution. Ai , αi are subsets of
the dictionary and coefficient vector associated with class i ,
respectively. CRC was naturally designed for classification by
simultaneously using training samples from all the classes to
stabilize the class pattern, and hence is especially suitable
for multiclass applications with limited supervised training
information [27]. In this manner, when dealing with a land-
cover task involving similar classes (such as BS and BU),
the CRC classifier can make use of the information from
multiclass and complementary training samples. In addition,
the dense representation means that the labeling process should
not be heavily dependent on a few (sparse) samples [27], [28],
so that it is capable of mitigating the effect of a small
amount of wrongly labeled samples, thus strengthening the
classification robustness.

In the classification procedure, the training samples are ran-
domly generated from the automatically collected sample set.
Ideally, more training samples can result in a more desirable
classification performance. However, considering the compu-
tational cost, in this paper, 500 pixels are randomly selected
for each class (see Section IV-D for a further discussion). The
spectral bands, as well as the index images, are stacked as
the input features. After classification, the bright and dark
BU classes are merged into one class (i.e., the BU class), and
the mapping result is finally generated.
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Fig. 3. Distribution and the specific index values of the pixels that meet the guidelines to set the Tc parameters for each class, taking the Guangzhou Landsat
image as an instance. Each legend bar is consistent with the guidelines for the associated land-cover type.

Fig. 4. Production of the synthetic dark BU image.

E. Computational Complexity

In theory, the computational cost mainly consists of the
four-and five-category stages and the two classifications, one
of which is implemented during the SDBI generation, and the
other is the final land-cover labeling. In view of the sample
collection stage, for the i th iteration, the training sample set of
class c is sized Ntc,i , and the candidate pool of class c is sized
Nuc,i . The query processing step thus takes O(Nuc,i Ntc,i ),
and the label checker step takes O(g(C− 1)Nuc,i Ntc,i ), where
C is the number of classes and g (a small value in practice)
is the number of iterations in the i th label checker step.
In view of this, given L iterations as the maximum threshold
of the second stage, the computational cost of the sample
collection stage is O(C2 ∑L

i Nuc,i Ntc,i ) = O(C2 L Nuc Ntc),
where Ntc and Nuc are the maximum sizes of the training
sample set and candidate pool for a single class, respectively.
Meanwhile, for a Landsat image with F pixels, the time
complexity of the two classifications is O(Fd

∑
ntc),

where d is the dimension of the features, and ntc is the size of

the randomly selected subset of Ntc (500 in this paper), which
is much smaller than Ntc. In summary, it can be said that the
computational complexity, i.e., O(Fd

∑
ntc + C2LNuc Ntc), is

linear with regard to the number of pixels F in the Landsat
image.

III. EXPERIMENTAL DATA SETS AND SETUP

A. Study Area and Data Sources

In this paper, according to the stratification of urban
eco-regions developed by [29], 39 representative cities
(Fig. 5) were selected throughout these eco-regions (except
for the Boreal forest region and the tundra/permanent ice/
snow areas) to validate the effectiveness of the proposed
method. These cities are located in various biomes, with
different urban topologies and economic development sit-
uations. The related parameters [i.e., population (POP)
and area (available at: http://cidportal.jrc.ec.europa.eu/ftp/
jrc-opendata/GHSL/)] are also listed for each city.

This research relied on terrain-corrected Level 1T Landsat
30-m resolution data, which can be freely acquired from the
United States Geological Survey (USGS) (http://earthexplorer.
usgs.gov/). For each city, cloud-free Landsat scenes were
selected to cover the study area. We chose adjacent scenes
acquired on the same date if more than one scene was
needed to cover a city, to avoid any differences in imag-
ing conditions. To obtain the study area of each city, three
specific masks, i.e., Fmask [30], an urban area mask, and
an open water surface mask, were utilized. Fmask records
every pixel in the scene as valid (surface reflectance) or not
(e.g., cloud, cloud shadow, saturation, out of satellite swath,
and striping). The urban area mask (http://e4ftl01.cr.usgs.
gov/MOTA/MCD12Q1.051/) was used to focus our test images
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Fig. 5. Locations of the 39 cities considered in this paper (Fig. 6). Spectral profiles of the different land-cover classes in the real and synthetic data sets.
(a) Real average profiles for each land-cover class. (b)–(e) Synthetic BU, V, WS, and BS profiles, respectively.

Fig. 6. Spectral profiles of different land-cover classes in the real and synthetic data sets. (a) Real average profiles for each land-cover class. (b)–(e) Synthetic
BU, V, WS, and BS profiles, respectively.

on the urban areas. Open water surfaces (i.e., oceans, rivers,
and lakes with large areas, as defined in [31]) outside the
urban areas were masked out using the global open water
body product from the European Space Agency [spatial res-
olution: 150 m; overall accuracy (OA): 96%; Kappa: 0.91;
website: http://maps.elie.ucl.ac.be/CCI/viewer/download.php].
Thus, only urban water bodies (such as paddy fields, ponds)
were considered in our research. In total, 41 Landsat image
scenes for 39 cities were selected, comprising 32 Thematic
Mapper (TM), four Enhanced Thematic Mapper Plus (ETM+),
and five Operational Land Imager OLI scenes (Table II).

B. Synthetic Data Set

A synthetic data set was used to quantitatively evaluate the
quality of the samples collected by the proposed method and
the effect of label noise on the classification. In this paper,
the reference samples collected by field survey in the area of
the Wuhan Landsat image were used to produce a synthetic

data set (referred to as SimuGT), involving 80 000 pixels
(20 000 pixels for each class). Based on the assumption of a
normal distribution for each land-cover type and high spectral
similarity within an object, we used an object-level simulation
procedure [32] to bridge the gap between real and synthetic
data. The normal distribution parameter for each class (i.e.,
mean μc and standard deviation σc for class c) was estimated
by the average spectral profile of each region of interest (ROI).
In total, 20 000 pixels for each class were evenly grouped as
1000 objects, with each object containing 200 pixels. For each
object of class c, the range of the spectral profile was randomly
selected from (μc, σc), and the spectral profile of each pixel
in this object was then randomly set within this range. In this
way, for the objects in the same class, samples within an object
should be more similar than those across different objects.
After all the objects were generated, uniform noise was added
to the whole synthetic data set. Fig. 6 presents some examples
from the synthetic data set.
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TABLE II

LIST OF CITIES AND THE LANDSAT DATA USED IN THIS STUDY

C. Reference Data Set

To assess the accuracy of the classification, the ground
references were obtained through in-lab inspection of the
Landsat data, photointerpretation based on Google Earth high-
resolution images, and field campaigns to the relevant Chinese
cities. Evenly distributed object patches (i.e., ROIs) for dif-
ferent land-cover types were manually delineated for every
Landsat scene. The statistics of the ROIs in each study site
are detailed in Table IX. On average, for each study site,
the number of ROIs was 164, 113, 57, and 76 for BU,
V, WS, and BS, respectively. Since the samples within an
ROI have similar spectral and spatial characteristics, only
one pixel was randomly selected from each ROI, to avoid
spatial autocorrelation [35]. To allow us to achieve an unbiased
accuracy assessment, the test sample selection and accuracy
assessment were independently repeated 10 times during the
validation procedure, and the statistical accuracy was recorded.

In order to assess the accuracy of the selected samples in
the real data sets, we chose six cities in different classifi-
cation accuracy levels (Montreal and Shenyang with an OA
of less than 90%, Stuttgart and Addis Ababa with an OA
of 90%–95%, and Wuhan and New Delhi with an OA of higher
than 95%). In total, 600 samples (100 samples for each city)
were randomly selected and used to calculate the correctness,
by visual comparison with the high-resolution images from
Google Earth.

D. Experimental Setup

1) Parameter Setting for the Proposed Method:
1) Considering the computational cost of the proposed

approach, 500 training pixels per class were randomly
selected to implement the classification.

2) Considering that a large number of pixels within an
index range will be spectrally similar and redundant,
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TABLE III

CONFUSION MATRIX FOR THE SAMPLES COLLECTED IN THE TWO STAGES FROM THE SYNTHETIC DATA SET

during each iteration; 2000 pixels were randomly
selected to implement the proposed sample collection.

3) For the second stage, the thresholds for both vegetation
and water surfaces were fixed as 50, and those
for the other two classes were empirically tuned
(see Table VIII), based on the guidelines mentioned
before.

4) The threshold for the first stage was set as 50 iterations,
in consideration of the high variance of MNDWI [8]
and the homogenous spectral characteristics of water
surfaces.

5) According to the previous studies on CRC [27], [28],
a nonzero but small λ is desirable. In this paper, λ was
set as 1e−3.

Please refer to Section V-B for a detailed analysis of the
sensitivity of the parameters mentioned above. In addition,
considering that the spatial resolution of Landsat imagery is
30 m, we fixed a 5 × 5 disk for the morphological dilation
operation in the SDBI generation.

2) Compared Mapping Methods: In this paper, we utilized
two other methods to test the performance of the proposed
algorithm.

1) The “simple sampling” method is based on random
forest (RF) and four spectral indices, i.e., NDBI, NDVI,
MNDWI, and BI. Specifically, candidate instances for
all four classes were first extracted according to man-
ually tuned thresholds (i.e., NDBI for BU, NDVI for
vegetation, MNDWI for water, and BI for bare soil).
The ambiguous samples that simultaneously existed in
at least two categories were then removed. Finally, a RF
classifier was constructed by the use of the remaining
instances.

2) To compare the proposed method with supervised clas-
sification based on manually selected training samples,
additional ROIs (detailed in Table X) were manually
selected in a similar way to train the classifier. In the
following, we refer to this method as the “manual
sampling” method. For the purpose of a fair comparison,
CRC was also taken as the classifier.

3) Compared Classifiers and the Experimental
Environment: To analyze the suitability of utilizing the
CRC classifier in the proposed framework, support vector
machine (SVM) and RF classifiers were used as a comparison,
implemented in LibSVM (version: 3.23) software [40] and the
MATLAB 2017b built-in TreeBagger function, respectively.

The parameters of SVM were set as kernel = radial
basis function (RBF), and the penalty coefficient and RBF
bandwidth were tuned by tenfold cross-validation. For the
RF classifier, 500 trees were constructed, considering the
tradeoff between computational burden and classification
accuracy [41]. A random subset of

√
n features was used for

RF at each node, where n is the number of features [42]. All
the experiments were carried out using MATLAB on a PC
with one 4-GHz processer and 64 Gb of RAM.

IV. RESULTS AND ANALYSIS

A. Sample Quality Assessment

For the synthetic data set, the indicators of OA, Kappa
coefficient (Kappa), producer’s accuracy (PA), and user’s
accuracy (UA), derived from the confusion matrix, were used
to assess the accuracy of the selected samples. In Table III,
T1 (containing 8274 samples) and T2 (containing 10 967 sam-
ples) represent the sample set after the first stage (i.e., the four-
category stage) and the second stage (i.e., the five-category
stage), respectively. In general, both stages present pleasing
accuracies (Kappa > 0.96), and the second stage shows a
more desirable performance. For the classes such as V and
WS, there was no sample elimination during the second stage,
which was mainly due to their relatively homogeneous spectral
characteristics. For the other two land-cover types, changes
of the diagonal elements in Table III indicate the addition of
newly selected samples during the second stage. In particular,
please note that, with the addition of the SDBI in T2, some
dark BU samples that were wrongly identified as BS in T1
were eliminated (from 206 to 68).

From the 39 cities considered in this paper, we chose six
cities in different classification accuracy levels (Montreal and
Shenyang with an OA of less than 90%, Stuttgart and Addis
Ababa with an OA of 90%–95%, and Wuhan and New Delhi
with an OA of higher than 95%). In total, 600 samples
(100 samples for each city) were randomly selected and used
to calculate the correctness by visual comparison with the
high-resolution images from Google Earth. The sample accu-
racies for both WS and V are 100%. Although a small number
of mistakes exist in the BU (accuracy: 91%) and BS samples
(accuracy: 84%), the effectiveness of the proposed approach
is confirmed, with the total sample accuracy reaching 94%.
Furthermore, to visually investigate the diversity of the col-
lected samples in the real Landsat images, the selected samples
in the Wuhan (accuracy: 92%) and Montreal (accuracy: 92%)
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Fig. 7. Visual representation of the selected samples for (a) Wuhan image and (b) Montreal image.

images are displayed in Fig. 7. By referring to the Google
Earth images, it can be seen that the proposed method can
select diverse samples. For instance, as shown in the zoomed-
in images of the samples of the BU class in the Wuhan image
[Fig. 7(a)], the BU samples not only cover buildings with
bright and dark colors, but also involve different types of
roads, such as arterial roads and pathways. The samples of
the V class contain various forms of vegetated land, including

crops and scrubland. The WS samples include both river and
lake areas, and the BS samples are distributed in both fallow
cropland and construction sites. Similar examples can also be
observed in the other cities [e.g., Montreal in Fig. 7(b)].

B. Classification Results

Representative mapping results for the various eco-regions
are shown in Fig. 8. In general, the identified BU areas
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Fig. 8. Results for the representative cities in each eco-region. (Left) Land-cover mapping results of the proposed method. (Right) False-color images.
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TABLE IV

ACCURACY ASSESSMENT OF THE CLASSIFICATION RESULTS FOR THE 39 CITIES

are located in the downtown and scattered around the city
suburbs; BS pixels are effectively recognized in both the city
centers and agricultural land; and V and WS regions are
also well discriminated in the mapping results. The detailed
quantitative assessment for each city is presented in Table IV.
In summary, the proposed automatic mapping method achieves
a promising accuracy, as the OA ranges from 84.3% to 99%
(average: 92.9% ± 3.8%) and the Kappa coefficient ranges
from 0.77 to 0.99 (average: 0.90 ± 0.05) for all the cities.
No significant differences are captured across eco-regions
(Table IV), while cities in the arid, semiarid, and shrubland
regions (i.e., the 13th eco-region, OA: 89.5%±7.35%, Kappa:
0.85 ± 0.10) show a slightly inferior performance.

Compared with the two benchmark methods, the results
show that, in general, the proposed automatic sampling method
can obtain a comparable classification accuracy to the manual
sampling method, and it is significantly superior to the simple
sampling method. On the one hand, due to the lack of a ready-
made spectral index to describe the dark BU class, the simple
sampling method cannot extract this kind of land cover. On the

other hand, despite the fine-tuned threshold for each index
used in the simple sampling method, informative samples for
each class still cannot be extracted, which leads to the inferior
classification result.

The results show that the manual sampling method only out-
performs the proposed method by 1.6%±3.3% in OA, with no
significant difference captured by the ANOVA significance test
(OA: p-value = 0.1025). Taking Wuhan (proposed method:
OA = 95.7%, Kappa = 0.94; manual method: OA = 94.9%,
Kappa = 0.93) as an example (Fig. 9), in Site 2, both the
BS and BU classes are correctly identified by the automatic
[Fig. 9(e)] and manual [Fig. 9(f)] methods. However, in Site 1,
the proposed method [Fig. 9(b)] outperforms the manual
[Fig. 9(c)] method, and the BU class is overestimated when
using the manually selected samples. However, as can be seen
in Fig. 9(b), by the use of the proposed method, both the
BU and BS classes can be clearly discriminated from the
vegetation background.

Overall, the results of the automatic method can be regarded
as satisfactory, considering that the proposed strategy is able
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TABLE V

MAPPING ACCURACY (OA: %) USING DIFFERENT COMBINATIONS OF SVM, RF, AND CRC IN THE THREE REPRESENTATIVE CITIES

TABLE VI

MAPPING ACCURACY USING COMBINATIONS OF SVM, RF, AND CRC IN THE SYNTHETIC DATA SET

Fig. 9. Visual comparison of the mapping result for Wuhan. (a) Landsat
image (R: red; G: green; B: blue). (b) and (c) Classification maps obtained
by the automatic and the manual sampling methods, respectively, for Site 1.
(d) Corresponding Google Earth images. (e) and (f) Classification maps of
the automatic and the manual methods, respectively, for Site 2. (g) Google
Earth image for Site 2.

to automatically classify the urban Landsat imagery, and the
time-consuming manual sample collection can be avoided.
Furthermore, the automatic sampling approach, without requir-
ing human intervention in selecting the training samples, can
significantly alleviate the labor cost and increase the efficacy
of the mapping process, compared to the manual sampling
method.

C. Analysis of the Classifiers and Sensitivity to Label Noise

To analyze the relevance of the choice of classifier,
we compared the CRC classifier with SVM and RF
classifiers. Prague (∼520 km2), New York (∼3865 km2),
and Guangzhou (∼6438 km2) were chosen in this test,
considering their different urban sizes, different countries,
and different eco-regions. Please note that in the proposed
method, the classifier was used twice: first to produce
the SDBI after the four-category stage during the sample
collection, and second to map the study area after the five-
category stage. Accordingly, Table V presents the mapping

accuracy with different classifier combinations. For instance,
SVM1-CRC2 stands for using SVM in the sample collection
(to produce the SDBI after the four-category stage) and CRC
in the subsequent land-cover mapping (after the five-category
stage). From Table V, the following observations can be made.

1) Compared to SVM1-SVM2 and RF1-RF2, the combina-
tion of CRC1-CRC2 obtains a higher mapping accuracy.

2) When fixing CRC2 and investigating the contribution
of constructing the SDBI, CRC is comparable to RF,
and both are superior to SVM (see the shaded columns
in Table V). One possible reason for this could be the
lack of intra-class diversity of T1, as 50 iterations might
result in a premature stopping condition for the first
stage. In this case, the advantage of CRC in dealing
with multiclass applications with limited training infor-
mation may partly explain the superior performance of
CRC1-CRC2.

3) When fixing CRC1 and analyzing the contribution of the
final urban mapping, CRC is superior to RF and SVM
(see the last three columns in Table V). In this case,
the superiority of RF and CRC can partly be attributed
to their robustness in dealing with a small amount of
wrongly labeled samples [27], [42].

To further unfold the effect of training label noise on
the mapping result, the synthetic data set was again used.
In Table VI, for example, T2-RF stands for using T2 as the
training sample set and RF as the classifier for the land-cover
mapping. In the following, we recall the definitions of the
sample sets collected in the synthetic data set. T2 refers to the
set selected by the proposed sample collection algorithm after
the five-category stage. C2 indicates the subset of T2, with its
mislabeled samples removed. From Table VI, the following
observations can be made.

1) In the noise-free cases (i.e., C2), all the classifiers show
reasonable performances, but CRC presents the best
performance.

2) When using the training sample set with label noise
(i.e., T2), SVM is sensitive to noise (PA of WS: 43.15%;
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Fig. 10. Classification accuracy versus the number of randomly selected
training sample per class for the Prague, New York, and Guangzhou Landsat
images.

Fig. 11. Classification accuracy versus the number of randomly selected
samples per iteration for the Prague, New York, and Guangzhou Landsat
images.

PA of V: 74.09%; UA of BU: 51.67%; and inferior OA
and Kappa values), while the other classifiers (i.e., RF
and CRC) show more robust results. As in [43], the ran-
dom and bootstrapped characteristics of RF enable this
classifier to be robust and error tolerant. As has been
claimed before, the dense representation of CRC ensures
the capability of mitigating the effect of a small amount
of label noise, and strengthens the classification robust-
ness.

D. Parameter Analysis

1) Number of Automatically Collected Samples Per Class:
In this section, we analyze the effect of the number of
randomly selected samples per class on the classification
accuracy, based on the three representative cities. For the
purpose of a fair comparison, the numbers of selected samples
for each class were kept equal, and 100 to 1000 samples
per class (with an interval of 100) were randomly chosen to
train the classifier. In these sets, training samples contained
in one set were also contained in the affiliated set with a
larger number of samples. The horizontal axis in Fig. 10 is
the number of randomly selected samples per class, and the
vertical axis shows the OA of the mapping result. The accuracy
was averaged over 10 runs to reduce the possible bias induced
by the random sampling. In general, the accuracies increase
slightly with the increment of the training sample size. As can
be seen in Fig. 10, it appears reasonable to set the sample size
as 500, considering both the computational cost and mapping
performance.

2) Number of Randomly Selected Samples Per Interval:
Fig. 11 represents the effect of the number of randomly

Fig. 12. Threshold sensitivity for the sample selection of (a) BU, (b) V,
(c) WS, and (d) BS in the Prague, New York, and Guangzhou Landsat images.

TABLE VII

RUN TIME ANALYSIS FOR THE PROPOSED METHOD AND THE

SIMPLE SAMPLING METHOD FOR THE PRAGUE, NEW YORK,
AND GUANGZHOU LANDSAT IMAGES

TABLE VIII

SAMPLE SELECTION THRESHOLD Tc FOR BU AND BARE SOIL

selected samples per iteration on the classification accuracy.
Likewise, 50 to 4000 samples were chosen per iteration for
each class to run the automatic sample collection procedure.
The horizontal axis in Fig. 11 denotes the number of randomly
selected samples per iteration, and the vertical axis shows the
OA of the mapping result. The accuracy was again averaged
over 10 runs. It can be clearly seen from Fig. 11 that at
the beginning, the OA increases as the number of samples
increases. Subsequently, when the number is larger than 1000,
the accuracy curves for all three study areas reach the max-
imum and become stable from then on. Therefore, in this
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TABLE IX

STATISTICAL INFORMATION FOR THE ROIS IN THE REFERENCE DATA SET

paper, we set this parameter as 2000 for all the study sites,
considering both the computational cost and performance.

3) Sensitivity of Parameter Tc: In Fig. 12, the effect of the
termination threshold Tc (c ∈ {bright BU, V, WS, BS, dark
BU}) of the automatic sample collection is analyzed, by taking
the three cities as examples. With regard to the reference
ROIs (see Table X), the bright BU and the dark BU classes
were merged as one class, and the termination thresholds for
these two subclasses were set as the same. We fixed the other
parameters as the optimal values and focused on the influence
of Tc, as shown in Fig. 12. The horizontal axis denotes the
termination threshold for each land-cover type, and the vertical
axis shows the corresponding OA. First, the flat curves of V
and WS can be attributed to their relatively homogenous
spectral characteristics. With respect to BU, the performance
for this land-cover type is also relatively stable. BS shows the
largest variation, and it is suggested that a suitable threshold
would be around 100, as a small value of Tc can degrade the
diversity of the collected samples.

4) Sensitivity of the Threshold for the First Stage: In the
following, we examine the effect of the threshold for the
first stage, i.e., the approach designed for SDBI generation,
on the classification performance of the proposed algorithm.
According to the large variance of the MNDWI image, it
is able to highlight the strong contrast between water and
nonwater surfaces [8]. In this context, it is reasonable to set
the threshold of the first stage to a small number of iterations.

Fig. 13. Classification accuracy versus the threshold for the first stage for
the Prague, New York, and Guangzhou Landsat images.

Taking Prague, New York, and Guangzhou as instances,
as shown in Fig. 13, the horizontal axis denotes the threshold
for the first stage, and the vertical axis shows the correspond-
ing OA. From Fig. 13, it can be seen that the performances for
all the test sites are relatively stable as the threshold increases.
In short, it is reasonable to set the threshold as 50.

5) Regularization Parameter λ in CRC: The effect of the
regularization parameter λ on the classification performance
for the three test sites is shown in Fig. 14. The experiments
were again repeated 10 times using different randomly chosen
training sets to reduce the possible bias induced by the random
sampling. The horizontal axis shown in Fig. 11 is the value
range of λ, while the vertical axis shows the OA. In Fig. 14,
all the curves are quite stable and show a pleasing accuracy
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TABLE X

STATISTICS OF THE MANUALLY COLLECTED ROIS USED IN THE SUPERVISED CLASSIFICATION COMPARISON EXPERIMENTS

Fig. 14. Classification accuracy versus regularization parameter λ for the
Prague, New York, and Guangzhou Landsat images.

when the regularization parameter λ ranges from 1e−6 to 1e−2,
which suggests the validity of setting λ as 1e−3.

E. Run Time Analysis

Taking Prague (∼520 km2), New York (∼3865 km2), and
Guangzhou (∼6438 km2) as instances, the detailed run times
for both the proposed method and the simple sampling method
are listed in Table VII. For the simple sampling method,
the computational cost of setting the thresholds by trial and
error, which is a time-consuming and subjective matter, is not
included. For the proposed method, the stopping condition
for all three test sites was 400 iterations, and the size of the
training sample set was 500 for each class. In Table VII, it can
be seen that the simple sampling method is faster than the
proposed method for the two smaller test sites, but it takes

more time for the Guangzhou image with the largest size.
For the Guangzhou image, the proposed method is not only
faster than the simple sampling method, but it also presents a
superior classification result (proposed method: OA = 98%;
simple sampling method: OA = 81%). In more detail, it is
noted that the computational cost of the simple sampling
method increases exponentially with the image size, while
the computational burden of the proposed method increases
relatively slowly as the image size grows. The burdensome
computational cost of the simple sampling method mainly
comes from the huge size of the collected sample sets.
In general, although the proposed method does require some
computing time, it is, however, reasonable to believe that with
the rapid development in computer hardware, the time cost of
the proposed method will soon no longer be an issue.

V. CONCLUSION

In this paper, we have proposed a novel unsupervised
sample selection method for urban land-cover mapping. The
proposed method was effectively implemented in 39 represen-
tative cities located in different eco-regions across the world,
using Landsat TM, ETM+, and OLI images. In these study
areas, the OA ranged from 84.3% to 99% and the Kappa coeffi-
cient ranged from 0.77 to 0.99, demonstrating the potential for
automatic urban mapping. The sample accuracy was taken into
account to validate the effectiveness of the proposed method.
When compared with the results of supervised classification
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with manually selected training samples, the proposed method
obtained a comparable and promising accuracy. Furthermore,
the experimental results showed that the proposed method
significantly outperformed the use of the simple index-based
threshold for different land-cover classes.

In practice, land-cover mapping, especially large-scale map-
ping, depends on data availability, time and cost constraints,
and the efficiency of the processing scheme. With the proposed
sample selection scheme, by the use of simply calculated and
widely used spectral indices, it is possible to automatically col-
lect reliable, diverse, and concise sample sets, which are essen-
tial for gaining an accurate classification result. Subsequently,
using CRC, the urban areas can be efficiently mapped into four
basic land-cover types using the automatically collected sam-
ples, and the final mapping results will be comparable to those
of the manual sampling approach. As vegetation, impervious
surfaces, soil, and water surfaces can be regarded as the four
basic biophysical components of the urban environment, their
automatic extraction will be of great interest for urban plan-
ning and studies of urbanization and the urban environment.
It is noted that some subdivision of these basic land covers may
be of further interest, but this is beyond the scope of this paper.
Based on the proposed sample collection procedure, given an
effective index, it has the potential to extract the subtypes
of the land cover. In short, this approach shows a promising
potential for automatic and global mapping of urban areas.

APPENDIX

See Tables VIII–X.
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