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A B S T R A C T

Accurate delineation of global built-up area (BUA) is fundamental to a better understanding of human devel-
opment and the impacts on global environmental change. Existing global datasets of human settlement were
mostly generated at medium and coarse spatial resolutions, including BUA and other impervious surfaces. With
multiple high-resolution satellite constellations now available (e.g., ZiYuan-3 (ZY3), SPOT-5/6/7, Cartosat-1/2,
and WorldView-2/3), identifying the global BUA explicitly from the complex landscapes becomes possible. In
this study, a novel method was proposed for automated extraction of BUA at the global scale, by fusing a series of
building features. Specifically, two planar features, the Morphological Building Index (MBI) and Harris corner
detector, were employed to characterize the structure and corner attributes of buildings. Moreover, two multi-
angular built-up indices (MABIs), i.e., Ratio Multi-angular Built-up Index (RMABI) and Normalized Difference
Multi-angular Built-up Index (NDMABI), were proposed to represent the vertical properties of buildings based on
multi-view images, which can further complement the planar features. 45 global cities were selected to validate
the performance of the proposed method with images acquired by the ZY3 satellite constellation. The results
show that the fusion of MBI and Harris corner can achieve satisfactory accuracy, i.e., 91.12%, 88.85%, 82.82%
and 0.85, for the average overall accuracy (OA), user's accuracy (UA), producer's accuracy (PA), and F1-score,
respectively, for all the test cities. After fusing the MABIs with the planar features, the average OA, UA, PA and F
values of the final results were 92.00%, 86.20%, 89.14% and 0.87 for the RMABI, and 91.83%, 85.51%, 89.62%
and 0.87 for the NDMABI, respectively. In particular, addition of the MABIs can further reduce the omission
errors where medium/high rise buildings with low local contrast exist. We compared our results with two
existing state-of-the-art global BUA products, Global Human Settlement Layer (GHSL) and Global Urban
Footprint (GUF), which further corroborated the effectiveness of our method.

1. Introduction

Urban areas are among the most identifiable yet complex structures
induced by human beings to the planet (Gamba and Herold, 2009).
According to the 2017 Revision of the World Population Prospects, the
world's population numbered nearly 7.6 billion as of mid-2017 and is
expected to increase to 11.2 billion by the end of the 21st century (UN,
2017). Approximately 55% of the world population is living in urban
areas, and the proportion keeps growing, of which almost 90% occurs
in Asia and Africa (UN, 2018). The projection of global population
growth and demographical urbanization indicate a massive expansion
of urban land, which is mostly converted from forests, pastures, sa-
vannas, water bodies and agricultural lands, resulting in a significant

impact on the regional and global ecosystem (Gamba and Herold,
2009). Accurate information on global urban area is a topic of world-
wide interest with various applications, e.g., sustainable development
(Gong et al., 2013; Pesaresi et al., 2013), population estimation (Yang
et al., 2013), territorial monitoring (Schneider and Mertes, 2014), food
security (Foley et al., 2011), crisis management (Pesaresi et al., 2015)
and public health (Brockmann and Helbing, 2013; Gong et al., 2012).

Definitions of urban land differ in the existing literature, according
to the problems being addressed. Most of the studies describe urban
area by synthetically considering the political, demographic and soci-
economic factors (UN, 2017), while others delineate urban in physical
terms, i.e., the presence of artificial land covers on the earth surface
(Schneider and Woodcock, 2008). Remote sensing technology has long
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been recognized as an effective tool to obtain the spatial extent of urban
area (or human settlement, impervious surface, and built-up area) at
local, regional and global scales (Deng and Wu, 2012; Schneider, 2012;
Zhou et al., 2015). In this study, the physical definition of built-up area
(BUA) is employed, referring to the detailed spatial delineation of the
land surface which is dominantly covered by building structures
(Pesaresi et al., 2016; Esch et al., 2017; Pelizari et al., 2018). BUA is the
major component of impervious surface, but excluding main roads,
parks and large open spaces (Qin et al., 2017).

Up to now, several global datasets related to urban area have been
produced by various organizations, governments, and academia. The
first-generation of global urban maps supported by Earth Observation
(EO) data were mostly derived at coarse spatial resolution
(300m–10 km) (Grekousis et al., 2015; Potere et al., 2009). For ex-
ample, the widely used 500m Map of Global Urban Extent (MOD500)
was generated from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) Collection 5 coverage of the year 2001 and 2002,
with a spatial resolution of ca 500m (Schneider et al., 2009, 2010). The
GlobCover (GLOBC) data derived 22 thematic land cover classes from
the Medium Resolution Imaging Spectrometer (MERIS) data during the
years 2005 to 2009, with 300m resolution (Arino et al., 2007;
Bontemps et al., 2011). Some researchers characterized urban areas or
human activities with the Nighttime Lights (LITES) data (Zhang and
Seto, 2011; Zhou et al., 2014, 2015; Xin et al., 2017), which was cre-
ated from the night-time lights of the world based on the Defense Me-
teorological Satellite Program's Operational Linescan System (DMSP-
OLS) (Elvidge et al., 2001). The annually updated project LandScan
(LSCAN) represented an ambient population (average over 24 h) by
integrating multiple ancillary datasets including land covers, roads,
elevation, administrative boundaries, census information, medium−/
high-resolution imagery, etc. (Bhaduri et al., 2002). Furthermore, the
Global Impervious Surface Area Map (IMPSA) estimated the density of
impervious surface by utilizing LSCAN and LITES data (Elvidge et al.,
2007). The spatial resolution of the above three products was ap-
proximately 1 km. Although the first-generation products have been
widely used for global analysis and applications, their problems and
shortfalls are also reported, e.g., coarse resolution, limited accuracies,
ambiguous definitions, low update frequencies, and inconsistencies
among themselves (Chen et al., 2015; Klotz et al., 2016; Leyk et al.,
2018; Pesaresi et al., 2013; Potere et al., 2009; Tatem et al., 2005).

Subsequently, the second generation of global human settlement
layers with medium to high resolution (10m–50m) were developed in
recent years, including the 30m Global Land Cover product
(GlobeLand30) (Chen et al., 2015), Global Human Settlement Layer
(GHSL) (Pesaresi et al., 2015; Pesaresi et al., 2016) and Global Urban
Footprint (GUF) (Esch et al., 2017; Esch et al., 2013; Esch et al., 2012).
GlobeLand30 was generated with ten classes for the year 2000 and
2010, by utilizing images from Landsat satellites and the China En-
vironmental Disaster Alleviation Satellite (HJ-1). GHSL was published
by the Joint Research Centre (JRC) of the European Commission at a
spatial resolution of 38m for various epochs of BUA based on the
Landsat satellite imagery of the past 40 years. Furthermore, the Eur-
opean Settlement Map (ESM) was also generated within the GHSL
framework, representing the BUA density in Europe at 10m resolution
based on SPOT5 and SPOT6 satellite imagery (Florczyk et al., 2016).
GUF was produced by the German Aerospace Center (DLR) from the
TerraSAR-X and TanDEM-X radar images for the years between 2011
and 2012, at the highest spatial resolution of 12m. A series of ancillary
data (e.g., Open Street Map (OSM), MOD500, LSCAN and US National
Land Cover Dataset (NLCD)) were employed for generation of the above
products in training or post-editing steps.

Klotz et al. (2016) made a comprehensive cross-comparison be-
tween the high-resolution (HR) settlement layers (GUF and HR GHSL)
and the low-resolution (LR) coverage (MOD500 and GLOBC) in two
study sites in Central Europe, reporting an average increase from 0.31
of the LR layers to 0.58 of the HR products in terms of the Kappa

coefficient. Their results demonstrated the superiority of the HR maps
in terms of spatial completeness and precision, especially in low/
medium density and rural/peri-urban areas. Nevertheless, considering
the large diversity and complexity of settlement characteristics across
the world, accuracies of the HR layers may change considerably in
different areas. For example, the GUF product showed confusion be-
tween buildings and other vertical elements, such as trees and elevated
roads, and the omission errors were raised when applied to sparse or
low BUA with a weak vertical signal (Esch et al., 2013). Also, HR GHSL
was subject to a large number of false alarms in arid regions caused by
bright soil and scattered vegetation, while omitting the buildings with
dark roofs (Florczyk et al., 2016; Klotz et al., 2016; Pesaresi et al.,
2011). For the 38m GHSL built-up layers (2014 collection), the com-
mission error was about 50% by testing with the fine-scale cartography,
and a relatively high confusion between BUA and other sealed surfaces
(e.g., roads) was observed due to their spectral similarity (Pesaresi
et al., 2016). Leyk et al. (2018) validated the accuracy of GHSL across
rural-urban trajectories in the United States, reporting high accuracy in
urban areas but relatively low accuracy in rural regions.

Besides the existing global products, a series of state-of-the-art
urban mapping methodologies have been proposed and applied over
local regions, such as in the Twin Cities (Minnesota) Metropolitan Area
(Yuan et al., 2005), Washington, D.C.-Baltimore, MD megalopolis
(Sexton et al., 2013; Song et al., 2016), Beijing (Li et al., 2015a), Wuhan
(Hu et al., 2018), Pearl River Delta (Zhang and Weng, 2016) and China
(Huang et al., 2018b). In particular, Zhu et al. (2012) and Qin et al.
(2017) integrated Landsat and Advanced Land Observation Satellite
(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR)
data for land cover classification and BUA extraction, respectively,
showing the benefits of the fusion of optical and radar data for mapping
BUA.

In recent decades, many HR satellites (e.g., QuickBird, SPOT,
WorldView, Planet Labs, GaoFen series, SuperView) have been laun-
ched. High spatial resolution images can reduce the mixed-pixel phe-
nomenon and contain rich textural information, therefore have the
potential to distinguish BUA from other surface features explicitly (e.g.,
roads, bridges, open spaces, parks, and soil). However, the intrinsic
heterogeneity of BUA, including building materials (e.g., concrete, bi-
tumen, stone, clay, metal), construction styles (e.g., color, size, height),
and urban functions (e.g., residential, commercial, industrial, educa-
tional), increases the difficulty of their accurate detection from HR
imagery. Also, BUA exhibit similar characteristics to other ground ob-
jects (e.g., soil, rocks, paved road, squares), which leads to confusion
when only spectral features are considered. Due to the massive data
volume, timely and adequate selection of training samples is challen-
ging for supervised methods. Although several unsupervised built-up
indicators exist, such as PANTEX (Pesaresi et al., 2008), local feature
points (Sirmacek and Unsalan, 2010), Harris corners (Kovács and
Szirányi, 2013; Tao et al., 2013) and morphological building index
(MBI) (Huang and Zhang, 2011), their stability and robustness over
global areas still need more investigation.

Through cross-track or along-track imaging mode, a number of HR
satellites (e.g., ZiYuan-3 (ZY3), SPOT-5/6/7, Cartosat-1/2, and
WorldView-2/3) have the ability of collecting multi-view images. Multi-
view images allow the retrieval of three-dimensional information,
which have proven useful for the interpretation of urban scenes with
complex building environments (Taubenböck et al., 2013). The digital
surface model (DSM) was the most widely applied method to derive
height information for urban classification, building extraction, change
detection (Huang et al., 2017a; Longbotham et al., 2012; Qin and Fang,
2014), etc. However, the generation of DSM at a large scale is time
consuming and has a high computation cost. Moreover, the quality of
the satellite-derived DSM can be largely affected by image matching
errors, effects of incomplete and blurred boundaries, especially in urban
areas due to the occlusion and large disparity of buildings (Aguilar
et al., 2014). Longbotham et al. (2012) investigated the potentialities of
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WorldView-2 multi-angle image sequences for urban classification in
Atlanta, by considering the spatial and spectral information from the
multi-view images. The authors found that the employment of multi-
angle images can better differentiate some classes that were not well
identified by a single-view image (e.g., skyscrapers and bridges). On the
other hand, the spectral distortions in multi-view images caused by
angular effects were analyzed in Matasci et al. (2015), based on two
WorldView-2 in-track sequences. Their results indicated that pre-
processing of the multi-view images by histogram matching or atmo-
spheric compensation can remarkably enhance the portability of the
classification models across the sequences. More recently, Huang et al.
(2018a) proposed angular difference features (ADFs) for urban scene
classification from ZY-3 multi-view images. Specifically, ADFs were
constructed at pixel, feature and label levels, respectively. Experiments
in Shenzhen and Beijing test images show that the ADFs can effectively
complement the spectral bands to improve classification accuracy,
especially for some man-made classes with similar spectral character-
istic (e.g., roads and buildings). The studies aforementioned confirmed
the potential of multi-view images for urban mapping. However, they
focused on urban classification by supervised machine learning tech-
niques with the collection of training samples. In addition, their gen-
eralization ability over global areas has not been verified due to their
limited and small test images. To the knowledge of the authors, no
automatic multi-angular indices for large area BUA extraction exist in
the current literature.

In this research, a novel planar-vertical feature fusion method for
BUA extraction from ZY3 multi-view imagery was proposed. Aiming at
establishing a robust framework for global BUA extraction, a set of
planar and vertical features were constructed and combined, by con-
sidering their different capabilities of delineating various building
characteristics. Specifically, the features employed in this study in-
cluded:

1) Planar: including the recently developed Morphological Building
Index (MBI) and the Harris corner detector. MBI was able to depict
the detailed structure of individual buildings, and the Harris corner
detector can highlight the corners of buildings.

2) Stereoscopic: when multi-view images were available, a series of
multi-angular built-up indices (MABIs), including the Ratio Multi-
angular Built-up Index (RMABI) and Normalized Difference Multi-
angular Built-up Index (NDMABI), were proposed to further describe
the stereo property of BUA and complement the planar features.

The workflow was free from training sample collection and needed
little manual intervention. We verified the generality and stability of

the proposed method for mapping BUA in various cities around the
world based on ZY3 HR multi-view images. A large number of images
were applied, involving 45 cities in 21 countries worldwide and cov-
ering a total area of 51,776 km2. The remainder of this work was or-
ganized as follows. The subsequent section describes the study areas
and data. Section 3 presents the proposed methodology and workflow.
Section 4 depicts the experiment and results. We compared our results
with Global Human Settlement Layer (GHSL) and Global Urban Foot-
print (GUF) in Section 5, followed by the discussions about the effects of
the multi-features and post-processing. The conclusions are drawn in
Section 6.

2. Study areas and data

A total of 45 cities located in the six continents were selected as test
areas (Fig. 1). The study areas span wide longitude and latitude, and
represent a variety of urban landscapes, including coastal (e.g., Los
Angeles, Algiers, Cape Town), inland (e.g., Moscow, Delhi), mountai-
nous (e.g., Santiago, Lhasa, Addis Ababa), flat (e.g., Wuhan, Changsha,
Shanghai), and desert areas (e.g., Riyadh). They range from megacities
(e.g., Beijing, Tokyo, Washington), medium-sized cities (e.g., Hefei,
Baghdad), to small towns (e.g., Chakwal, Heidelberg). Both developed
and developing cities are considered. In particular, more developing
cities in China are selected, since these areas are undergoing rapid ur-
banization processes with more heterogeneous and tumultuous land-
scapes.

The high quality ZY3 images (cloud coverage<10%), provided by
the Land Satellite Remote Sensing Application Center (LASAC),
Ministry of Natural Resources of the People's Republic of China, were
employed for all the test cities. The ZY3 stereo mapping satellite con-
stellation is composed of two satellites, i.e., ZY3-01 and ZY3-02, which
were launched on 9th January 2012, and 30 May 2016, respectively
(Tang et al., 2013, 2015). Phased 180° apart in the same orbit, the
deployment of the two satellites can significantly increase the efficiency
and capability of data acquisition. The ZY3 01 and 02 satellites were
designed with similar specifications. The payloads of each ZY3 satellite
include panchromatic three-line array cameras (TLC) and a multi-
spectral (MS) camera. The TLC is composed of a nadir (NAD) camera as
well as two oblique cameras viewing in the forward (FWD) and back-
ward (BWD) modes with fixed inclinations of± 22°. The spatial re-
solution of the two oblique cameras of ZY3-02 is enhanced from 3.5m
(ZY3-01) to 2.5m. The planar and vertical geometric accuracies of ZY3-
01 were reported as 10m and 5m without ground control points
(GCPs), but better than 3m and 2m with a few GCPs, respectively
(Wang et al., 2014; Tang et al., 2015). More detailed specifications for

Fig. 1. Global distribution of the test cities (base map credit: Bing Maps).
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the ZY3 satellite constellation are presented in Table 1. The notable
advantages of ZY3 lie in the following aspects: 1) availability of nadir
images makes it convenient to delineate the accurate footprints of BUA;
2) benefiting from the standard along-track system, HR three-viewing
images of the same scene can be acquired nearly simultaneously (within
half a minute) (Tong et al., 2015); and 3) multi-spectral, planar and
vertical information can be exploited. These virtues of the ZY3 images
make them very suitable for BUA extraction. Table 2 lists the data used
in this study, where 38 images were acquired by ZY3-01 and 7 images
by ZY3-02. The last column of Table 2 indicates the number of the
available viewing angles. For example, 3 means NAD, FWD and BWD
images were available, while 1 indicate only nadir image was available.
For most of the cities, multi-view images were available, except for
Haikou, Nairobi, London, Rome, and Sydney.

3. Methodology

The proposed feature extraction and fusion method for detecting
BUA were based on their spectral, morphological, corner response, and
stereo characteristics. The morphological building index (MBI), and the
Harris corner operator were used to represent the planar features of

buildings (Huang and Zhang, 2011, 2012; Tao et al., 2013). Also, by
courtesy of the ZY3 multi-view observation mode, the vertical feature
MABI was developed, to reflect the stereo property of BUA. MABI was
able to further complement the two planar features, especially in dark
building areas which were usually omitted by planar features due to
their low luminance and small local contrast. MBI, Harris corner, and
MABI features can characterize building attributes from different as-
pects, and complement each other. To reduce commission errors, a
series of post-processing steps were also conducted by imposing the
spectral and shape information as constraints. By fusion of the above
features, an intensity map of the BUA was produced, and the final result
was obtained with a fine-tuned threshold. The processing chain of the
proposed method is illustrated in Fig. 2.

3.1. Pre-processing

The pre-processing steps included image calibration to top-of-the-
atmosphere (TOA) reflectance, ortho-rectification, registration, and
pan-sharpening. The multi-spectral bands and panchromatic FWD,
BWD of ZY3 images were all registered to the NAD image by applying
polynomial warping with the automatically generated tie points. The
registration error was less than one pixel. The MS and NAD images were
fused by the Gram Schmidt transformation (Chavez et al., 1991). To
compensate for the angular divergence, a relative normalization was
performed between the multi-view panchromatic images by a histo-
gram matching method (Matasci et al., 2015). Note that all images were
resampled to a uniform spatial resolution of 2.5m. The pan-sharpened
image was prepared for the generation of MBI and Harris corner fea-
tures. Meanwhile, the multi-view NAD, FWD and BWD images were
used for the calculation of MABI features.

3.2. Feature extraction

3.2.1. Morphological building index (MBI)
The brightness image, defined as the maximum TOA reflectance

value of each pixel from the visible bands, is regarded as suitable for
building detection (Pesaresi et al., 2011), and hence, used as the input
image for the subsequent MBI and Harris feature extraction.

The morphological building index (MBI) (Huang and Zhang, 2011,
2012) is an automatic building detector, aiming at describing the
spectral-spatial characteristics of buildings (e.g., size, local contrast,

Table 2
The ZY3 images used in this study.

City Satellite sensor Acquisition date Area (km2) Angle number City Satellite sensor Acquisition date Area (km2) Angle number

Beijing ZY3-01 20170515 1591.10 3 Tokyo ZY3-01 20140331 1189.79 3
Harbin ZY3-02 20170529 1319.00 3 Seoul ZY3-01 20131027 1537.05 3
Changchun ZY3-01 20170615 1280.70 3 Delhi ZY3-01 20141204 537.37 3
Hohhot ZY3-01 20140726 532.63 3 Chakwal ZY3-01 20170402 679.66 3
Taiyuan ZY3-01 20150423 583.58 3 Riyadh ZY3-02 20170424 1385.99 3
Yinchuan ZY3-01 20170706 961.23 3 Baghdad ZY3-02 20160702 1499.58 3
Lanzhou ZY3-01 20170809 191.73 3 Addis Ababa ZY3-01 20131203 477.77 3
Xi'an ZY3-01 20150512 575.14 3 Nairobi ZY3-01 20150130 1646.36 1
Zhengzhou ZY3-02 20160604 547.35 3 Algiers ZY3-01 20160329 1136.80 3
Jinan ZY3-01 20170530 1154.30 3 Cape Town ZY3-01 20140907 1811.53 3
Hefei ZY3-01 20160828 1619.70 3 Washington ZY3-01 20120630 1338.21 3
Shanghai ZY3-01 20141015 1258.40 3 Los Angeles ZY3-01 20130129 1202.13 2
Wuhan ZY3-01 20130812 799.12 3 Santiago ZY3-01 20121203 1766.62 3
Changsha ZY3-02 20170213 1162.70 3 Brasilia ZY3-01 20140715 1362.93 3
Fuzhou ZY3-01 20170926 1339.00 3 Heidelberg ZY3-01 20120918 883.76 3
Guangzhou ZY3-01 20150414 1086.00 3 London ZY3-01 20130708 1505.49 1
Shenzhen ZY3-01 20131223 1793.70 3 Moscow ZY3-01 20140531 1284.76 3
Haikou ZY3-01 20160506 1739.20 1 Rome ZY3-01 20140720 1162.88 1
Kunming ZY3-01 20160117 820.29 3 Copenhagen ZY3-01 20130927 1553.30 3
Chengdu ZY3-01 20170508 910.91 3 Paris ZY3-02 20170626 1187.47 3
Chongqing ZY3-01 20170607 1453.80 3 Sydney ZY3-01 20121125 1652.96 1
Lhasa ZY3-01 20140603 402.39 3 Perth ZY3-01 20120618 898.64 3
Urumchi ZY3-02 20160603 952.77 3

Table 1
Specifications for ZY3 01 and 02 satellites (PAN=panchromatic bands,
MS=multispectral bands, FWD= forward, BWD=backward, and
NAD=nadir).

ZY3-01 ZY3-02

Launch time January 9, 2012 May 30, 2016
Orbit altitude 506 km 505 km
Type 10:30 a.m.

Sun-synchronous
10:30 a.m.
Sun-synchronous

Revisit cycle 5 days 5 days
Swath width > 50 km >50 km
Spatial resolution PAN-NAD: 2.1m PAN-NAD: 2.1 m

PAN-FWD: 3.5m PAN-FWD: 2.5m
PAN-BWD: 3.5m PAN-BWD: 2.5 m
MS: 5.8m MS: 5.8 m

Wavelength PAN: 500–800 nm PAN: 500–800 nm
Blue: 450–520 nm Blue: 450–520 nm
Green: 520–590 nm Green: 520–590 nm
Red: 630–690 nm Red: 630–690 nm
Infrared: 770–890 nm Infrared: 770–890 nm
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brightness, and isotropy) with a set of morphological operators. It is
constructed by considering the spectral-spatial characteristics of the
relatively high reflectance of roofs as well as their spatially adjacent
shadows that can lead to high local contrast. Specifically, the differ-
ential morphological profiles (DMPs) (Pesaresi and Benediktsson, 2001)
of the multi-scale and multi-directional morphological white top-hat by
reconstruction (WTH) transform are used to highlight buildings:

=
×

s d
N N

MBI
(DMP WTH( , ))s S d D

s D (1)

where the WTH operator is defined as:

=s d B s dWTH( , ) ( , )B
re (2)

where B indicates the brightness image, and γBre is the opening-by-re-
construction of the brightness image based on a set of linear structural
elements (SE), s and d represent the size/scale and direction of the SE,
and Ns, ND denotes the total number of scales and directions, respec-
tively. s(smin, smax,Ns) should be adjusted according to the building size
and image resolution (2.5m in this study). Normally, the dimension of
buildings is in the range of 10–350m, including small houses and large
commercial/industrial structures. Therefore, the values of smin, smax and
Ns were set to 4, 140 and 4, respectively, in our experiments. Four di-
rections were set (ND=4) at 0°, 45°, 90°, and 135°. A high MBI value
signifies that this structure is likely to be a building.

Since shadows can be considered as evidence for verification of
buildings on HR imagery (Ngo et al., 2017; Ok, 2013), they serve as a
contextual constraint to remove false alarms of MBI (e.g., bright soil,
squares, roads). The shadow mask was generated by segmenting the
near-infrared band of the imagery with the threshold determined by a
histogram thresholding approach (Dare, 2005; Song et al., 2014).
Subsequently, the shadows were dilated with three pixel's distance to-
wards their corresponding buildings which were in the opposite di-
rection to the solar illumination angle with a linear SE (Huang et al.,
2017b). By considering the spatially adjacent relationship between a
building and its shadow, the candidate building is retained when there
is an overlap between the dilation area and the building object;
otherwise, it is removed.

3.2.2. Harris corner detector
The Harris corner detector (Harris and Stephens, 1988) is a widely

used technique for extraction of salient points. With the capability of
highlighting the corners of buildings, the Harris corner response has
been found to be closely related to the existence of BUA (Hu et al.,
2016; Tao et al., 2013; Gueguen and Pesaresi, 2011). Based on the local
auto-correlation function, the local variation can be measured by

shifting a small window around the target pixel, and the pixel is con-
sidered as a corner point when it shows a significant change in all di-
rections. The Harris corner response function is given by:

=H M det M k tr M( ) ( ) ( )2 (3)

where det(M) and tr(M) are the determinant and trace of the matrix M.
The value of k can be empirically determined in the range [0.04, 0.15]
(Gueguen and Pesaresi, 2011), and in this study k was set to 0.06. The
matrix M is composed of four elements computed from the image
gradients:

= =M G x y
B B B

B B B
( , ) M

I I I
I I I

x x y

x y y

2

2
x
2

x y

x y y
2

(4)

where Bx and By are the derivatives of the brightness images in the
horizontal and vertical direction. G(x,y) is the Gaussian function and ⨂
is the convolution operator.

3.2.3. Multi-angular built-up index (MABI)
In multi-view images, vertical structures exhibit angular variations

due to their height, i.e., different spectral and structural features in
different viewing angles, while low-lying objects have more consistent
characteristics. Based on this phenomenon, in this research, the Multi-
angular Built-up Index (MABI) was proposed to describe the angular
difference of buildings. By courtesy of the three-line-array mode of ZY3
satellites, NAD, FWD and BWD panchromatic images of the same scene
can be collected quasi-simultaneously. This unique characteristic allows
us to highlight the variation caused by the viewing angle, since other
factors such as solar illumination and atmospheric condition can be
regarded consistent among the multi-view images. We proposed two
approaches to calculate MABI: 1) Ratio Multi-angular Built-up Index
(RMABI) (Eq. (5)), and 2) Normalized Difference multi-angular built-up
index (NDMABI) (Eq. (6)).
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where Xf, Xn and Xb is the reflectance of FWD, NAD and BWD images,
respectively. RMABI calculates the maximum value of the ratios be-
tween the stereo image pairs, and NDMABI is the maximum value of the
differences normalized by their reflectance values. RMABI and NDMABI
can highlight the angular variations of the off-terrain objects, but
suppress the low-lying objects (e.g., roads, grass, water, soil) at the

Fig. 2. Processing chain for BUA extraction in this paper. The multi-angle images are used when available.
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same time. These indices aim to maximize the contrast between vertical
structures and the ground surface, and therefore are able to detect
buildings from multi-view images.

3.3. Feature fusion and post-processing

The MBI, Harris corner and MABIs had different capabilities to de-
lineate various building characteristics. However, they were subject to
some commission and omission errors. Specifically, MBI delineated
buildings with different size and shape, but false alarms might appear in
the cases where the objects had similar spectral and spatial character-
istics to buildings. The omission of MBI was related to the dark roofs
due to their low brightness and contrast with the surroundings. The
Harris detector highlighted building corners, but it was also sensitive to
texture areas such as trees and cropland in HR imagery, and hence
leaded to false alarms in these regions. On the other hand, large
buildings, like industrial and commercial architecture, might be
omitted by Harris detector due to their sparse corner points. MABI was
capable of suppressing ground objects. However, false alarms could be
induced by other vertical structures (e.g., trees, viaduct, and mountain
ridge), and omission errors occurred for low rise buildings, due to the
insignificant angular variation.

To minimize the omission errors, the aforementioned multiple fea-
tures were merged to make full use of their complementary informa-
tion, and subsequently, a series of post-processing steps were conducted
to reduce the commission errors.

1) Feature fusion: as mentioned previously, the two planar features (i.e.,
MBI and Harris corner) and the vertical MABI were separately bi-
narized and then merged by using a union operation, in order to
reduce omission errors.

2) Post-processing: including the spectral and shape constraints, to
suppress the false alarms caused by the feature fusion. The spectral
constraint was implemented by taking advantages of the vegetation
and water indices to remove most of the commission errors induced
by grass, trees, cropland and water areas. The soil-adjusted vege-
tation index (SAVI) (Huete, 1988) was chosen due to its better
performance than the normalized differential vegetation index
(NDVI) in the areas where plant cover was generally low (Sun et al.,
2016). The normalized difference water index (NDWI) (McFeeters,
1996) was used to filter out the false alarms induced by bright water
areas. With respect to the shape constraint, the minimum area and
length-width ratio of the detected objects were considered, to re-
move the small and narrow objects (e.g., noise and roads).

3.4. Generation of built-up area

A multi-scale strategy was adopted to produce the BUA intensity
(BUAI) map considering the multi-scale characteristics of BUA (Li et al.,
2015b). Specifically, the BUAI was computed by averaging the building
densities derived from a set of grids of different size. In particular, the
building density in each grid was generated by sliding a set of half-
overlapped grids to reduce the blurred boundaries caused by the
moving windows. Finally, the BUA result was obtained by thresholding
the BUAI feature map.

In Fig. 3, three examples are utilized to demonstrate the feature
extraction (MBI, Harris corner and RMABI) (Fig.3(b~d)), building map
generated by feature fusion [Fig. 3(e)], BUAI [Fig. 3(f)], and the final
results [Fig. 3(g)]. Patch #1, which is an urban scene, shows both
congregated and detached buildings. Patch #2 exhibits villages with
small houses in a rural area, and patch #3 is a typical residential area
with dense and high buildings. In general, the capabilities of the three
features are different but complementary in delineating different
building characteristics. From Fig. 3(b), it can be seen that the MBI can
effectively delineate buildings with different size and shape, showing its
potential for generating accurate BUA boundaries. Fig. 3(c) indicates

that the Harris detector has a high response to corners of buildings, and
it is therefore particularly useful to highlight small buildings (patch
#2). In Fig. 3(d), the RMABI is efficacious for detecting medium and
high-rise buildings, including the buildings with low reflectance in the
imagery (e.g., patch #3). The fused building map is displayed in
Fig. 3(e), showing that most of the BUA can be extracted after a com-
bination of the three features. The BUAI features in Fig. 3(f) depict the
intensity of BUA, and finally, Fig. 3(g) illustrates the final results.

3.5. Accuracy assessment

To quantitatively validate the results of the proposed method, we
manually interpreted 1000 samples (simple random) based on the nadir
pan-sharpened ZY3 imagery for each test site. The high-resolution
aerial and satellite photo archives on their closest dates in Google
Earth™ were used to assist the interpretation when there was confusion
for identifying the land cover types. In total, the validation data consist
of 17,246 BUA pixels and 27,754 non-BUA pixels, respectively. The
confusion metrics were then calculated from the sample set for accuracy
assessment. The area based statistical inference (Foody, 2002; Stehman,
2013; Olofsson et al., 2014) was conducted to estimate the accuracy
scores including overall accuracy (OA), producer's accuracy (PA), user's
accuracy (UA), and F1-score (F), where PA and UA address the com-
pleteness and precision of the detection, respectively, and F measures
the trade-off between PA and UA.

4. Experiment and results

4.1. Parameter setting

A set of thresholds were required in the proposed method for feature
binarization. We defined θ1~θ4 as the binary thresholds for MBI,
Harris, MABI, and BUAI, respectively. Note that the MBI, MABI and
BUAI were normalized to the range [0, 1]. According to our previous
experiments (Huang et al., 2017b; Huang and Zhang, 2011, 2012), θ1
was fixed to a small value of 0.1 in this study, so that more building
candidates could be retained before the post-processing steps. θ2 was
set to a very small value (0.01) to extract most of the corner points, as
the values of non-corner areas in the Harris corner feature were nega-
tive or close to 0. The MABI threshold θ3 was suggested in the range
[0.8, 0.9] based on fine-tuning. In our experiments, its value was fixed
to 0.9 for both RMABI and NDMABI, in order to suppress false alarms
from the low-lying objects. θ4 was defined as the threshold to obtain the
final result from the BUAI. Its value was set to 0.1 in this study, by
tuning in a series of representative cities.

4.2. Results

The final results of five representative cities are presented in Fig. A1,
the GHSL built-up layer and MOD500 product are also shown for
comparison. Generally, the three products have similar spatial dis-
tribution patterns of BUA, but our results demonstrate the most accu-
rate representation of BUA with the finest spatial details. Specifically,
our results can not only show more details within the urban cores, but
also detect the small villages in the rural areas, attributed to the higher
resolution images used. For instance, in the urban areas of Riyadh and
Perth, our results can distinguish BUA from non-BUA areas such as
parks, rivers, main roads and bare land. Meanwhile, in the rural areas of
Xi'an, Changsha, and Algiers, small villages and isolated houses that
may be omitted by GHSL and MOD500, can be detected by our method.

To show more details of our results, zoom-in regions in several cities
are illustrated in Fig. 4, with the original images and results super-
imposed on the images. These subsets were clipped from the urban
core, peri-urban and rural areas, respectively, representing different
scenes in the study images. In downtown areas, such as the subsets in
Beijing, Copenhagen, Paris, and Los Angeles, small residential areas and
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large commercial areas were extracted, while the main roads, rivers or
parks were removed. In peri-urban areas, e.g., the subsets in Algiers,
London and Cape Town, the vegetated areas or large bare soil/ground
were suppressed. In rural areas, e.g., the subsets in Xi'an, small villages
can be accurately detected, and at the same time, the cropland and soil
were excluded. Other ground objects, such as the airport runway in the

Cape Town subset, and the salt lake in Perth subset were effectively
filtered out by our method.

The quantitative accuracy scores of each city are listed in Table A1.
Please notice that the multi-view images were available in 40 cities (not
available in the remaining 5 cities), therefore, the results could be
generated by using both the planar features (written as PLA) and all the

Fig. 3. Demonstration of the features and results of the proposed method in three representative patches: (a) the true color images of the three patches; (b~d) MBI,
Harris corner and RMABI features, respectively; (e) fused building maps; (f) BUAI features; (g) the final results overlaid with satellite images.

Fig. 3. (continued)
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Fig. 4. 5×5 km zoom-in regions in some of the test cities, displaying examples of our mapping results.
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features (PLA+MABI) for the 40 cities, but for the 5 cities without
multi-angle images, only PLA were obtained. The vertical features, in-
clude RMABI and NDMABI, were merged with the planar features re-
spectively to generate different BUA results (written as PLA+RMABI
and PLA+NDMABI).

For the results generated by the planar features, the OA values
ranged from 78.04% to 97.51%. Very satisfactory performances were
obtained in 29 test cities, whose OA values were higher than 90%. The
best results by using planar features were achieved over Harbin,
London, Tokyo and Los Angeles, with F around 0.95. The worst results
were from Lhasa and Changsha, whose F values were lower than 0.7.
After fusing the vertical features (i.e., RMABI and NDMABI), the OA, F,
and PA values increased in most of the test cities, while the UA values
may decrease due to the commission errors induced by MABIs. Fig. 5
illustrates the accuracy comparisons by using planar (x-axis) and
planar-vertical features (y-axis) in the 40 test cities where multi-view
images were available. The general accuracy improvements over the 40
test cities were 1.00% and 0.02 in OA and F, respectively, for RMABI,
and 0.81%, and 0.02, in OA and F, respectively, for NDMABI. By fo-
cusing on the F scores, 31 and 28 cities had increased by adding the
RMABI and NDMABI, respectively. Specifically, the PA values in 10 and
15 cities, have been significantly increased by> 10% after considering
RMABI and NDMABI, respectively. Most of these cities (e.g., Chang-
chun, Shanghai, Changsha, Fuzhou, Kunming, and Seoul) exhibit a
number of medium/high rise buildings with low local contrast. On the
other hand, the UA values in 8 and 10 cities have decreased by> 5%
after adding RMABI and NDMABI, respectively. Most of these cities
(e.g., Jinan, Lhasa, Chakwal, and Santiago) are in a mountainous en-
vironment and the false alarms were mainly caused by topography, e.g.,
rugged terrain or canyons. The fusion of RMABI and NDMABI achieved
similar OA and F values, while in most cases, relatively higher UA and
lower PA values were obtained by RMABI. Please notice that since all
images were resampled to a uniform spatial resolution of 2.5m during
the pre-processing step, the difference between ZY3–01 and ZY3–02
sensors had little impact to the final result according to our test.

5. Discussion

5.1. Comparison between our result and existing built-up products

To further investigate the performance of the proposed method, we
compared our result with two existing built-up products. The recently
released GHSL 38m and GUF 12m built-up layers were used for this
comparison due to their similar definition, high spatial resolution, high
accuracies, and reliabilities (Pesaresi et al., 2016; Klotz et al., 2016;
Esch et al., 2017; Leyk et al., 2018; Melchiorri et al., 2018). Table 3
compares the definitions, data sources and approaches between the
existing two products and our study.

Fig. 6 illustrates the visual difference between the three products by
taking Cape Town as an example. In Fig. 6(a), the GHSL, GUF and our
result are superimposed on the satellite imagery from bottom to top,
respectively. In general, it can be observed that our result and GUF can
better distinguish BUA from road networks and soil than GHSL. The
zoom-in regions in Fig. 6(b) demonstrate that our result and GUF have
similar spatial extent and can reserve more details than GHSL. Com-
pared to GUF, the proposed method had better performance with large
buildings as shown in P #2 and P #3. The scattered small houses in
rural areas in P #3 were successfully extracted by our method, but
partly omitted by GUF. The cropland and bare soil in the south of the
city were falsely detected by GHSL.

BUA in rural areas tends to be underestimated when generated from
lower resolution images (Klotz et al., 2016; Leyk et al., 2018). There-
fore, the quantitative comparison between our results and GHSL under
different landscapes was necessary. Since there is no globally consistent
rule to separate urban and rural areas, an appropriate approach is to
employ existing global products from coarser resolution. For example,
Klotz et al. (2016) utilized the Global Rural-Urban Mapping Project's
(GRUMP) urban layer to distinguish urban and rural areas, for the
comparisons among MOD500, GLOBC, GHSL and GUF. In this study,
the MOD500 urban layer was employed to identify urban and rural
areas since it had higher spatial resolution and accuracy than GRUMP.

Fig. 5. Comparisons of the accuracies by using the planar features (x-axis) and planar-vertical features (y-axis) in the 40 test cities (with multi-view images
available).
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Note that the BUA results, i.e., PLA+RMABI of the 40 cities with
multi-view images available and PLA of the 5 cities with only single
view image available, were used for this comparison. Table 4 lists the
average accuracies of our result and GHSL for all the test cities, and the
detailed accuracies of each city are provided in Table A1 in the ap-
pendix. In general, our results show consistently higher average ac-
curacies than GHSL in both urban and rural areas. Significant im-
provements of the PA and F values can be observed in rural regions,
indicating that our results had much less omission errors. Fig. 7 illus-
trates the scatterplots of the four accuracy metrics in different regions,
by recording our results in the vertical axis and GHSL in the horizontal
axis, respectively. Most of the points lie above the 1:1 diagonal line,
implying that our results achieved higher accuracy than GHSL in a
majority of the test cities.

In addition, the GUF data of 5 cities (i.e., Beijing, Cape Town,
Santiago, Moscow, and Rome) were also applied for quantitative
comparison with our results. Because the GUF product is not open ac-
cess and is currently available only by request from DLR (German
Aerospace Center), for comparison, five cities were chosen due to their
representativeness for different urban landscapes. As listed in Table 5,
the average accuracies of the two products were around 90% in terms of
OA and higher than 0.85 in terms of F, indicating satisfactory perfor-
mances achieved by both products. In general, our results achieved
higher or equivalent OA and F values than GUF in all the five cities.
Specifically, our results show about 5% ~ 16% higher PA values than
GUF in four of the five cities, and approximately the same PA value in
Beijing. For the UA values, our results outperform GUF in Beijing and
Moscow, while they were less accurate in Cape Town, Santiago and
Rome.

Please notice that GHSL and GUF are state-of-the-art global built-up
products, and had employed a large set of ancillary data in their
training or post-editing steps. It is not reasonable to state that our
product was better than GHSL or GUF, since they were derived from
very different data sources, and inconsistency can also be induced by
different acquisition time between Landsat, TerraSAR-X/TanDEM-X
and ZY3 images. However, it can corroborate the effectiveness of our
method to extract the BUA by merging the structure, corner, and ver-
tical features based on ZY3 stereo images.

Table 3
Summary of the definitions, data sources and approaches of GHSL, GUF and our study.

Definition of BUA Primary data source Approach

GHSL The union of all the spatial units collected by the specific sensor and containing a building
or part of it.

Landsat Supervised, symbolic machine learning

GUF Detailed building distribution marked by the presence of vertical structures. TerraSAR-X/TanDEM-X Unsupervised, support vector data description
Our study Detailed spatial delineation of the land surface which is dominantly covered by buildings. ZY3 multi-view images Unsupervised, planar-vertical feature fusion

Fig. 6. Comparison between our result, GUF and GHSL: (a) is the ZY3 true color image of Cape Town, overlaid with GHSL, GUF and our result, from bottom to top;
(b) is the zoom-in display of the three small patches which are marked in (a) as P #1, P #2 and P #3.

Table 4
Average accuracies of our results and GHSL for all test cities.

Our result GHSL

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

Overall 92.00 86.20 89.14 0.87 84.18 84.06 68.77 0.71
Urban 89.35 90.81 91.80 0.91 78.92 85.46 82.77 0.81
Rural 92.80 81.81 84.85 0.83 85.86 81.51 56.78 0.61
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5.2. Effects of the features

The MBI, Harris corner, and MABI had different capabilities to ex-
tract buildings. We used the city of Changchun as an example, to il-
lustrate the effects of the three features in Fig. 8. The merged building
map of the whole area is displayed in the false color composite in Fig. 8
(b), where the MBI, Harris, and RMABI are represented in red, green
and blue, respectively. The yellow, magenta and cyan indicate the area

covered by two features, and the white indicates the areas that are
identified by all the three features simultaneously (see the tricolor le-
gend). Three zoom-in regions from the residential, industrial and rural
areas of the city are demonstrated separately, and the proportion of the
building pixels extracted by a certain feature in the fused building map
is defined as its contribution. In P #1, with various kinds of buildings in
the city center, the three features occupy a similar proportion. Note that
the dark buildings can be detected by RMABI more effectively. In P #2,

Fig. 7. Comparison of the accuracies between our result (y-axis) and GHSL (x-axis).

Table 5
Accuracies of our results and GUF in 5 representative cities.

Our result GUF

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

Beijing 88.19 88.95 85.95 0.87 82.41 80.25 86.43 0.83
Cape Town 94.02 85.12 89.92 0.87 92.17 94.39 74.16 0.83
Santiago 94.02 87.05 95.78 0.91 94.07 91.67 90.43 0.91
Moscow 89.73 86.13 91.06 0.89 84.52 81.88 84.45 0.83
Rome 94.49 90.66 95.08 0.93 91.47 92.00 88.34 0.90
Average 92.09 87.58 91.56 0.89 88.93 88.04 84.76 0.86
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located in a peri-urban area with many large and low-rise industrial
buildings, MBI plays a vital role in detecting these buildings due to their
high brightness and large local contrast. With respect to P #3, domi-
nated by a large number of small houses in a rural area, the Harris
feature achieves the optimal performance. This example shows that, in
this study, the three features can complement each other and obtain
satisfactory results by feature fusion.

The accuracies of the final results of Changchun generated by using

one single feature and multi-features were further compared in Fig. 9.
Generally, the accuracies of the multi-features (PLA+RMABI) were
stably high, but the performance achieved by an individual feature
fluctuated. MBI and Harris corner had relatively higher overall ac-
curacies than RMABI. However, RMABI showed the highest UA, in-
dicating that it introduced the least commission error. This phenom-
enon suggested that RMABI was very appropriate to serve as a
complementary feature since it can reduce the omission errors but did

Fig. 8. Demonstration of the feature complementarity: (a) is the true color satellite image of Changchun, China, marked with three small patches as examples; (b) is
the false color composite, displaying MBI, Harris and RMABI features in red, green and blue, respectively; (c) shows the zoom-in regions of the three representative
patches (called as P #1, P #2 and P #3), which are residential, industrial and rural areas, respectively; (d) presents the contribution of each feature in different
patches (defined as the proportion of the building pixels in the fused building map). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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not induce many false alarms. The OA, PA and F values of the
PLA+RMABI were the highest. This result can further support the
rationality of the proposed feature fusion strategy.

To thoroughly understand the capabilities of the proposed MABIs

for BUA detection under different environments and landscapes, results
were generated for all the test cities by using the vertical features alone.
The average accuracies of RMABI and NDMABI in the 40 test cities
(including urban, rural, and both areas) are reported in Table 6, and the
detailed accuracies are listed in Table A1. Generally, the UA values
were significantly higher than PA, indicating that the MABIs had less
false alarms. The UA, PA and F values in urban areas were much higher
than rural areas. This is attributed to the fact that the buildings in rural
areas were generally low, and therefore exhibited inconspicuous var-
iations in the multi-view images. With respect to the two different
MABIs, although little difference between their accuracies was observed
when fused with the planar features as described in Section 4.2,
NDMABI performed better than RMABI when they were used in-
dividually.

5.3. Effects of post-processing

Post-processing can further improve the precision of the proposed
method. Fig. 10 illustrates the removed areas in four example cities by
employing the post-processing, which involve trees, croplands, bare
soil, and roads. As can be seen from Table 7, the commission errors of
the four cities were reduced by 15.58%, 4.81%, 5.29% and 8.66%,
respectively. To clearly demonstrate the details and effects of the post-
processing (the spectral and shape constraints), three representative
areas are displayed in Fig. 11. It can be observed that the spectral
constraints can remove the cropland and soil in example #1 by em-
ploying the SAVI, and eliminate the bright water areas in example #2
by considering the NDWI. The shape constraint is able to clean the
small noise and elongated roads in example #3.

Fig. 9. Accuracies of the results generated by using single feature (written as
MBI, Harris, and RMABI, respectively) and the fused features (PLA+RMABI).

Table 6
Average accuracies of the 40 test cities under different landscapes by using
RMABI and NDMABI individually.

RMABI NDMABI

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

Overall 76.43 88.42 36.85 0.50 78.22 87.66 41.92 0.54
Urban 65.22 94.48 46.51 0.60 68.17 93.91 51.87 0.63
Rural 81.62 82.05 29.11 0.41 82.87 81.06 33.80 0.45

Fig. 10. Examples to show the effects of post-processing. The retained and removed areas after post-processing are superimposed to the true color images.
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5.4. Comparison of RMABI and nDSM

The normalized DSM (nDSM) is commonly used in urban applications
when multi-view images were available, as it describes the height of the

off-terrain objects. Therefore, the performances of nDSM and RMABI were
compared with five representative cities, i.e., Beijing, Shanghai, Seoul,
Algiers and Paris. The DSMs of the five cities were produced from ZY3
multi-view images, by using the semi-global matching (SGM) method
(Hirschmuller, 2008). Afterwards, we obtained nDSMs by using mor-
phological top-hat-by-reconstruction (Qin and Fang, 2014; Huang et al.,
2017a). Table 8 shows that similar accuracies can be obtained by using
RMABI and nDSM when fused with the planar features. However, con-
sidering that the computation time and complexity of MABI was far less
than nDSM, the former was therefore focused on in this research for large
scale BUA extraction. In particular, Fig. 12 demonstrates an example of
nDSM and RMABI, respectively, in a dense urban area of Shanghai. It can
be seen that the high buildings marked by red circles were better ex-
tracted by RMABI, and the errors occurred in nDSM can be attributed to
the matching errors derived from the large disparity and occlusion of
high-rise buildings.

Table 7
Comparison of BUA extraction accuracies with and without post-processing.

Hefei Washington Paris Algiers

No -post -post No -post -post No -post -post No -post -post

OA (%) 83.44 91.94 87.61 89.88 89.68 93.07 96.45 97.07
UA (%) 65.37 80.95 81.09 85.90 84.75 90.04 86.06 94.72
PA (%) 98.21 92.63 94.16 92.87 92.29 93.56 98.90 90.37
F 0.78 0.86 0.87 0.89 0.88 0.92 0.92 0.92

Fig. 11. Examples to show the effects of the spectral and shape constraints: (a~d) example #1 shows the effect of the spectral constraint by using the SAVI index to
remove vegetation and soil; (e~h) example #2 illustrates the performance by using the NDWI to remove bright water areas; (i~k) example #3 shows the effect of the
shape constraint to remove roads and other noise. Note that (b, f, j) are the candidate buildings before post-processing, and (c, g, k) are the retained buildings after
post-processing.

Table 8
Comparison of BUA extraction accuracies with RMABI and DSM.

PLA+RMABI PLA+nDSM

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

Beijing 88.19 88.95 85.95 0.87 87.96 88.00 87.07 0.88
Shanghai 88.17 85.56 92.38 0.89 88.65 86.00 92.61 0.89
Seoul 91.29 85.77 94.09 0.90 91.16 86.04 93.26 0.90
Algiers 97.07 94.72 90.37 0.92 97.96 91.35 99.45 0.95
Paris 93.07 90.04 93.56 0.92 90.80 89.76 87.12 0.88
Average 91.56 89.01 91.27 0.90 91.31 88.23 91.90 0.90
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6. Conclusions

In this research, we developed a novel planar-vertical feature fusion
method for automated BUA extraction from ZY3 multi-view high-re-
solution images. Totally 45 representative cities around the world were
selected as test areas with the images acquired by the ZY3 satellite
constellation. Among them, 40 cities had multi-view images available,
and 5 cities had only nadir-view images. The proposed method can
effectively and explicitly distinguish BUA from other ground objects
(e.g., bare soil, parks, main roads, rivers) by employing the three fea-
tures, i.e., Morphological Building Index (MBI), Harris corner detector,
and Multi-angular Built-up Index (MABI), to describe different building
characteristics from the structural, corner response, and vertical prop-
erties, respectively. The concluding remarks were summarized as the
following.

1) The MBI was capable of retrieving the original shape and size of
buildings, therefore efficient to extract large buildings (e.g., fac-
tories and commercial buildings). The Harris corner highlighted the
corners of buildings and was sensitive to small houses in rural areas.
Experimental results show that the fusion of the two planar features
can detect BUA with satisfactory accuracies in most of the test cities,
and obtained the average OA, UA, PA and F values of 91.12%,
88.85%, 82.82% and 0.85, respectively. Omission errors of the
planar features were mainly derived from the built-up areas with
low brightness and local contrast.

2) When multi-view images were available, the novel multi-angular
built-up indices (MABIs), i.e., RMABI and NDMABI, were proposed
to further complement the planar features. Accuracies of the results
generated by the vertical features alone were relatively low (with
average F of 0.50 and 0.54 for RMABI and NDMABI, respectively),
as they were subject to omissions of low-rise buildings. However,
the MABIs can serve as effective complements to the planar features,
since the fusion of planar-vertical features improved the OA, PA and
F values in most of the test cities (e.g., Shanghai, Changsha,
Guangzhou, Shenzhen, Seoul). These cities exhibited a large number
of medium/high rise buildings with low brightness or local contrast.
It was found that MABIs were effective to complement the planar
features when dealing with such urban scenes. The average OA, UA,
PA and F values of the final results by fusing the planar-vertical
features were 92.00%, 86.20%, 89.14% and 0.87 for the RMABI,
and 91.83%, 85.51%, 89.62% and 0.87 for the NDMABI, respec-
tively.

3) Our results were compared with two state-of-the-art global BUA

products, GHSL (Global Human Settlement Layer) and Global Urban
Footprint (GUF). The average increments of OA, UA, PA and F va-
lues obtained by our results were 7.82%, 2.14%, 20.37% and 0.16,
respectively, compared to GHSL. Particularly, our results achieved
more consistent accuracies under different landscapes (urban and
rural areas), with the PA 28.08% higher than GHSL in rural areas.
Compared to GUF, our results achieved similar or higher OA and F
values. These results further corroborated the effectiveness of our
method, especially considering that no ancillary data was used
during our experiments.

4) The results indicated that the proposed method has the potential to
be applied for global mapping of high-resolution built-up areas,
which can provide a more accurate data source for the global po-
pulation, economy, resource and environment studies. In practical
use, different strategies can be adopted according to the scene
characteristics and user's needs. Specifically, our results show that
MBI and MABI are more effective in urban and peri-urban areas,
while the corner feature is more suitable for rural areas. MABI and
Harris corner features have less commission errors, and hence can
be considered when UA is more important than PA. If high PA is
pursued, the feature fusion is recommended, since in such cases,
MABIs are able to complement the planar features and produce the
least omissions.

5) The errors of our results mainly stemmed from greenhouse, parking
lot, rough soil surface, which may be falsely detected by the planar
features, since they exhibited similar characteristics to buildings;
drastic topography change (e.g., rugged terrain or canyons) also
induced false alarms by the vertical features due to their distinct
angular variations. These kinds of errors can be reduced by con-
sidering additional information sources (e.g., Volunteered
Geographic Information, Digital Elevation Model) in future re-
search.
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Fig. 12. (a) the ZY3 true color image in Shanghai, China; (b) nDSM and (c) RMABI generated from ZY3 multi-view images, respectively.
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Appendix A

Fig. A1. Built-up areas (in black) in five representative cities from our results, GHSL, and MOD500.

Table A1
Accuracies of our results and GHSL of the 45 test cities under different landscapes.

Overall Urban Rural

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

Beijing PLA 85.53 88.75 79.43 0.84 84.32 91.11 81.38 0.86 86.29 86.42 74.07 0.80
RMABI 67.79 93.09 37.91 0.54 67.62 94.95 49.18 0.65 67.96 85.42 18.99 0.31
NDMABI 72.70 92.74 48.56 0.64 72.66 93.13 59.53 0.73 72.84 91.43 29.80 0.45
PLA+RMABI 88.19 88.95 85.95 0.87 87.40 89.77 88.88 0.89 88.97 87.36 80.80 0.84
PLA+NDMABI 87.99 87.71 87.20 0.87 87.34 89.05 89.97 0.90 88.70 85.16 82.33 0.84
GHSL 75.62 70.50 92.30 0.80 73.82 71.10 99.71 0.83 77.34 69.04 79.82 0.74

Harbin PLA 96.45 93.42 94.66 0.94 93.96 94.12 95.36 0.95 97.67 93.36 95.71 0.95
RMABI 84.42 93.36 53.09 0.68 72.44 94.59 56.14 0.70 88.79 92.41 52.29 0.67
NDMABI 86.45 88.82 64.12 0.74 76.73 93.60 64.69 0.77 90.07 85.47 65.51 0.74
PLA+RMABI 96.33 91.16 96.90 0.94 93.50 92.05 96.69 0.94 97.22 90.45 97.18 0.94
PLA+NDMABI 95.44 88.92 97.02 0.93 92.46 90.50 96.73 0.94 96.35 87.67 97.34 0.92
GHSL 88.99 80.94 84.97 0.83 84.80 83.42 92.39 0.88 90.32 78.80 79.40 0.79

(continued on next page)
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Table A1 (continued)

Overall Urban Rural

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

Changchun PLA 94.31 89.90 86.81 0.88 89.82 94.29 91.87 0.93 95.22 89.40 85.21 0.87
RMABI 75.09 95.65 26.34 0.41 71.07 98.63 61.97 0.76 76.05 93.18 15.82 0.27
NDMABI 74.71 95.54 25.49 0.40 70.16 98.61 60.71 0.75 75.73 92.94 15.17 0.26
PLA+RMABI 95.22 85.75 96.91 0.91 93.24 91.38 100.00 0.95 95.50 83.70 95.56 0.89
PLA+NDMABI 95.28 85.94 96.92 0.91 93.25 91.38 100.00 0.95 95.57 83.96 95.58 0.89
GHSL 81.58 80.88 57.25 0.67 86.65 87.93 95.37 0.91 81.01 76.85 45.18 0.57

Hohhot PLA 93.18 87.10 94.70 0.91 92.75 91.88 98.54 0.95 93.45 84.19 91.34 0.88
RMABI 76.64 98.17 39.04 0.56 77.46 100.00 64.90 0.79 76.66 95.35 23.61 0.38
NDMABI 80.61 95.93 49.86 0.66 81.04 98.60 72.17 0.83 80.90 92.91 35.91 0.52
PLA+RMABI 92.71 86.01 95.15 0.90 91.94 90.15 99.50 0.95 92.94 82.97 91.59 0.87
PLA+NDMABI 92.52 85.65 95.18 0.90 91.92 90.15 99.51 0.95 92.71 82.37 91.64 0.87
GHSL 79.95 93.45 50.96 0.66 81.57 95.80 76.97 0.85 80.34 90.91 34.22 0.50

Taiyuan PLA 84.84 70.30 88.68 0.78 88.81 90.77 91.48 0.91 83.58 54.04 86.52 0.67
RMABI 78.71 80.39 41.14 0.54 63.65 95.00 43.88 0.60 85.14 66.35 39.47 0.49
NDMABI 80.30 77.29 50.17 0.61 68.17 91.34 52.81 0.67 84.98 62.90 47.32 0.54
PLA+RMABI 83.90 66.60 97.62 0.79 91.01 88.73 98.37 0.93 80.96 49.82 96.82 0.66
PLA+NDMABI 83.34 65.81 98.32 0.79 90.36 87.56 98.91 0.93 80.34 49.30 97.66 0.66
GHSL 90.56 81.57 86.46 0.84 80.85 80.00 90.74 0.85 94.11 84.03 80.34 0.82

Yinchuan PLA 91.11 78.01 92.27 0.85 92.26 92.96 96.15 0.95 91.24 74.61 92.22 0.82
RMABI 75.02 89.90 20.06 0.33 43.77 93.33 27.18 0.42 78.69 89.29 19.12 0.31
NDMABI 74.45 90.11 18.54 0.31 43.06 93.33 25.88 0.41 78.05 89.47 17.44 0.29
PLA+RMABI 91.75 77.72 96.09 0.86 94.95 93.15 100.00 0.96 91.47 74.32 95.06 0.83
PLA+NDMABI 91.77 78.05 95.69 0.86 94.96 93.15 100.00 0.96 91.48 74.70 94.57 0.83
GHSL 71.63 87.04 13.44 0.23 48.51 100.00 32.46 0.49 74.47 81.08 9.57 0.17

Lanzhou PLA 90.53 91.56 75.84 0.83 84.60 93.31 77.81 0.85 97.23 80.77 82.22 0.81
RMABI 70.64 85.90 16.52 0.28 53.75 96.72 19.25 0.32 90.09 47.06 12.40 0.20
NDMABI 69.86 91.23 14.14 0.24 51.59 97.78 15.83 0.27 90.81 66.67 14.01 0.23
PLA+RMABI 90.80 90.48 78.21 0.84 85.86 93.46 80.26 0.86 96.67 76.36 83.22 0.80
PLA+NDMABI 90.68 90.71 77.50 0.84 85.47 93.41 79.56 0.86 96.85 77.78 83.07 0.80
GHSL 86.20 81.71 70.76 0.76 79.41 81.55 80.98 0.81 92.90 84.21 26.68 0.41

Xi'an PLA 87.07 94.75 78.62 0.86 79.99 93.43 79.56 0.86 91.69 95.84 81.95 0.88
RMABI 60.02 96.67 33.05 0.49 61.75 97.04 53.13 0.69 60.21 96.30 22.02 0.36
NDMABI 68.88 95.97 47.64 0.64 73.25 95.91 69.42 0.81 68.19 96.02 35.21 0.52
PLA+RMABI 90.19 94.65 85.12 0.90 84.94 93.36 86.87 0.90 93.22 95.43 86.38 0.91
PLA+NDMABI 90.71 94.08 87.06 0.90 85.46 91.91 89.25 0.91 93.45 95.44 87.46 0.91
GHSL 68.51 90.57 51.88 0.66 78.89 88.60 84.20 0.86 64.78 93.14 33.49 0.49

Zhengzhou PLA 83.28 86.33 69.58 0.77 79.71 88.61 77.13 0.82 85.42 83.13 64.28 0.73
RMABI 80.27 92.10 53.04 0.67 74.59 94.44 60.46 0.74 83.61 89.15 47.83 0.62
NDMABI 81.46 91.78 57.96 0.71 77.42 94.71 65.87 0.78 83.91 88.06 52.27 0.66
PLA+RMABI 85.44 84.54 78.15 0.81 84.92 88.84 86.87 0.88 85.91 79.47 71.09 0.75
PLA+NDMABI 85.57 84.09 79.42 0.82 85.78 88.99 88.34 0.89 85.60 78.35 71.99 0.75
GHSL 75.93 83.45 52.38 0.64 78.98 85.84 79.51 0.83 74.57 76.62 28.96 0.42

Jinan PLA 92.47 88.06 90.05 0.89 90.71 94.12 92.12 0.93 93.42 83.91 91.16 0.87
RMABI 79.06 83.60 57.06 0.68 73.58 93.10 68.74 0.79 80.85 75.58 51.37 0.61
NDMABI 79.50 83.18 58.36 0.69 73.93 93.10 69.47 0.80 81.48 75.27 53.27 0.62
PLA+RMABI 91.15 81.80 96.40 0.89 91.45 90.20 98.51 0.94 90.68 76.01 95.11 0.84
PLA+NDMABI 91.12 81.80 96.42 0.89 91.45 90.20 98.52 0.94 90.64 76.01 95.15 0.85
GHSL 80.23 87.54 53.61 0.66 77.09 87.86 79.92 0.84 81.64 87.12 38.10 0.53

Hefei PLA 92.02 81.11 91.98 0.86 82.22 83.53 89.97 0.87 92.58 80.00 91.46 0.85
RMABI 81.00 98.80 36.06 0.53 73.80 100.00 60.65 0.76 82.19 98.31 30.52 0.47
NDMABI 83.41 96.48 43.63 0.60 80.13 96.67 71.79 0.82 83.98 96.40 36.94 0.53
PLA+RMABI 91.94 80.95 92.63 0.86 84.26 83.91 93.71 0.89 92.75 80.13 92.66 0.86
PLA+NDMABI 92.07 80.49 93.77 0.87 86.32 84.27 96.68 0.90 92.63 79.43 93.12 0.86
GHSL 80.01 81.06 48.32 0.61 70.29 79.45 75.68 0.78 81.31 81.82 42.48 0.56

Shanghai PLA 82.95 87.78 77.01 0.82 81.83 87.04 79.85 0.83 86.58 86.70 78.04 0.82
RMABI 74.79 96.92 49.99 0.66 76.84 98.48 61.16 0.75 72.83 92.55 30.90 0.46
NDMABI 78.06 95.09 57.99 0.72 80.14 96.27 68.62 0.80 75.96 91.96 39.52 0.55
PLA+RMABI 88.17 85.56 92.38 0.89 87.51 86.38 94.21 0.90 88.96 83.94 89.44 0.87
PLA+NDMABI 88.08 84.99 93.27 0.89 87.19 85.65 94.88 0.90 89.14 83.71 90.73 0.87
GHSL 81.43 81.22 86.25 0.84 80.14 79.17 92.56 0.85 83.29 86.29 76.74 0.81

Wuhan PLA 85.75 91.75 74.77 0.82 83.38 91.44 80.84 0.86 87.66 92.42 69.92 0.80
RMABI 60.47 96.97 24.50 0.39 56.59 97.83 34.80 0.51 62.76 95.89 16.16 0.28
NDMABI 66.77 97.10 34.54 0.51 66.14 98.48 47.56 0.64 67.15 95.41 23.88 0.38
PLA+RMABI 87.19 92.15 76.31 0.83 85.86 92.14 83.63 0.88 87.98 92.16 69.03 0.79
PLA+NDMABI 87.87 92.06 78.28 0.85 86.60 92.21 85.04 0.88 88.66 91.94 71.60 0.81
GHSL 76.33 88.19 57.94 0.70 78.40 86.90 75.62 0.81 75.05 89.78 43.24 0.58

Changsha PLA 86.24 90.08 55.96 0.69 78.64 93.24 69.07 0.79 87.65 88.83 53.19 0.67
RMABI 79.02 94.67 32.51 0.48 75.82 95.52 61.88 0.75 79.65 93.98 25.06 0.40
NDMABI 80.85 93.14 39.35 0.55 81.46 93.59 73.33 0.82 80.89 92.78 30.66 0.46
PLA+RMABI 89.10 90.14 67.13 0.77 88.18 92.22 86.91 0.89 89.27 89.18 61.50 0.73
PLA+NDMABI 88.65 88.28 67.44 0.76 87.63 91.21 87.38 0.89 88.83 86.93 61.72 0.72
GHSL 78.94 82.56 40.50 0.54 85.25 88.17 88.21 0.88 78.08 77.45 27.27 0.40
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Table A1 (continued)

Overall Urban Rural

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

Fuzhou PLA 93.43 87.77 79.64 0.84 92.69 95.65 87.85 0.92 94.01 85.65 78.60 0.82
RMABI 85.13 88.57 42.74 0.58 80.21 100.00 58.11 0.74 86.37 84.73 39.11 0.54
NDMABI 82.85 90.14 33.22 0.49 75.90 100.00 48.11 0.65 84.36 86.54 29.72 0.44
PLA+RMABI 95.78 86.54 93.87 0.90 96.84 94.81 98.53 0.97 95.65 83.83 92.12 0.88
PLA+NDMABI 95.78 86.54 93.85 0.90 96.84 94.81 98.52 0.97 95.66 83.83 92.09 0.88
GHSL 89.93 75.62 81.70 0.79 81.63 74.44 90.60 0.82 91.14 76.07 79.25 0.78

Guangzhou PLA 87.37 90.65 85.64 0.88 85.76 92.88 84.11 0.88 90.42 87.94 89.51 0.89
RMABI 72.87 91.76 55.10 0.69 73.73 95.30 60.92 0.74 71.72 83.96 43.76 0.58
NDMABI 78.97 90.05 68.35 0.78 80.36 93.99 73.19 0.82 77.45 82.55 58.86 0.69
PLA+RMABI 89.76 87.86 94.16 0.91 90.16 90.62 94.24 0.92 89.51 83.18 94.16 0.88
PLA+NDMABI 89.75 86.86 95.73 0.91 89.80 89.09 95.61 0.92 89.88 83.04 96.05 0.89
GHSL 82.46 86.74 80.04 0.83 80.67 85.92 82.33 0.84 84.70 88.48 75.32 0.81

Shenzhen PLA 88.27 80.51 84.26 0.82 84.88 79.72 87.31 0.83 90.41 81.99 83.40 0.83
RMABI 83.27 96.72 49.30 0.65 77.56 92.86 52.12 0.67 86.00 99.12 47.52 0.64
NDMABI 85.05 95.19 56.07 0.71 78.96 89.16 58.08 0.70 87.85 99.20 54.84 0.71
PLA+RMABI 90.62 81.04 92.74 0.86 87.39 79.25 95.69 0.87 92.03 82.30 90.69 0.86
PLA+NDMABI 90.34 80.26 93.04 0.86 86.48 77.78 95.63 0.86 92.03 82.02 91.26 0.86
GHSL 90.10 82.14 88.56 0.85 84.86 77.63 90.50 0.84 92.40 85.38 87.33 0.86

Haikou PLA 94.71 89.38 73.79 0.81 78.73 95.87 71.50 0.82 93.53 94.25 79.02 0.86
RMABI / / / / / / / / / / / /
NDMABI / / / / / / / / / / / /
PLA+RMABI / / / / / / / / / / / /
PLA+NDMABI / / / / / / / / / / / /
GHSL 83.40 89.19 26.47 0.41 76.87 91.30 63.52 0.75 84.06 88.24 20.14 0.33

Kunming PLA 87.61 94.79 74.57 0.83 73.50 80.28 76.42 0.78 80.63 85.71 65.79 0.74
RMABI 66.90 96.41 28.74 0.44 54.41 97.10 34.10 0.50 75.12 94.74 20.06 0.33
NDMABI 70.24 95.34 36.08 0.52 58.95 95.68 41.46 0.58 77.64 94.59 27.10 0.42
PLA+RMABI 91.45 93.99 85.06 0.89 87.33 95.04 85.19 0.90 94.15 92.39 84.17 0.88
PLA+NDMABI 91.42 93.42 85.68 0.89 87.43 94.41 85.98 0.90 94.01 91.89 84.40 0.88
GHSL 76.40 93.51 52.15 0.67 72.58 91.95 65.29 0.76 78.53 98.61 31.37 0.48

Chengdu PLA 78.04 83.23 69.54 0.76 78.40 80.00 76.21 0.78 87.94 78.95 71.15 0.75
RMABI 75.88 91.39 55.12 0.69 80.24 90.10 76.15 0.83 73.86 92.86 41.11 0.57
NDMABI 78.64 89.24 63.42 0.74 82.02 87.68 82.56 0.85 77.03 90.91 50.50 0.65
PLA+RMABI 82.30 83.21 79.50 0.81 78.88 81.01 87.07 0.84 84.21 85.02 74.91 0.80
PLA+NDMABI 82.94 82.62 82.07 0.82 78.87 80.00 88.88 0.84 85.12 84.80 77.99 0.81
GHSL 71.29 70.21 75.45 0.73 70.93 70.31 92.25 0.80 71.44 70.10 64.96 0.67

Chongqing PLA 86.29 80.19 71.75 0.76 89.62 94.19 90.04 0.92 90.42 72.50 49.95 0.59
RMABI 81.83 85.78 46.64 0.60 77.65 87.50 64.57 0.74 82.62 84.85 40.26 0.55
NDMABI 84.58 84.68 58.17 0.69 82.32 88.61 75.04 0.81 85.06 82.84 52.01 0.64
PLA+RMABI 87.79 77.22 81.24 0.79 82.39 80.00 86.85 0.83 88.82 76.15 79.18 0.78
PLA+NDMABI 87.38 76.23 81.93 0.79 81.24 78.43 86.92 0.82 88.55 75.38 80.11 0.78
GHSL 82.29 73.40 67.71 0.70 75.05 73.08 83.93 0.78 83.67 73.56 61.92 0.67

Lhasa PLA 90.09 81.95 59.06 0.69 94.79 96.20 95.14 0.96 93.47 76.47 86.91 0.81
RMABI 83.07 63.77 49.03 0.55 79.78 93.06 73.00 0.82 83.28 48.15 42.12 0.45
NDMABI 83.72 65.22 49.48 0.56 80.54 94.37 73.25 0.82 84.07 50.00 43.01 0.46
PLA+RMABI 89.44 69.07 79.44 0.74 91.77 90.91 97.83 0.94 88.47 57.81 72.04 0.64
PLA+NDMABI 89.53 69.44 78.75 0.74 91.47 91.67 96.59 0.94 88.84 58.33 72.31 0.65
GHSL 76.61 100.00 0.99 0.02 39.94 100.00 2.69 0.05 83.18 100.00 0.77 0.02

Urumchi PLA 94.17 87.76 91.36 0.90 92.71 98.31 90.57 0.94 92.46 100.00 81.74 0.90
RMABI 83.40 90.58 42.45 0.58 65.10 99.00 43.24 0.60 90.03 81.32 44.05 0.57
NDMABI 82.62 91.11 39.10 0.55 63.42 98.96 40.42 0.57 89.54 82.14 39.83 0.54
PLA+RMABI 93.49 84.31 94.29 0.89 96.05 96.26 97.36 0.97 92.19 71.18 90.81 0.80
PLA+NDMABI 93.62 84.55 94.22 0.89 96.04 96.26 97.33 0.97 92.40 71.60 90.67 0.80
GHSL 84.42 85.09 54.35 0.66 78.72 87.65 76.46 0.82 86.30 77.59 30.28 0.44

Tokyo PLA 92.88 98.44 90.29 0.94 88.30 90.39 86.98 0.89 87.86 80.52 71.87 0.76
RMABI 54.72 97.40 19.32 0.32 53.12 97.24 19.91 0.33 65.78 100.00 7.40 0.14
NDMABI 48.95 98.82 9.75 0.18 47.17 98.80 10.11 0.18 61.38 100.00 3.24 0.06
PLA+RMABI 94.39 98.13 93.01 0.96 94.29 97.98 93.35 0.96 94.81 100.00 86.86 0.93
PLA+NDMABI 92.88 98.44 90.20 0.94 92.81 98.32 90.62 0.94 93.08 100.00 82.47 0.90
GHSL 87.92 85.52 99.60 0.92 87.94 85.95 99.58 0.92 88.56 81.03 100.00 0.90

Seoul PLA 87.52 86.81 81.02 0.84 89.09 95.12 85.74 0.90 95.50 91.94 80.75 0.86
RMABI 83.80 95.06 61.72 0.75 83.45 95.56 70.91 0.81 84.60 93.94 44.87 0.61
NDMABI 86.84 94.17 71.42 0.81 87.76 95.18 80.84 0.87 86.24 91.89 53.48 0.68
PLA+RMABI 91.29 85.77 94.09 0.90 91.71 88.89 96.97 0.93 91.10 80.23 88.06 0.84
PLA+NDMABI 91.05 85.14 94.77 0.90 91.65 88.40 97.70 0.93 90.61 79.33 88.51 0.84
GHSL 88.28 85.71 86.52 0.86 91.38 90.91 93.95 0.92 85.29 75.95 71.40 0.74

Delhi PLA 90.28 94.69 85.06 0.90 67.86 100.00 57.65 0.73 95.86 89.53 63.20 0.74
RMABI 77.48 94.79 59.16 0.73 75.93 94.98 62.99 0.76 82.47 92.59 21.11 0.34
NDMABI 80.70 92.84 67.59 0.78 79.92 93.31 71.71 0.81 83.63 87.88 27.05 0.41
PLA+RMABI 92.30 90.86 94.53 0.93 91.52 91.26 95.27 0.93 95.59 88.06 86.63 0.87
PLA+NDMABI 91.98 89.76 95.38 0.92 91.07 90.00 96.15 0.93 95.53 88.06 87.11 0.88
GHSL 82.57 81.78 86.06 0.84 80.82 80.85 89.94 0.85 87.78 92.86 47.92 0.63
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Table A1 (continued)

Overall Urban Rural

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

Chakwal PLA 95.41 91.06 62.43 0.74 90.16 93.26 89.60 0.91 95.83 89.66 69.60 0.78
RMABI 86.16 73.39 23.97 0.36 43.25 100.00 30.02 0.46 86.96 72.38 23.79 0.36
NDMABI 86.13 73.83 23.31 0.35 42.85 100.00 29.40 0.45 86.92 72.82 23.11 0.35
PLA+RMABI 96.03 78.54 84.12 0.81 71.83 100.00 60.78 0.76 96.37 77.58 86.21 0.82
PLA+NDMABI 95.93 78.45 82.99 0.81 71.78 100.00 60.69 0.76 96.27 77.48 84.96 0.81
GHSL 81.12 100.00 1.94 0.04 32.38 100.00 15.18 0.26 81.85 100.00 1.00 0.02

Riyadh PLA 93.87 91.73 84.31 0.88 86.87 91.48 84.41 0.88 91.21 71.28 61.79 0.66
RMABI 89.86 90.57 69.11 0.78 80.84 91.98 73.68 0.82 94.35 86.00 57.00 0.69
NDMABI 88.74 93.51 62.06 0.75 78.94 93.96 67.81 0.79 93.41 91.67 46.90 0.62
PLA+RMABI 92.13 78.81 96.21 0.87 86.21 82.63 97.66 0.90 95.26 69.70 92.31 0.79
PLA+NDMABI 92.14 79.15 95.43 0.87 86.57 82.98 97.61 0.90 95.07 69.79 89.34 0.78
GHSL 88.38 71.91 93.32 0.81 79.82 75.68 97.60 0.85 92.66 61.86 81.70 0.70

Baghdad PLA 88.97 83.59 78.62 0.81 91.17 97.53 91.85 0.95 95.87 97.58 79.62 0.88
RMABI 84.81 86.18 57.66 0.69 75.42 94.05 61.82 0.75 89.76 69.23 45.66 0.55
NDMABI 88.51 84.19 75.57 0.80 86.14 93.78 81.37 0.87 89.60 64.36 60.44 0.62
PLA+RMABI 88.42 77.02 87.76 0.82 88.76 87.60 93.62 0.91 88.00 57.14 73.91 0.64
PLA+NDMABI 87.61 74.26 90.66 0.82 89.46 87.11 96.13 0.91 86.53 52.63 77.97 0.63
GHSL 88.66 89.17 71.11 0.79 88.93 92.44 88.23 0.90 88.57 75.00 31.61 0.44

Addis Ababa PLA 94.50 96.10 86.33 0.91 92.21 92.22 93.93 0.93 97.60 96.83 86.21 0.91
RMABI 75.99 96.40 29.70 0.45 52.19 95.51 44.79 0.61 81.88 98.00 17.21 0.29
NDMABI 77.56 95.57 34.75 0.51 59.42 97.06 52.75 0.68 82.02 92.86 19.92 0.33
PLA+RMABI 95.35 97.31 87.42 0.92 93.61 97.60 94.74 0.96 95.91 97.01 80.70 0.88
PLA+NDMABI 95.18 96.73 87.47 0.92 93.69 97.60 94.86 0.96 95.72 95.86 80.75 0.88
GHSL 87.50 98.02 61.79 0.76 83.40 98.62 80.95 0.89 88.54 97.20 44.39 0.61

Nairobi PLA 92.13 79.80 87.83 0.84 92.98 96.05 91.99 0.94 96.80 86.96 84.28 0.86
RMABI / / / / / / / / / / / /
NDMABI / / / / / / / / / / / /
PLA+RMABI / / / / / / / / / / / /
PLA+NDMABI / / / / / / / / / / / /
GHSL 81.61 88.39 27.64 0.42 80.53 93.65 71.90 0.81 81.82 81.63 13.49 0.23

Algiers PLA 96.90 96.01 88.09 0.92 88.20 88.28 90.84 0.90 90.17 83.78 80.59 0.82
RMABI 82.59 98.41 27.78 0.43 69.48 100.00 42.60 0.60 85.02 97.53 22.92 0.37
NDMABI 88.70 94.97 50.71 0.66 80.27 95.38 67.20 0.79 90.39 94.78 44.62 0.61
PLA+RMABI 97.07 94.72 90.37 0.92 92.83 94.25 92.99 0.94 97.60 96.83 85.98 0.91
PLA+NDMABI 96.86 93.73 90.34 0.92 92.86 92.31 95.41 0.94 97.50 94.39 88.20 0.91
GHSL 92.81 86.57 78.11 0.82 86.41 88.37 88.54 0.88 94.09 85.79 74.32 0.80

Cape Town PLA 95.74 91.45 89.82 0.91 94.07 95.16 96.97 0.96 98.02 78.57 65.36 0.71
RMABI 76.81 72.73 14.69 0.24 43.06 87.50 14.22 0.24 86.33 56.76 13.94 0.22
NDMABI 77.04 72.29 15.81 0.26 44.04 88.10 15.86 0.27 86.45 56.10 14.64 0.23
PLA+RMABI 94.02 85.12 89.92 0.87 91.96 93.63 92.94 0.93 94.73 75.00 84.10 0.79
PLA+NDMABI 94.05 84.88 90.32 0.88 91.96 93.63 92.99 0.93 94.80 74.63 85.02 0.79
GHSL 89.03 70.81 97.61 0.82 80.56 77.23 100.00 0.87 91.87 63.10 93.96 0.75

Washington PLA 89.15 86.59 89.07 0.88 92.39 96.43 91.85 0.94 95.61 84.44 80.27 0.82
RMABI 60.94 88.14 8.80 0.16 47.19 90.00 9.63 0.17 73.25 84.21 6.34 0.12
NDMABI 59.31 82.93 5.52 0.10 44.92 85.71 6.04 0.11 72.23 76.92 4.00 0.08
PLA+RMABI 89.88 85.90 92.87 0.89 88.20 88.28 90.76 0.89 90.70 83.12 82.53 0.83
PLA+NDMABI 89.38 86.29 88.55 0.87 88.20 88.28 90.84 0.90 90.52 82.58 82.54 0.83
GHSL 78.86 70.73 88.24 0.79 75.87 71.89 95.50 0.82 82.21 68.10 72.89 0.70

Los Angeles PLA 95.27 95.08 96.79 0.96 87.97 89.66 79.16 0.84 98.11 73.91 66.35 0.70
RMABI 54.75 80.34 17.93 0.29 36.93 81.98 18.82 0.31 95.40 50.00 15.68 0.24
NDMABI 55.12 80.00 18.97 0.31 37.69 82.20 20.05 0.32 95.25 42.86 14.27 0.21
PLA+RMABI 95.92 94.96 97.23 0.96 90.64 89.54 99.57 0.94 97.79 68.42 83.81 0.75
PLA+NDMABI 92.87 88.70 99.05 0.94 90.63 89.54 99.58 0.94 97.62 65.00 83.10 0.73
GHSL 83.56 75.44 99.56 0.86 77.41 76.62 99.80 0.87 95.31 46.15 91.93 0.61

Santiago PLA 94.39 92.46 89.83 0.91 89.92 95.24 75.65 0.84 97.65 95.03 83.26 0.89
RMABI 65.79 54.69 8.45 0.15 31.77 95.83 7.26 0.14 83.89 30.00 11.27 0.16
NDMABI 65.39 51.92 6.40 0.11 30.66 95.00 5.77 0.11 83.83 25.00 7.45 0.11
PLA+RMABI 94.02 87.05 95.78 0.91 93.61 94.01 96.79 0.95 93.90 71.43 92.02 0.80
PLA+NDMABI 94.15 87.27 95.71 0.91 93.88 94.36 96.82 0.96 94.07 71.43 91.69 0.80
GHSL 89.93 95.29 74.17 0.83 83.45 95.91 80.49 0.88 93.09 92.86 56.62 0.70

Brasilia PLA 97.51 81.58 73.30 0.77 82.02 95.63 72.87 0.83 89.38 86.67 64.58 0.74
RMABI 94.57 79.41 20.44 0.33 76.19 100.00 36.27 0.53 96.26 65.00 14.62 0.24
NDMABI 94.39 78.13 17.47 0.29 75.63 100.00 32.06 0.49 96.05 61.11 11.88 0.20
PLA+RMABI 96.75 68.37 82.30 0.75 89.27 83.33 90.53 0.87 97.28 59.68 78.63 0.68
PLA+NDMABI 96.76 68.37 82.21 0.75 89.29 83.33 90.47 0.87 97.30 59.68 78.51 0.68
GHSL 96.21 95.35 40.49 0.57 87.72 96.00 70.75 0.81 96.97 94.44 24.41 0.39

Heidelberg PLA 96.02 95.10 79.55 0.87 84.49 97.56 77.90 0.87 96.70 90.37 74.91 0.82
RMABI 89.92 92.67 51.32 0.66 81.02 95.45 51.94 0.67 92.11 91.20 50.57 0.65
NDMABI 89.91 92.67 50.96 0.66 80.98 95.45 51.60 0.67 92.11 91.20 50.19 0.65
PLA+RMABI 97.67 91.97 93.38 0.93 95.24 92.86 92.06 0.92 98.26 91.48 93.91 0.93
PLA+NDMABI 97.67 91.97 93.36 0.93 95.24 92.86 92.05 0.92 98.26 91.48 93.89 0.93
GHSL 95.76 86.16 92.21 0.89 93.79 87.74 96.88 0.92 96.30 85.25 89.04 0.87

(continued on next page)
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Table A1 (continued)

Overall Urban Rural

OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F OA (%) UA (%) PA (%) F

London PLA 94.78 91.32 97.05 0.94 87.95 92.33 88.71 0.90 93.06 87.97 78.44 0.83
RMABI / / / / / / / / / / / /
NDMABI / / / / / / / / / / / /
PLA+RMABI / / / / / / / / / / / /
PLA+NDMABI / / / / / / / / / / / /
GHSL 90.97 85.29 95.24 0.90 87.45 86.35 97.44 0.92 93.14 82.78 90.64 0.87

Moscow PLA 89.33 88.96 84.32 0.87 92.99 94.78 87.87 0.91 97.08 94.87 82.21 0.88
RMABI 65.01 88.03 25.18 0.39 51.66 88.12 26.76 0.41 77.70 87.80 18.89 0.31
NDMABI 68.81 87.69 34.42 0.49 58.32 89.51 37.33 0.53 78.43 82.69 24.28 0.38
PLA+RMABI 89.73 86.13 91.06 0.89 89.15 89.30 93.26 0.91 90.57 79.49 84.29 0.82
PLA+NDMABI 89.91 85.28 92.66 0.89 89.49 88.39 95.00 0.92 90.65 78.75 85.82 0.82
GHSL 80.82 73.45 92.26 0.82 79.88 77.38 97.49 0.86 82.60 64.77 78.48 0.71

Rome PLA 94.49 90.66 95.08 0.93 92.09 87.30 95.94 0.91 95.29 90.52 71.14 0.80
RMABI / / / / / / / / / / / /
NDMABI / / / / / / / / / / / /
PLA+RMABI / / / / / / / / / / / /
PLA+NDMABI / / / / / / / / / / / /
GHSL 89.67 85.79 85.96 0.86 89.59 88.84 94.09 0.91 89.75 81.76 76.09 0.79

Copenhagen PLA 96.09 90.72 85.68 0.88 86.57 83.15 96.11 0.89 92.98 77.31 82.33 0.80
RMABI 77.89 78.57 5.68 0.11 33.60 90.91 6.94 0.13 84.55 70.59 4.96 0.09
NDMABI 78.77 80.49 8.56 0.15 36.82 94.12 10.61 0.19 84.94 70.83 7.26 0.13
PLA+RMABI 95.80 91.34 83.14 0.87 85.90 94.38 82.91 0.88 97.13 89.44 81.88 0.85
PLA+NDMABI 95.79 89.54 84.88 0.87 86.93 94.44 84.63 0.89 97.05 86.58 83.92 0.85
GHSL 91.75 87.62 67.38 0.76 77.55 86.02 80.31 0.83 93.66 88.99 56.24 0.69

Paris PLA 91.19 91.50 88.02 0.90 93.45 93.64 97.33 0.95 95.60 86.93 96.40 0.91
RMABI 81.48 92.42 61.77 0.74 76.45 94.63 68.22 0.79 85.75 86.36 48.04 0.62
NDMABI 87.74 91.24 77.60 0.84 86.33 93.92 84.04 0.89 88.82 84.35 62.87 0.72
PLA+RMABI 93.07 90.04 93.56 0.92 92.94 92.54 96.96 0.95 93.26 84.35 85.65 0.85
PLA+NDMABI 92.83 88.84 94.76 0.92 92.37 91.23 97.77 0.94 93.24 83.44 87.84 0.86
GHSL 89.85 82.87 96.54 0.89 86.50 83.20 100.00 0.91 92.54 82.05 88.92 0.85

Sydney PLA 92.30 95.23 89.80 0.92 94.35 93.18 96.98 0.95 94.89 87.70 91.14 0.89
RMABI / / / / / / / / / / / /
NDMABI / / / / / / / / / / / /
PLA+RMABI / / / / / / / / / / / /
PLA+NDMABI / / / / / / / / / / / /
GHSL 92.24 88.84 98.02 0.93 92.18 90.51 98.59 0.94 92.46 81.82 95.45 0.88

Perth PLA 95.78 94.40 84.65 0.89 91.66 97.05 89.03 0.93 93.10 89.22 84.77 0.87
RMABI 79.33 76.25 22.11 0.34 65.81 80.85 27.91 0.41 84.33 69.70 16.78 0.27
NDMABI 81.43 75.83 31.72 0.45 70.77 81.16 40.61 0.54 85.33 68.63 23.49 0.35
PLA+RMABI 95.26 90.95 85.63 0.88 90.97 90.08 87.72 0.89 96.83 91.80 83.38 0.87
PLA+NDMABI 95.15 86.30 92.20 0.89 91.66 88.37 93.34 0.91 96.56 84.40 91.28 0.88
GHSL 88.00 71.43 86.35 0.78 82.13 73.42 95.44 0.83 90.16 69.23 77.58 0.73

PLA: the results generated by using the planar features (i.e., MBI and Harris corner).
RMABI: the results generated by using RMABI feature individually.
NDMABI: the results generated by using single NDMABI feature individually.
PLA+RMABI: the results generated by the fusion of the planar features and RMABI.
PLA+NDMABI: the results generated by the fusion of the planar features and NDMABI.
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