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A B S T R A C T

Spatial heterogeneity in vegetation greenness (VG) can influence earth surface process and resource ecology.
However, its long-term change and driving forces remain poorly understood. In this study, MODIS enhanced
vegetation index (EVI) data was used to examine the change in spatial heterogeneity in VG and its relationships
with vegetation greening in mainland China during 2000–2017. Moving window standard deviation and range
of growing season mean EVI (GSEVI) were used as proxies for spatial heterogeneity in VG. It was found that
moving window standard deviation of GSEVI increased significantly over 33.8% to 53.7% of mainland China
during 2000–2017, while it decreased significantly over less than 5% of mainland China. The results of moving
window range of GSEVI were similar to moving window standard deviation of GSEVI. These may be explained
by: (1) increased standard deviation and range of GSEVI accompanied by increased GSEVI value; and (2) faster
greening speed in dense than in sparse vegetated areas. Additionally, the increased spatial heterogeneity in VG
means the increased difference in VG between arid and humid regions, and between urban cores (UCs) and rural
areas. These may primarily be attributed to slower greening speed in arid than in humid regions, and in UCs than
in rural areas. Thus some benefits from vegetation greening may be much less in arid than in humid regions, and
in UCs than in rural areas. Overall, this study analyzed an interesting phenomenon that vegetation greening may
increase spatial heterogeneity in VG, which has a series of implications for environment and human activities.

1. Introduction

Vegetation plays a key role in terrestrial biosphere (e.g. regulating
energy, carbon and water cycles) and can bring a large amount of po-
sitive effects to human society and surface environment (e.g. preventing
soil erosion, mitigating green house effects, urban heat island and air
pollution), thus vegetation dynamics is attracting increasingly interest
(Myeong et al., 2006; Nowak et al., 2006; Oldfield et al., 2013; Pan
et al., 2018; Qin et al., 2017; Wen et al., 2017; Yao et al., 2017b; Zhang
et al., 2017). Satellite remote sensing is considered as one of the most
important methods to monitor large-scale vegetation dynamics due
primarily to its wide and full coverage, temporally continuous, and easy
and free access. Satellite-based vegetation indices (VIs) for example
normalized difference VI (NDVI) and enhanced VI (EVI) are based on
different reflectance among bands. They can be used as proxies for
vegetation greenness (VG) (or other parameters, e.g. productivity).
High NDVI and EVI represent high VG (Huete et al., 2002).

One of the important properties of landscapes is spatial hetero-
geneity. Spatial heterogeneity in VG is related to habitat diversity,
which can affect animal activity, species richness and ecosystem sta-
bility (Adler et al., 2001; Gould, 2000; John et al., 2008; Levin et al.,
2007; Murwira and Skidmore, 2005; Parviainen et al., 2010). Studies
have shown that the spatial heterogeneity in VIs were linked to species
richness and animal activity (Fairbanks and McGwire, 2004; Gould,
2000; John et al., 2008; Levin et al., 2007; Seto et al., 2004). For ex-
ample, Levin et al. (2007) found a positive relationship between plant
species richness and spatial standard deviation of NDVI in Mount
Hermon (Israel). Seto et al. (2004) showed that spatial mean, maximum
and standard deviations of NDVI were all positively correlated with bird
species richness at Great Basin of western North America. Murwira and
Skidmore (2005) showed that spatial heterogeneity in NDVI was
strongly related to elephant presence in Zimbabwe. However, to our
knowledge, the long-term change of spatial heterogeneity in VG over a
large area has not been documented in literature.
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Using satellite data, a large amount of studies showed that vegeta-
tion is greening from regional to global scales (Jiang et al., 2017; Pan
et al., 2018; Piao et al., 2015; Wang et al., 2017; Zhang et al., 2017; Zhu
et al., 2016). For example, Zhang et al. (2017) used Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) data to show that global
NDVI and EVI increased significantly for the period 2001–2015. Zhu
et al. (2016) showed that significant increasing trends of leaf area index
(LAI) were found over 25%–50% of the world during 1982–2009,
which was mainly (70%) attributed to increased CO2 in the atmosphere.
Piao et al. (2015) showed that the LAI increased at the rate of 0.0070/
year (averaged for three LAI dataset) in China from 1982 to 2009.
However, the responses of spatial heterogeneity in VG to vegetation
greening are not clear. Thus, two questions were raised: (1) how does
the spatial heterogeneity in VG change in past years? (2) Does vege-
tation greening affect the spatial heterogeneity in VG?

The purpose of this article is to answer above mentioned two
questions. Mainland China covers a large area and has various climate
and vegetation types. In addition, previous studies showed that the
greening trend was more pronounced in mainland China than in other
regions (Zhang et al., 2017; Zhu et al., 2016). These make mainland
China an ideal region to investigate the change of spatial heterogeneity
in VG and its relationships with vegetation greening. Additionally, the
responses to vegetation greening in mainland China can be regarded as
the “harbingers” of the future for other regions in the world. To solve
above questions, this study analyzed: (1) the change of spatial hetero-
geneity in VG in mainland China during 2000–2017; (2) relationships
between spatial heterogeneity in VG and vegetation greening; and (3)
implications of change in spatial heterogeneity in VG.

2. Data and methods

2.1. Study area

The area of mainland China is approximately 9.6million km2, which
ranked third in the world. Mainland China has various climate types
ranging from humid and hot climate in southeast to cold and dry cli-
mate in northwest. In addition, vegetation differed greatly across
mainland China, ranging from rainforests in southeast to deserts in
northwest. The EVI gradually decreases from Southeast China to

Northwest China (Fig. 1). Furthermore, urban samples in this study
include 2 urban agglomerations (Yangtze River Delta urban agglom-
eration (YRD), including Shanghai, Changzhou, Wuxi and Suzhou;
Pearl River Delta urban agglomeration (PRD), including Guangzhou,
Dongguan, Foshan, Shenzhen, Zhongshan, Xianggang, Zhuhai and
Jiangmen), 4 municipalities and 25 provincial capitals (Fig. 1).

2.2. Data

Vegetation greenness information was extracted from MODIS
MOD13A3 EVI data (1000m spatial resolution, monthly composite,
version 6) from 2000 to 2017. 250m spatial resolution MOD13Q1 EVI
data (16-day composite, version 6) was utilized as a supplement (see
Section 2.3). Compared with NDVI, EVI minimizes the effects of back-
ground reflectance variations. Thus it is more appropriate for mon-
itoring vegetation dynamics in sparse vegetated areas for example
urban areas (Huete et al., 2002; Zhang et al., 2004; Dallimer et al.,
2011; Zhou et al., 2014). This study only analyzed the EVI in growing
season (from April to October) to minimize the effects of winter snow
(Yao et al., 2017b; Zhou et al., 2014). In addition, this study mainly
focused on spatial heterogeneity in VG and deserts were not excluded.
Negative EVI values were removed in this study.

Land cover information was obtained from China's Land Use/Cover
Datasets (CLUDs) in the year 2000, 2005, 2010 and 2015. In this study,
CLUDs were used to differentiate land cover types (see Section 3.2) and
extract urban areas (see Section 2.3). CLUDs were produced from 30m
spatial resolution Landsat TM/ETM+ and HJ-1A/1B data. The overall
accuracy of CLUDs is greater than 90% for 25 land cover types. Detailed
information, including data processing, accuracy assessment and clas-
sification information can be found in Kuang et al. (2016) and Liu et al.
(2014).

2.3. Methods

In this study, MOD13A3 EVI data was mosaicked and reprojected
using MODIS Reprojection Tool (MRT). Then the growing season mean
EVI (GSEVI) in mainland China was calculated for each year. Spatial
heterogeneity in VG at local scale was analyzed using moving window
method. Moving window standard deviation and range of GSEVI were

Fig. 1. Study area in this study. Background map is
mean growing season mean enhanced vegetation
index (GSEVI) during 2000–2002. HB: Harbin; CC:
Changchun; UQ: Urumqi; SY: Shenyang; HT: Hohhot;
BJ: Beijing; TJ: Tianjin; YC: Yinchuan; SJZ:
Shijiazhuang; TY: Taiyuan; JN: Jinan; XN: Xining;
LZ: Lanzhou; ZZ: Zhengzhou; XA: Xi'an; NJ: Nanjing;
YRD: Yangtze River Delta urban agglomeration; HF:
Heifei; HZ: Hangzhou; WH: Wuhan; CD: Chengdu;
CQ: Chongqing; NC: Nanchang; CS: Changsha; FZ:
Fuzhou; GY: Guiyang; KM: Kunming; NN: Nanning;
PRD: Pearl River Delta urban agglomeration; HK:
Haikou; LS: Lhasa.
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used as proxies for spatial heterogeneity in VG. To ensure the robust-
ness of the results, a total of 5 moving windows were used: 9 * 9,
29 * 29, 49 * 49, 69 * 69 and 89 * 89 pixel moving window. The spatial
heterogeneity in VG in mainland China in each year can be mapped as
follows: the value of central pixel of the window was given as the
standard deviation or range of GSEVI in the window. After that, the
trends of moving window standard deviation and range of GSEVI
during 2000–2017 were calculated at the pixel level using Mann-Ken-
dall trend test, which is a superior method for detecting trends and was
recommended by World Meteorological Organization (WMO) (Mann,
1945; Kendall, 1975; Sen, 1968; Hisdal et al., 2001; Wu et al., 2008;
Shadmani et al., 2012). To test the sensitivity of the results of changes
in spatial heterogeneity in VG to the size of moving window, the
MOD13Q1 data and above mentioned method were used. For the
purposes of examining the relationships between vegetation greening
and spatial heterogeneity in VG, the trends of moving window max-
imum and minimum GSEVI (using only MOD13A3 data) were calcu-
lated using the same method.

Trend of GSEVI (using only MOD13A3 data) from 2000 to 2017 was
analyzed using Mann-Kendall trend test. Trends of GSEVI difference
between dense and sparse vegetated areas at local scale were also
analyzed using moving window method. In this study, dense and sparse
vegetated areas were defined as mean GSEVI during 2000–2002 higher
than 0.35 and lower than 0.15, respectively (both accounting for about
one third of the area of mainland China). Other thresholds were utilized
to test the robustness of the results (results see Section 3.2): (1) dense
and sparse vegetated areas were defined as GSEVI higher than 0.3 and
lower than 0.15, respectively; (2) dense and sparse vegetated areas
were defined as GSEVI higher than 0.35 and lower than 0.1, respec-
tively. GSEVI difference between dense and sparse vegetated areas in
each year was mapped as follows: the value of central pixel in a window
was given as the GSEVI difference between dense and sparse vegetated
areas. After that, the Mann-Kendall trend test was applied to calculate
the trends at the pixel level during 2000–2017. Furthermore, to ex-
amine the relationships between spatial heterogeneity in VG and ve-
getation greening, two types of Spearman’s correlation analyses were
performed: (1) spatial correlation analyses between slope of moving
window standard deviation of GSEVI and slope of moving window
mean GSEVI for the period 2000–2017 were performed across the
whole mainland China; and (2) temporal correlation analyses between
moving window standard deviation of GSEVI and moving window
mean GSEVI were conducted at the pixel level across 2000–2017.

Percentage of urban area maps with spatial resolution of 1000m
(match MOD13A3 data) were generated from 30m spatial resolution
CLUDs in the year 2000, 2005, 2010 and 2015. To minimize the effects
of urbanization on VG, this study examined the GSEVI (using only
MOD13A3 data) trends in urban cores (UCs, those 1000m spatial re-
solution pixels contain 100% of 30m spatial resolution urban pixel

were first extracted from CLUDs in the year 2000, 2005, 2010 and
2015. Then the intersection areas were defined as UCs) in the selected
31 cities for the period 2000–2017. Note that the UCs does not ne-
cessarily mean it contains 100% of urban areas, since an original 30m
spatial resolution urban pixel may contain other land cover types (e.g.
urban green spaces). In addition, 20–25 km buffers around urban areas
(pixels with 50% of urban area in the year 2015) were employed as
reference rural areas (removing pixels with urban area higher than 0%
in any one of the four CLUDs). We used 20–25 km buffers because the
footprint of urbanization may be larger than actual urban area size (Liu
et al., 2015; Yao et al., 2018b; Zhou et al., 2016). To reduce the effects
of climate variability, the rural areas were not set farther away from the
urban areas (Yao et al., 2017a; Zhou et al., 2015). Trends of GSEVI in
UCs and rural areas for the period 2000–2017 were computed using
Mann-Kendall trend test.

3. Results and discussions

3.1. Change of spatial heterogeneity in VG

Spatial heterogeneity in VG changed significantly at both national
and local scales in mainland China for the period 2000–2017. At na-
tional scale, the standard deviation of GSEVI across the whole mainland
China increased significantly at the rate of 0.00132/year (p < 0.01).
The standard deviations of GSEVI across mainland China averaged for
2000–2002 and 2015–2017 were 0.149 and 0.168, respectively. At
local scale, significant (p < 0.05) increasing trends of standard de-
viation of GSEVI for 5 moving windows were observed over 33.8% to
53.7% of mainland China during 2000–2017, while significant de-
creasing trends were found over less than 5% of mainland China
(Table 1). In addition, moving window range of GSEVI increased sig-
nificantly over 31.3% to 54.0% of mainland China, whereas it declined
significantly over less than 4% of mainland China (Table 2). Further-
more, the proportions of significant increasing trends of moving
window standard deviation and range of GSEVI were much lower for
9 * 9 pixel moving window than other moving windows (Tables 1 and
2). Spatially, most areas in Southeast and Northwest China exhibited
significant increasing trends of moving window standard deviation and
range of GSEVI, while insignificant trends were mainly found in Tibetan
Plateau and Northeast China (Figs. 2 and 3).

The minimum area of moving window of the MOD13A3 data is
81 km2 (9 * 9 pixel moving window), which may still be too large in
terms of analyzing species richness (Gould, 2000; Levin et al., 2007;
Seto et al., 2004). In addition, it seems that the proportions of sig-
nificant increasing trends of moving window standard deviation and
range of GSEVI decrease significantly with decreasing window size
(Tables 1 and 2). Thus 3 tiles (h25v05, h26v05 and h27v05, accounting
for about 35.5% of area of the mainland China) 250m spatial resolution

Table 1
Proportions of significant (p < 0.05) increasing and decreasing trends of moving window standard deviation of growing season mean enhanced vegetation index
(GSEVI) in mainland China during 2000–2017.

9 * 9 pixel moving
window

29 * 29 pixel moving
window

49 * 49 pixel moving
window

69 * 69 pixel moving
window

89 * 89 pixel moving
window

Significant increasing trend 33.8% 44.5% 49.0% 51.7% 53.7%
Significant decreasing trend 4.5% 3.3% 2.8% 2.5% 2.2%

Table 2
Proportions of significant (p < 0.05) increasing and decreasing trends of moving window range of GSEVI for the period 2000–2017.

9 * 9 pixel moving
window

29 * 29 pixel moving
window

49 * 49 pixel moving
window

69 * 69 pixel moving
window

89 * 89 pixel moving
window

Significant increasing trend 31.3% 43.1% 48.9% 51.9% 54.0%
Significant decreasing trend 3.5% 2.5% 2.2% 2.1% 1.9%
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MOD13Q1 data were utilized as a supplement. Above mentioned 5
moving windows were applied, the areas of these windows of the
MOD13Q1 data range from 5.06 km2 to 495.06 km2. Note that the
minimum area of the moving window of MOD13A3 data (81 km2) is
within this range. Significant increasing trends of moving window
standard deviation of GSEVI derived from MOD13Q1 data were ob-
served over 35.5% to 50% of the study area (Fig. S1 and Table S1.

Similarly, the proportions of significant increasing trends of moving
window range of GSEVI derived from MOD13Q1 data ranged from
33.5% to 50.1% (Fig. S2 and Table S2). In addition, the proportions of
significant increasing trends of moving window standard deviation and
range of GSEVI derived from MOD13Q1 data were much lower for 9 * 9
pixel moving window than other moving windows (Tables S1 and S2).
It suggested that the results of trends of moving window standard

Fig. 2. Spatial distributions of trends of moving window standard deviation of GSEVI in mainland China for the period 2000–2017.

Fig. 3. Spatial distributions of trends of moving window range of GSEVI during 2000–2017.
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deviation and range of GSEVI may be sensitive to the number of pixels
of the window rather than the area of the window.

Many studies have shown that spatial standard deviation of VG was
positively related to species richness, which is defined as the number of
species in a community and is an indicator for ecosystem stability
(Fairbanks and McGwire, 2004; Gould, 2000; John et al., 2008; Levin
et al., 2007; Seto et al., 2004). This is because areas with high spatial
heterogeneity in VG can provide various landscapes to allow various
species to survive. For a specific species, high spatial heterogeneity in
VG can increase the probability that specific resources (e.g. water re-
sources, sunshine, food, shelter and breeding ground) will be available
(Seto et al., 2004). Thus the increased spatial heterogeneity in VG may
have positive effects on species richness.

3.2. Relationships between spatial heterogeneity in VG and vegetation
greening

Trends of GSEVI in China mainland for the period 2000–2017 were
shown in Fig. 4. Significant increasing and decreasing trends of GSEVI
during 2000–2017 were observed over 53.1% and 1.8% of China
mainland, respectively. For the whole China mainland averaged, the
GSEVI increased at the rate of 0.00191/year (p < 0.01). The GSEVI
averaged for 2000–2002 and 2015–2017 in mainland China were 0.235
and 0.264, respectively. Spatially, compared with Northwest China,
Southeast China showed higher increasing rate of GSEVI during
2000–2017. In addition, as mentioned in Section 3.1, Southeast China
exhibited higher mean GSEVI during 2000–2002 than Northwest China.
Thus the GSEVI difference between Southeast and Northwest China

Fig. 4. Trends of GSEVI in China mainland during 2000–2017: (a) slope; (b) significance level.

Fig. 5. Spatial distributions of trends of moving window GSEVI difference between dense and sparse vegetated areas in windows with increasing rate of GSEVI higher
than 90%.
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increased during 2000–2017. That may be the primary reason for the
increased spatial heterogeneity in VG at national scale. Furthermore,
insignificant trends of GSEVI were mainly found in Tibetan Plateau
(Fig. 4), which was consistent with the trends of moving window
standard deviation and range of GSEVI (Figs. 2 and 3). The spatial
distribution of slope of GSEVI was similar to previous studies (Piao
et al., 2015; Zhang et al., 2017).

Dense vegetated areas generally showed faster greening trends than
sparse vegetated areas. At national scale, Southeast China has higher
mean GSEVI during 2000–2002 and higher increasing rate of GSEVI
during 2000–2017 (Figs. 1 and 4). In addition, the increasing rates of
dense and sparse vegetated areas for the whole mainland China were
0.00328/year (p < 0.01) and 0.00070/year (p < 0.01), respectively.
At local scale, the trends of moving window GSEVI difference between
dense and sparse vegetated areas were calculated. Note that: (1) win-
dows with dense or sparse vegetated pixels lower than 1% were ex-
cluded; and (2) windows with the proportion of increasing rate of
GSEVI lower than 90% were excluded, since the purpose was to in-
vestigate the changes in GSEVI difference between dense and sparse
vegetated areas in response to vegetation greening. The moving
window GSEVI difference between dense and sparse vegetated areas
increased significantly in 22.4%–36.5% of the total samples for the
period 2000–2017, while it decreased significantly in 8.1%–13.2% of
the total samples (Fig. 5 and Table 3). In addition, other thresholds
were used as supplements, and similar results were observed (Tables S3
and S4). These suggested that vegetation greening may significantly
increase the difference in VG between dense and sparse vegetated areas,
and the speed of greening was generally faster in dense than in sparse
vegetated areas. The amount of vegetation is more in dense than in
sparse vegetated areas. More vegetation will be affected by driving
forces (e.g. climate and human activity) in dense than in sparse vege-
tated areas. Thus the interannual changes in GSEVI may be larger, and
the greening speed may be faster in dense than in sparse vegetated
areas (except land cover change) (Yao et al., 2018a). For example, the
GSEVI of dense and sparse vegetated areas were 0.4 and 0.1, respec-
tively, in the year 2000. The GSEVI of both dense and sparse vegetated
areas increased 10% from 2000 to 2017. Thus the increment of dense
vegetated areas (0.04) was much higher than sparse vegetated areas
(0.01), and the GSEVI difference between dense and sparse vegetated
areas increased by 0.03.

The increased spatial heterogeneity in VG may primarily be attrib-
uted to vegetation greening. The slope of moving window mean GSEVI
was significantly and positively correlated with slope of moving
window standard deviation of GSEVI across the entire China mainland
(9 * 9 pixel moving window: r= 0.492, p < 0.01; 29 * 29 pixel moving
window: r= 0.595, p < 0.01; 49 * 49 pixel moving window:
r= 0.637, p < 0.01; 69 * 69 pixel moving window: r= 0.662,
p < 0.01; 89 * 89 pixel moving window: r= 0.675, p < 0.01). This
suggested that regions with faster greening speed generally showed
faster increasing rate of spatial heterogeneity in VG. In addition,
moving window mean GSEVI was significantly and positively correlated
with moving window standard deviation of GSEVI across 2000–2017
over 47.3%–71.9% of mainland China (Fig. 6 and Table 4). Thus years
with high GSEVI normally exhibited high spatial heterogeneity in VG.
These phenomena can be explained by two points. Firstly, from the
perspective of statistics, high value generally shows high standard de-
viation. This is why the coefficient of variation (CV, standard deviation
divided by mean) is raised. It was found that the moving window CV of
GSEVI increased significantly over 17.0%–22.6% of mainland China,
which was only a little higher than significant decreasing trend
(14.3%–16.3%; Fig. 7 and Table 5). Secondly, as shown in Fig. 5 and
Table 3, dense vegetated areas generally showed higher increasing rate
of GSEVI than sparse vegetated areas. Further analyses showed that the
proportions of significant increasing trends of moving window max-
imum GSEVI were much higher than minimum GSEVI (Tables S5 and
S6). These may increase the GSEVI difference between dense and sparseTa
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vegetated areas and be the major reason for the increased moving
window standard deviation and range of GSEVI.

Significant positive correlations between moving window mean
GSEVI and moving window standard deviation of GSEVI across
2000–2017 were found in over 47.3%–71.9% of China mainland (Fig. 6
and Table 4). However, some regions showed significant negative cor-
relations (e.g. Northeast China, Southwest China and Central China;
Figs. 6 and 8). For regions with significant negative correlations in
Northeast and Central China, woodland generally have higher mean
GSEVI during 2000–2002 but lower slopes of GSEVI during 2000–2017
than cropland (Fig. 8(b)–(g)). The higher increasing rate of cropland
may be attributed to human activities (e.g. improved agricultural
technologies). Thus the GSEVI differences between cropland and
woodland decreased, and the spatial heterogeneity in VG declined as
vegetation greening. For regions with significant negative correlations
in Southwest China, areas showed higher slopes of GSEVI during
2000–2017 generally have lower mean GSEVI during 2000–2002
(Fig. 8(h)–(j)). Therefore, the spatial heterogeneity in VG declined as
vegetation greening. This may be explained by global warming. In this
region, areas showed high slopes of GSEVI during 2000–2017 generally
have high altitude (derived from elevation data, not shown). As global
warming, ice and snow in high altitude melt, thus the growing season of
vegetation was prolonged and the GSEVI increased significantly. Fi-
nally, the GSEVI difference between dense and sparse vegetated areas
decreased and the spatial heterogeneity in VG declined in this region.

3.3. Implications of the increased spatial heterogeneity in VG

3.3.1. Increased difference in VG between arid and humid regions
In this study, the GSEVI difference between humid Southeast and

arid Northwest China significantly increased. The underlying me-
chanism was different vegetation greening speed. It is well known that
vegetation can decrease temperature through transpiration. Zeng et al.
(2017) found that global vegetation greening has retarded the increase
in global air temperature by 0.09 ± 0.02 °C over the past 30 years.
Previous studies showed that the speed of global warming was faster in
arid than in humid regions (Huang et al., 2017). Unfortunately, slow
greening speed may have little mitigation effects on global warming in
arid Northwest China. In addition, other benefits brought about by
vegetation greening may also be less significant in arid Northwest China
than in humid Southeast China.

3.3.2. Increased difference in VG between UCs and rural areas
In Section 3.2, we found that the difference in VG between dense

and sparse vegetated areas generally increased. We inferred that the
difference in VG between UCs and rural areas may also increase, since
UCs normally have less vegetation than rural areas.

The increasing trends of GSEVI in UCs and rural areas were ob-
served in 30 of 31 cities (Fig. 9 and Table S7). However, the slopes of
GSEVI in UCs were lower than in rural areas in 23 of 31 cities. For 31
cities averaged, the trends of GSEVI in UC and rural area were
0.00213 ± 0.00107/year and 0.00341 ± 0.00168/year, respectively.
The numbers of cities with increasing rate of GSEVI higher than 0.004/

Fig. 6. Spatial distributions of correlation coefficients between moving window mean GSEVI and moving window standard deviation of GSEVI across 2000–2017.

Table 4
Proportions of significant (p < 0.05) positive and negative correlations between moving window mean GSEVI and moving window standard deviation of GSEVI
across 2000–2017.

9 * 9 pixel moving
window

29 * 29 pixel moving
window

49 * 49 pixel moving
window

69 * 69 pixel moving
window

89 * 89 pixel moving
window

Significant positive correlation 47.3% 62.5% 67.7% 70.1% 71.9%
Significant negative correlation 2.6% 2.1% 1.9% 1.7% 1.6%
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year in UCs and rural areas were 1 and 12, respectively (Tables S7).
These results suggested that the speed of vegetation greening in UCs
were generally slower than in rural areas, and the vegetation greening
may increase the difference in VG between UCs and rural areas. This is
possibly because the amount of vegetation is generally higher in UCs
than in rural areas. The increased difference in VG between UCs and
rural areas may be one of the potential driving factors of the increased
spatial heterogeneity in VG at the local scale. Note that there were 8
cities with higher increasing trends of GSEVI in UCs than in rural areas.
This can be attributed to many factors (e.g. background climate and
human activities). For example, Yinchuan and Urumqi are surrounded
by sparse vegetated areas and the rural GSEVI is low. Thus the rural
GSEVI increased slowly in these two cities (Table S7). Hangzhou and
Chengdu have much higher increasing rates of GSEVI in UCs than other
cities. This may be attributed to effective greening policies in these two
cities.

Vegetation is an important component of urban ecosystems. Urban
vegetation can decrease local temperature and alleviate urban heat is-
land through transpiration and posing a shading effect (Peng et al.,
2012; Yao et al., 2017b, 2018c), reduce noise pollution through up-
taking acoustic energy (Fang and Ling, 2003), and mitigate air pollution
primarily by uptake via leaf stomata and improve urban air quality
(Nowak et al., 2006; Salmond et al., 2013). In this study, we restricted
the study area in pixels with 100% of the urban area. In addition,
Chinese government has formulated a series of policies to preserve and
create urban green spaces in recent decades (Zhao et al., 2013; Zhou
et al., 2014; Zhou and Wang, 2011). Thus, the negative effects of ur-
banization on VG were minimized, while the positive effects of greening

policies on VG were retained. However, the present study showed that
the increasing rate of GSEVI in UC was still much slower than in rural
area averaged for 31 cities during 2000–2017. A series of benefits
brought about by vegetation greening may be more pronounced in rural
areas than in UCs. In addition, GSEVI in UCs is generally lower than in
rural areas. Thus the GSEVI difference between UCs and rural areas
increased due to vegetation greening. Previous studies used ΔEVI
(urban EVI minus rural EVI) to reflect urbanization effects on VG (Yao
et al., 2017a; Zhou et al., 2014), which may lead to inaccurate results in
regions with fast vegetation greening trend, since the increased EVI
difference between urban and rural areas may be caused by vegetation
greening rather than urbanization.

4. Conclusions

In this study, MODIS EVI data were used to analyze the change in
spatial heterogeneity in VG and its relationship with vegetation
greening in mainland China for the period 2000–2017. Results showed
that the proportions of significant increasing trend of moving window
standard deviation (from 33.8% to 53.7%) and range (from 31.3% to
54.0%) of GSEVI were much higher than significant decreasing trend
(less than 5%). The increase in spatial heterogeneity in VG can be ex-
plained from the perspective of mathematical statistics, and by faster
greening speed in dense than in sparse vegetated areas. Additionally,
greening speed may be slower in arid than in humid regions, and in UCs
than in rural areas. Thus some benefits from vegetation greening may
be much less in arid than in humid regions, and in UCs than in rural
areas.

Fig. 7. Spatial distributions of trends of moving window coefficient of variation (CV) of GSEVI for the period 2000–2017.

Table 5
Proportions of significant (p < 0.05) increasing and decreasing trends of moving window coefficient of variation (CV) of GSEVI during 2000–2017.

9 * 9 pixel moving
window

29 * 29 pixel moving
window

49 * 49 pixel moving
window

69 * 69 pixel moving
window

89 * 89 pixel moving
window

Significant increasing trend 17.0% 20.5% 21.7% 22.2% 22.6%
Significant decreasing trend 14.3% 16.3% 16.5% 16.5% 16.3%
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Fig. 8. Land cover maps in 2015 in: (a) mainland China; (b) Northeast China; and (e) Central China; (h) Southeast China. Mean GSEVI during 2000–2002 in: (c)
Northeast China; (f) Central China; and (i) Southeast China. Slopes of GSEVI during 2000–2017 in: (d) Northeast China; (g) Central China; and (j) Southeast China.
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Overall, this study revealed an interesting finding and can enhance
our understanding of the interactions between vegetation dynamic and
surface ecological environment. Future studies can (1) examine the
changes in spatial heterogeneity in VG in other regions; (2) using higher
spatial resolution data to evaluate the contributions of different factors
to the vegetation greenness change in urban area; and (3) further
analyze and validate the impacts of increased spatial heterogeneity in
VG on human society.
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