
Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

Investigating the effects of 3D urban morphology on the surface urban heat
island effect in urban functional zones by using high-resolution remote
sensing data: A case study of Wuhan, Central China
Xin Huanga,b,⁎,1, Ying Wanga,1

a School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China
b State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, PR China

A R T I C L E I N F O

Keywords:
Surface urban heat island
Land surface temperature
3D urban morphology
Landscape
Urban functional zone

A B S T R A C T

The Urban heat island (UHI) effect is an increasingly serious problem in urban areas. Information on the driving
forces of intra-urban temperature variation is crucial for ameliorating the urban thermal environment. Although
prior studies have suggested that urban morphology (e.g., landscape pattern, land-use type) can significantly
affect land surface temperature (LST), few studies have explored the comprehensive effect of 2D and 3D urban
morphology on LST in different urban functional zones (UFZs), especially at a fine scale. Therefore, in this
research, we investigated the relationship between 2D/3D urban morphology and summer daytime LST in
Wuhan, a representative megacity in Central China, which is known for its extremely hot weather in summer, by
adopting high-resolution remote sensing data and geographical information data. The “urban morphology” in
this study consists of 2D urban morphological parameters, 3D urban morphological parameters, and UFZs. Our
results show that: (1) The LST is significantly related to 2D and 3D urban morphological parameters, and the
scattered distribution of buildings with high rise can facilitate the mitigation of LST. Although sky view factor
(SVF) is an important measure of 3D urban geometry, its influence on LST is complicated and context-dependent.
(2) Trees are the most influential factor in reducing LST, and the cooling efficiency mainly depends on their
proportions. The fragmented and irregular distribution of grass/shrubs also plays a significant role in alleviating
LST. (3) With respect to UFZs, the residential zone is the largest heat source, whereas the highest LST appears in
commercial and industrial zones. (4) Results of the multivariate regression and variation partitioning indicate
that the relative importance of 2D and 3D urban morphological parameters on LST varies among different UFZs
and 2D morphology outperforms 3D morphology in LST modulation. The results are generally consistent in
spring, summer and autumn. These findings can provide insights for urban planners and designers on how to
mitigate the surface UHI (SUHI) effect via rational landscape design and urban management during summer
daytime.

1. Introduction

The world has undergone rapid urbanization in recent decades
(United Nations, 2014). The transformation of surface physical and
geometric properties, upward expansion, and population explosion
profoundly alter the energy balance and microclimate characteristics at
the local scale, leading to a series of environmental problems (Wang
et al., 2016). One of which is the urban heat island (UHI) effect, i.e., the
phenomenon of the temperature being higher in urban areas than the
surrounding suburban/rural areas (Kalnay and Cai, 2003). The UHI
effect induces heat stress and tropospheric ozone formation, which can

both act as health hazards (Gabriel and Endlicher, 2011). The tem-
perature increase also results in increased energy bills for air con-
ditioning, which, in turn, raises air pollution and greenhouse gas
emissions (Sarrat et al., 2006). In total, 66% of the population in the
world is projected to reside in urban areas by 2050 (United Nations,
2014). Hence, how to mitigate the UHI impacts has become a major
concern in many related research fields.

Urban canopy layer (UCL) refers to the atmosphere between the
urban roughness elements (buildings and trees), where the climate is
dominated by the micro-scale effects of the site characteristics (Oke
et al., 2017). Consequently, the UCL represents the part of the
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atmosphere that is vital to human comfort and health. Some numerical
and physical models have been developed to investigate the factors
affecting UHI effects based on the understanding of the climatology of
cities (Adolphe, 2001; Martilli, 2014; Oke, 1988a, 1988b; Yang et al.,
2016). Such models are able to represent the urban environment con-
tinuously, and provide the guidance that planners require. On the other
hand, observational approaches including field measurement and re-
mote sensing are also effective tools in urban climate and environ-
mental studies, since they are potential for representing the exact urban
surfaces and their spatio-temporal variations (Mirzaei, 2015). The UHI
effect can be assessed by either air temperature or land surface tem-
perature (LST). Air temperature is measured mainly by meteorological
stations. However, the limited and scattered meteorological station
networks can provide only partial representations of temperature var-
iations in heterogeneous urban/suburban areas. On the other hand, LST
is considered to correspond closely with canopy layer UHI and has been
widely used in studying the surface UHI (SUHI) effect (Weng, 2009).
LST can regulate the lower-layer air temperature of the urban atmo-
sphere. It is a primary factor in determining the surface radiation and
energy exchange, the internal climate of buildings, as well as human
comfort (Oke et al., 2017). It is largely recognized that satellite-based
remote sensing techniques are able to provide spatially continuous
coverage of LST in a time and cost-efficient manner (Weng, 2009), as
well as urban morphology information (e.g., urban structure types,
landscape patterns, settlement density). Therefore, LST has been widely
used to investigate the relations between the SUHI effect and urban
morphology indicators (e.g., land-cover/use types, landscape patterns)
(Tran et al., 2017; Weng et al., 2008; Yang et al., 2017; Zhou et al.,
2017a). However, a majority of the case studies have been conducted at
a medium or low resolution, e.g., using Landsat images with a 30-m
resolution or MODIS images with a 500- or 1000-m resolution. Due to
their ground sampling distance (GSD), pixels are often mixed and
composed of multiple land-cover categories, making it difficult to de-
pict subtle and precise urban landscape and functional zones in urban
areas with highly fragmented and heterogeneous landscape (Huang
et al., 2018a; Zhou et al., 2017b). High-resolution remote sensing
images enable researchers to obtain detailed urban morphology in-
formation, and show great potential for the comprehensive study of the
relationship between urban morphology and SUHI at fine scales.

In this context, recently, a few studies have applied high-resolution
remote sensing images to examine the impact of landscape patterns and
land-use types on LST (Elmes et al., 2017; Li et al., 2011; Zhou et al.,
2014). However, they have mainly relied on two-dimensional (2D) in-
formation, rather than three-dimensional (3D) urban morphology, al-
though 3D expansion is a crucial characteristic of urbanization. Build-
ings are a key component of the urban structure and a major
contributing factor to the UHI effect, since they can potentially alter the
reflection and absorption of solar radiation, as well as the proliferation
of heat within urban areas (Futcher et al., 2017). Despite the apparent
importance of 3D building morphology on the UHI, there exist only few
studies having examined the effects of 3D urban morphology on LST,
including studies of sky view factor (SVF), building height, and building
volume (Berger et al., 2017; Scarano and Mancini, 2017). However,
these studies provide only bivariate associations between 3D urban
morphological parameters and LST, and therefore, the comprehensive
explanation power of these parameters on LST is still lacking. Moreover,
some 3D urban morphological parameters, which play important roles
in radiation balance schemes and ventilation (e.g., shape coefficient),
have not been considered yet (Depecker et al., 2001). It can be said that
the relationship between LST and the high-resolution 3D urban land-
scape has not been sufficiently investigated.

In addition to surface cover and surface geometry, urban mor-
phology also comprises a series of functional zones related to various
human activities. Previous research has attempted to investigate how
LST (or air temperature) varies with spatial patterns in urban areas (Li
et al., 2016; Wong et al., 2016). One of the most widely used

classification scheme is the local climate zone (LCZ) (Stewart and Oke,
2012). It is developed to characterize the form and function of cities for
UHI studies and it has been applied in remote sensing studies (Bechtel
et al., 2015, 2016). Recently, some studies have sought to identify how
well LCZs are separated in terms of LSTs (Cai et al., 2017; Geletič et al.,
2016; Wang et al., 2018; Yang et al., 2018). Nevertheless, these studies
only evaluated the thermal behavior of different LCZs (e.g., tempera-
ture differences between LCZs, temporal dynamics of cooling and
warming rates of LCZs), and did not analyze the relative contributions
of influential factors to LST. Moreover, the LCZ classification system
normally puts more emphasis on the climate-related factors (i.e., sur-
face structure and cover). Human activities, such as residence, pro-
duction, entertainment, and education, are not sufficiently character-
ized by LCZs. The urban functional zone (UFZ) classification scheme is
semantically abstracted from urban land used and can be used to de-
scribe human activities. UFZs are designated by physical characteristics
together with social and economic functions (Zhang et al., 2017a), and
have different surface properties (e.g., structure, cover, fabric), and
energy consumptions, resulting in their distinct thermal regimes. No-
tably, UFZs can serve as the basic units for urban planning (Bateman
et al., 2013). In the current literature, there have, as yet, been few at-
tempts to comprehensively investigate the influence of UFZs on LST at a
fine scale, in spite of their significance on environmental implications
and planning practices. This is partly due to the difficulties in accu-
rately identifying UFZs in urban areas. In this research, by taking ad-
vantage of high-resolution remote sensing images and geographic in-
formation data (point of interest (POI) data, Baidu street map data, road
network data), the physical and socioeconomic features could be
characterized more effectively, making it possible to obtain subtle UFZs
over a large scale.

In summary, this study aimed to comprehensively investigate the
relationship between 2D/3D urban morphology and the SUHI effect in
urban functional zones using high-resolution remote sensing images, as
well as 3D geographical information data. The study focused on the
daytime in summer since the SUHI intensity and footprint together with
its adverse effects on environment and human health have been found
to be more intense during summer daytime (Peng et al., 2012; Yang
et al., 2019). In addition, the stability and variations of the relationships
in the other three seasons have been examined. As part of this, the
following research questions are tackled by this work:

(1) How do UFZs relate to LST variations?
(2) How does 3D urban morphology affect LST?
(3) What are the influences of 2D and 3D urban morphology on the LST

in different UFZs?

The results of this study can help us to understand the relationship
between 3D urban morphology and the SUHI effect, and can provide
suggestions for urban planners and policy makers on how to ameliorate
the urban thermal environment during summer daytime through ra-
tional landscape design and urban management.

2. Study area and data

2.1. Study area

Wuhan, the capital of Hubei province in China, is situated on the
eastern Jianghan Plain at the confluence of the Yangtze River and Han
River, at latitude 30°35′ N and longitude 114°17′ E (Fig. 1a). The city of
Wuhan covers approximately 8569 km2, and Wuhan had a population
of 10.61 million in 2015 (NBSC, 2016). Wuhan is characterized by a
humid subtropical climate and suffers from extremely hot and humid
summers (Peel et al., 2007). The average annual precipitation is
1260.6 mm and the average daily temperature ranges from 4.0 °C
(January) to 29.1 °C (July). The city is dotted with lakes, and water
accounts for a quarter of the total area. Wuhan is commonly known as
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one of the “Four Furnaces of China”. It is a center for industry, the
economy, education, and transportation in Central China, and has been
witnessing rapid urbanization over the past few decades (Ali and Zhao,
2008). Given its climatic and socioeconomic characteristics, Wuhan
was an ideal city to carry out this study. Our study focused on the city
core of Wuhan, covering 982.6 km2 (Fig. 1b).

2.2. Data

The ZiYuan-3 (ZY-3) satellite, launched in January 2012, is the first
high-resolution civilian stereo mapping satellite in China. It was de-
signed with a swath width of 50 km, which enables it to cover a rela-
tively large area. The GSD is 2.1 m for the nadir panchromatic camera,
and 5.8 m for the multispectral scanner, respectively (Huang et al.,
2017). Landsat-8 images were utilized to derive the LST. Furthermore, a
geographic information data set was used to facilitate the classification
and analysis, including 3D building data, road network data, and POI
data. The 3D building data were provided by the Wuhan Land Re-
sources and Planning Bureau, including information on building foot-
print and height. Road network data were collected from Open-
StreetMap. In addition, more than 130,000 POIs were acquired from a
Chinese social network (Sina Weibo), containing location and func-
tional properties of a site (e.g., community buildings, convenience
stores, supermarkets, recreation facilities, restaurants, factories, mu-
seums, airports, parks). A data summary is provided in Table 1.

3. Methods

3.1. Retrieval of land surface temperature

Seven cloud-free Landsat-8 images were applied for the LST re-
trieval: April 26, 2013 and May 12, 2013 for spring, July 31, 2013 and
August 16, 2013 for summer, September 17, 2013 and October 3, 2013
for autumn, and January 23, 2014 for winter (only one image scene was
available in winter during that time due to the cloud coverage). The
Thermal infrared sensor (TIRS) bands have been resampled to 30 m
using the cubic convolution algorithm by the U.S. Geological Survey
(USGS, 2016). In this research, LSTs were estimated using the radiative
transfer equation (RTF) method by correcting atmospheric effects and
land surface emissivity (Sobrino et al., 2004):

= + +L B T L L[ ( ) (1 ) ]s d µ (1)

where Lλ is the top of atmosphere (TOA) radiance, i.e., the radiance
measured by the sensor. is the land surface emissivity which was es-
timated according to Dash et al. (2002) and Xie et al. (2012). Ts refers to
the LST, and B T( )s is the emitted radiance from the Earth’s surface,
namely, surface-leaving radiance (LT). Ld and Lµ is the downwelling
and upwelling atmospheric radiance, respectively. is the atmospheric
transmissivity. The parameters Ld , Lµ, and can be obtained from the
NASA Atmospheric Correction Parameter Calculator (Barsi et al., 2005).

The surface-leaving radiance (LT) can be derived by inversion of
Planck’s law:

Fig. 1. Study area. (a) The location of Wuhan. (b) ZY-3 high-resolution remote sensing image (with a spatial resolution of 2.1 m) of the study area.

Table 1
Data used in this study.

Data Resolution Time (Mon/DD/YY) Usage

Remote sensing data ZY-3 2.1 m 8/12/2013 Mapping land cover and UFZs
Landsat-8 Multispectral: 30 m; Thermal:100 m 4/26/2013; 5/12/

2013
7/31/2013; 8/16/
2013
9/17/2013; 10/3/
2013
1/23/2014

LST retrieval

Google Earth / 2013 Reference of sample selection for mapping and accuracy
assessment

Geographical information data 3D buildings Vector 2013 Land-cover mapping and 3D landscape description
Road networks Vector 2016 Land-cover mapping and image segmentation
POI Vector 2014 UFZ mapping
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After that, the surface-leaving radiance (LT) was transformed to at-
satellite brightness temperature (TB), i.e., the effective brightness
temperature measured by the sensor, under the assumption that the
earth surface is a black body:

=
+

T K
K Lln( / 1)B

T

2

1 (3)

for TIRS band 10, K1 is 774.89 W/(m2 sr μm) and K2 is 1321.08 K.
Finally, the LST (TS) could be calculated with corrections for land

surface emissivity:

=
+

T T
T1 ( / )lnS

B

B (4)

where λ refers to the wavelength of emitted radiance (10.9 μm for TIRS
band 10), ρ= 1.438 × 10−2 mK. More details about LST retrieval can
be found in the studies of Weng (2009) and USGS (2016).

To make the relationships more convincing and robust, the two LSTs
acquired for each season (except winter) were averaged. An example of
the resulting LST is shown in Fig. 2a.

3.2. Mapping of land cover and urban functional zones

Data fusion classification is able to yield better performance than
the corresponding single-source technique (Huang et al., 2018b). In this

study, multisource data (ZY-3 image, building footprint, OSM road
networks) was integrated to extract seven land cover categories:
buildings, roads, trees, grass/shrubs, water, bare soil, and other im-
pervious surface areas (OISA) (e.g., squares, open areas, pavements).
Building footprint and road network data were firstly used as mask
layers to extract buildings and roads. For the other land-cover types, an
object-oriented approach was employed due to its superiority over
pixel-based classification (Blaschke et al., 2014). The proposed classi-
fication scheme consists of three steps: (1) multiresolution segmenta-
tion; (2) object-specific feature calculation (e.g., brightness, normalized
difference vegetation index (NDVI), normalized difference water index
(NDWI), size, hue); and (3) supervised classification. A detailed scheme
is provided in Supplementary Fig. S1. Fig. 2b presents the resulting
land-cover map. An oblique view of the derived 3D urban land cover in
a sample case is presented in Fig. 2c.

The UFZ is an area of similar social and economic functions. It is
delineated not only by its spectral and structural features extracted
from high-resolution remote sensing images, but also by its socio-
economic functions derived from geographic information data (Zhang
et al., 2017a). In this study, 10 UFZ categories were established in
consideration of both the ecological impacts of different socioeconomic
activities and the national standards for land-use classification: re-
sidential, industrial, commercial, open space, public service, urban
green space, agricultural, forest, river, and lake, as described in Table 2
(MLR, 2017; Zhang et al., 2017a). Residential, industrial, commercial,
open space, and public service zones were defined as built-up functional

Fig. 2. (a) LST in summer. (b) Land-cover map. (c) Oblique view of the 3D land cover dataset in a sample case. (d) Urban functional zone map.
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zones, as they are dominated by artificial buildings and structures, and
the other five UFZs were labeled as non-built-up zones (MLR, 2017).
The ZY-3 image was segmented with the aid of the road network,
leading to a total of 3194 city blocks (Fig. 2d). The normalized kernel
densities of the POIs for each UFZ were then extracted according to Hu
et al. (2016). After that, the category of each block was identified
through analysis of the POI density, with the aid of visual interpretation
based on high-resolution satellite images (ZY-3 and Google Earth
images), in-situ images acquired by Baidu street view, and our own
knowledge of the study area (Fig. 2d).

The accuracy assessment of the classified land cover map was per-
formed via random sampling, and 100 pixels per class were chosen.
Similarly, 630 blocks were randomly generated for assessing the ac-
curacy of the UFZ map. The reference samples were labeled through
visual inspection (referring to the high-resolution images from ZY-3 and
Google Earth) and field verification. The classification confusion ma-
trices are provided in Supplementary Tables S1 and S2. The overall
accuracy is 93.0% for the land cover and 94.3% for the UFZs, showing
reliable classification results.

3.3. 2D/3D urban landscape metrics

In this research, five widely used landscape metrics were applied to
measure the urban landscape patterns (Table 3): percentage of land-
scape area (PLAND), edge density (ED), patch density (PD), the land-
scape shape index (LSI), and the patch cohesion index (COHESION) at
the class level. These metrics can be used to describe the urban land-
scape from three aspects: area proportion (PLAND), shape complexity
(ED, LSI), and spatial arrangement (PD, COHESION). All of the afore-
mentioned metrics were calculated in FRAGSTATS 4.2 (McGarigal
et al., 2002). In addition, to focus on the 2D/3D building structures,
seven metrics (Table 4) involving shape, arrangement, composition,
and distribution were computed. In particular, the building orientation

was defined as the angle between the major axis of the minimum en-
closing rectangle of the building footprint and the x-axis, with reference
to the street orientation (Ali-Toudert and Mayer, 2006). The SVF in this
study refers to the ground SVF (Chun and Guldmann, 2014) and it was
calculated using the Relief Visualization Toolbox in 32 directions
(Zakšek et al., 2011), with a search radius of 210 m as suggested by
(Chen et al., 2010). These metrics were selected as they may have po-
tential impacts on LST (Leitão et al., 2012). Fig. 3 presents the building
height and SVF in a sample area.

3.4. Statistical analysis

Firstly, one-way analysis of variance (ANOVA) was conducted to
examine whether LST was significantly different among the UFZs (Li
et al., 2013). Considering the possible correlations among explanatory
variables (e.g., landscape composition and configuration), a partial
Pearson correlation analysis was employed to investigate the correla-
tions between the landscape variables and LST, by controlling for the
interactions among them. In this research, city blocks were used as the
basic analytical units. Landscape composition (PLAND) and configura-
tion (PD, ED, LSI, COHESION, AWMSI, and OV) metrics were con-
sidered as controlled variables mutually. The 2D building metrics were
also considered as controlled variables for the 3D building metrics.

The LST is determined not by a single urban morphological para-
meter, but by the comprehensive effect of various factors. Therefore, a
stepwise multivariate linear regression analysis was then conducted to
explore the relative contributions of the variables to LST. Independent
variables with statistical significance (p < 0.05) were selected auto-
matically via forward–backward stepwise regression (Miller, 2002).
Furthermore, variation partitioning was conducted to quantify the ex-
planatory power of 2D and 3D urban morphology in relation to LST
(Borcard et al., 1992). Variation in LST was partitioned by partial re-
gression, as implemented in the R statistical package (Buttigieg and

Table 2
Description of the urban functional zone categories.

Category Description

Built-up functional zones
Residential Housing, community, and ancillary facilities, including villas, ordinary residential districts, and urban villages.
Industrial Light industries such as electronics manufacture, food processing, and pharmaceuticals, and heavy industries such as metallurgical, steel, chemical, and

machine manufacture. In addition, warehouses also belong to the industrial zone.
Commercial Financial centers, shopping malls, retail centers, service buildings, etc.
Open space Under-construction sites, open spaces, stations, railroads, etc.
Public service Cultural and sports services, hospital and sanitary facilities, municipal administration buildings, educational and research institutions, etc.

Non-built-up functional zones
Urban green space Urban parks, shrubs, botanic gardens and zoos, and other urban grasslands.
Agricultural Vegetable fields, croplands, orchards, nurseries, and other agricultural land.
Forest Trees with distinct canopy textures.
River The Yangtze River and its branches.
Lake Lakes, reservoirs, ponds, etc.

Table 3
Landscape metrics selected in this study.

Metrics Abbreviation Calculation Description

Percentage of landscape PLAND × = a A100 /j
n

ij1
Measures the proportional abundance of each class in the landscape.

Edge density ED ×= e A/ 10, 000k
m

ik1
Measures the shape complexity and isolation degree.

Patch density PD ×n A/ 10, 000i Measures the density and fragmentation.
Landscape shape index LSI

= e A0.25 /k
m

ik1
Measures the shape irregularity of patches.

Patch cohesion index COHESION
× ×=

=
1 1 (100)j

n pij

j
n pij aij Z

1

1
*

1 1 Measures the connectivity of habitat as perceived by organisms dispersing in the landscape.

aij = area of patch ij; eik = total length of edge in landscape involving class i, including landscape boundary and background segments involving class i; ni = number
of patches in the landscape for class i; e*ik = total length of edge in landscape between classes i and k, includes the entire landscape boundary and some or all
background edge segments involving class i; A= total landscape area; pij* = perimeter of patch ij in terms of the number of cell surfaces; aij* = area of patch ij in
terms of the number of cells; Z= total number of cells in the landscape.
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Ramette, 2014), leading to four components, i.e., unique effect of: (i)
2D urban morphology; (ii) 3D urban morphology; (iii) joint effects of
2D and 3D urban morphology; and (iv) unexplained variation. Please
note that the joint effect here is the intersection of the amount of var-
iation in the LST that could be explained by both explanatory variable
groups (Borcard et al., 1992).

4. Results

4.1. Spatial pattern of urban functional zoning and LST

Given that the SUHI intensity as well as the footprint has been found
to be more intense during summer daytime (Peng et al., 2012; Yang
et al., 2019), this study will investigate the influence of 3D urban
morphology on the SUHI effect in summer daytime and examine the
stability and variations of the relationships in the other seasons.

It can be seen from Fig. 2a that high LST in summer is mainly dis-
tributed in the central and western regions, and is assembled with
buildings, while the low LST is concentrated in lakes and rivers. ANOVA
F-test (p < 0.05) indicated that significant differences exist in the LSTs
among the various UFZs (Fig. 4a). The LST was further stratified into
four categories: high, sub-high, sub-low, and low, based on the Jenks
natural breaks classification method (Jenks, 1977). The high tempera-
ture level that contributes the most to the SUHI was defined as the

“high temperature center” (HTC). The distribution index (DI) was uti-
lized to quantify the contribution of each UFZ type to the entire thermal
environment (Eq. (5)) (Mottet et al., 2006):

=DI S
S

S
S

/hi

i

h

(5)

where Shi and Si refer to the HTC area and total area in the ith UFZ, and
Sh and S are the HTC area and total area in the entire study area. If the
DI is larger than 1, implying that the proportion of the HTC area in the
ith UFZ is higher than that in the study area, signifying that this type of
UFZ is the heat source to the thermal environment (Li et al., 2017).

When looking at the proportions of the four LST categories among
the UFZs in the study area (Fig. 4b), it can be observed that the HTCs
are dominant in the five built-up functional zones (i.e., residential, in-
dustrial, commercial, open space, and public service), accounting for
91.3% of the total HTC area. The built-up functional zones are primarily
heat sources composed of high (55.7%) and sub-high (40.0%) level LST,
with DI values larger than 1, indicating their significant contribution to
the SUHI effect. The commercial zone shows the highest mean LST
(50.52 ± 3.68 °C), followed by industrial (50.45 ± 4.19 °C), open
space (48.88 ± 4.23 °C), residential (48.67 ± 3.76 °C), and public
service (46.49 ± 4.06 °C) zones. The residential zone contributes the
most to the HTC area of Wuhan (37.8%, DI = 1.71), followed by in-
dustrial (22.7%, DI = 2.27) and open space (12.4%, DI = 1.99) zones.

Table 4
Building characteristic metrics considered in this study.

Metrics Description

2D Orientation variance (OV) Variation of the buildings’ orientations. It measures the arrangement complexity
Area-weighted mean shape index
(AWMSI)

Shape complexity of an individual building. It is equal to the patch perimeter divided by the square root of the patch area

3D Shape coefficient (SC) The ratio between the external surfaces and the volume of the building (Depecker et al., 2001). It measures the heat exchange
capacity of the building with the surrounding environment

Mean height (MH) Mean building height in a block, which represents the 3D roughness
Height variance (HV) Height variation of buildings within a block
Normalized height variance (NHV) The ratio between the standard deviation of building height and the mean building height. It measures the relative height variance
Sky view factor (SVF) The fraction of the overlying hemisphere occupied by the sky, ranging from 0 (no sky visible) to 1 (no horizon obstructions

visible). It measures the extent of the 3D open space

Fig. 3. (a) Building height distribution of Wuhan. The buildings were stratified into four classes according to the “Chinese code for design of civil buildings”: low-rise
(< 10 m), mid-rise (10–24 m), high-rise (24–90 m), and very high-rise (> 90 m). (b) Building height and (c) SVF in a sample area.
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Although the commercial zone has the highest mean LST and DI value
(2.38), it has a limited effect (11.0%) due to its small area.

Water areas feature the lowest LST. The coolest UFZs are river
(31.48 ± 4.07 °C) and lake (33.83 ± 3.12 °C), which make up 93.2%
of the low-level LST area, signifying that water areas are heat sinks
which play the most significant role in dissipating heat in Wuhan.
Lower mean LSTs also occur in vegetation-dominant zones. The urban
green space, agricultural, and forest zones constitute the main sub-low
LST category (79.4%). The LST in the urban green space zone
(43.47 ± 4.39 °C, DI = 0.48) is significantly higher than that in the
agricultural zone (39.52 ± 4.11 °C, DI = 0.13) and forest zone
(38.94 ± 3.33 °C, DI = 0.07).

4.2. Correlation between urban morphological parameters and LST

The correlations between the landscape metrics (as shown in Tables
5 and 6) and summer LST of the built-up functional zones were

examined due to their dominant proportions of heat sources. Table 5
illustrates the partial correlation coefficients between the LST and 2D
landscape metrics. LST is correlated with all the landscape metrics for
OISA and grass/shrubs. For OISA, all the correlations are positive,
showing its warming effect. Positive correlations of ED_OISA (partial

Fig. 4. LST characteristics of the different UFZs. (a) Box and whisker plots of LST for the UFZs. The square and line within the box indicate the mean and median
values, respectively. (b) Stack column of the proportion of LST categories among the UFZs. (Res.: residential; Ind.: industrial; Com.: commercial; Ope. S.: open space;
Pub. S.: public service; Urb. G.: urban green space; Agr.: agricultural; For.: forest; Riv.: river; Lak.: lake). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 5
Partial Pearson correlation coefficients between the 2D landscape metrics and LST of the built-up functional zones. For the composition metric (PLAND), the
controlled variables were the configuration metrics (PD, ED, LSI, COHESION, AWMSI, OV), and for the configuration metrics, composition metric was considered as
the controlled variable.

PLAND PD ED LSI COHESION AWMSI OV

2D buildings 0.291** −0.376** −0.257** −0.211** 0.225** 0.099** 0.007
OISA 0.177** 0.300** 0.322** 0.173** 0.083** – –
Grass/shrubs −0.190** −0.324** −0.225** −0.179** −0.105** – –
Trees −0.231** 0.004 −0.014 −0.013 −0.084** – –
Bare soil −0.023 −0.090** 0.094** −0.054* −0.101** – –

* P < 0.05 (2-tailed).
** P < 0.01 (2-tailed).

Table 6
Pearson correlation coefficients between the 3D building metrics and LST of the
built-up functional zones. The italic row is the partial Pearson correlation
coefficients, where the 2D building morphological parameters were considered
as controlled variables.

SC MH HV NHV SVF

3D buildings −0.136** −0.106** −0.014 0.112** −0.156**

0.034* −0.142** −0.107** 0.002 0.135**

* P < 0.05 (2-tailed).
** P < 0.01 (2-tailed).
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r= 0.322, P < 0.01) and PD_OISA (partial r= 0.300, P < 0.01) in-
dicate that a fragmented and isolated distribution for OISA may lead to
an increasing tendency for LST. The inverse trend is found for grass/
shrubs, with all the landscape metrics negatively associated with LST,
especially PD_Grass/shrubs (partial r= −0.324, P < 0.01), ED_Grass/
shrubs (partial r= −0.225, P < 0.01), and PLAND_Grass/shrubs
(partial r= −0.190, P < 0.01), implying that a dispersed distribution
and irregular shape for grass/shrubs can help to mitigate the SUHI ef-
fect. As for trees, only landscape composition (PLAND_Trees) is sig-
nificantly correlated with LST (partial r= −0.231, P < 0.01). The
bare soil does not show much association with LST.

Results reveal that buildings have a complex impact on LST.
PLAND_Buildings (partial r= 0.291, P < 0.01) and COHES-
ION_Buildings (partial r= 0.225, P < 0.01) are significantly positively
related to LST, while PD_Buildings (partial r= −0.376, P < 0.01),
ED_Buildings (partial r= −0.257, P < 0.01), and LSI_Buildings (par-
tial r= −0.211, P < 0.01) are negatively related to LST. It can be
inferred that areas with intensive, connected, and aggregated buildings
tend to suffer from higher LST. As for the 3D building metrics, the
correlations are weaker than that for the 2D ones (Table 6). The LST is
found to have positive relationship with NHV_Buildings (r= 0.112,
P < 0.01) and negative relationships with SVF_Buildings (r= −0.156,
P < 0.01), SC_Buildings (r= −0.136, P < 0.01) and MH_Buildings
(r= −0.106, P < 0.01). While after controlling for the effect of 2D
building morphological parameters, partial correlation coefficients de-
monstrate that three out of the five 3D building metrics are significantly
related to LST: MH_Buildings (partial r= −0.142, P < 0.01),
SVF_Buildings (partial r= 0.135, P < 0.01), and HV_Buildings (partial
r= −0.107, P < 0.01). It is interesting to find that SVF_Buildings has
an inverse trend after considering the effect of 2D building morpholo-
gical parameters.

4.3. Relative importance of urban morphology for LST

Furthermore, the 2D and 3D urban morphological parameters were
modeled using multivariate stepwise linear regression to examine the
relative contribution of each variable to LST in the built-up functional
zones. Table 7 lists the outcome of the multivariate regression analysis.
Variation partitioning was further employed to explore the independent
and joint explanatory power of variable groups by decomposing the
variation in LST into four fractions (see Section 3.4). To explore the
influential factors with respect to different UFZs, the models for the four
functional zones (residential, industrial, commercial, and public ser-
vice) were separately constructed.

In the general model, it can be seen that approximately 69.4% of the
variation in LST can be explained by the 15 variables. PLAND_Trees
(β= −0.511) and PLAND_Grass/shrubs (β= −0.349) outperform all
the other factors in reducing LST. Buildings play a prominent role in the
LST magnitude. In particular, LST can be reduced with an increase of
MH_Buildings (β= −0.238) and decrease of PLAND_Buildings
(β= 0.154) and ED_Buildings (β= 0.148). Results from the variation
partitioning indicate that the largest proportion in LST is accounted for
by the unique effect of the 2D urban morphological parameters (frac-
tion i, 58.2%) (Fig. 5). The unique effect of 3D urban morphological
parameters (fraction ii, 4.1%) and joint effect of the 2D and 3D urban
morphological parameters (fraction iii, 6.8%) make limited contribu-
tions (Fig. 5).

With respect to the four separate models in terms of different UFZs,
the variables considered above can explain 59.7–73.2% of the variance
in LST. LST is influenced mostly by the 2D and 3D building morpho-
logical parameters, composition of trees and grass/shrubs, and
PD_Grass/shrubs. PLAND_Trees has the most notable effect in all the
zones. The contributions of building morphological parameters are
different among the UFZ types. Specifically, in the residential zone, 3D
morphology (MH_Buildings, β= −0.222) plays the most important
role. Whereas in the industrial area, 2D morphology (PLAND_Buildings,

β= 0.296, and LST_Buildings, β= 0.235) has an overriding effect. In
the commercial zone, ED_Buildings (β= 0.267), SVF_Buildings
(β= 0.208), and MH_Buildings (β= −0.197) make prominent con-
tributions. In the public service zone, HV_Buildings (β= −0.209),
SVF_Buildings (β= −0.194), and NHV_Buildings (β= 0.152) are the
most important building morphological parameters.

In the case of variation partitioning (Fig. 5), the independent effect
of the 2D landscape variables dominates the LST variation in the four
UFZs (fraction i, 46.1–59.8%). Variables pertaining to 3D building
morphology independently capture 5.2% of the LST variation in the
commercial zones. In the other zones, the independent contribution of
3D building morphology is relatively little, but the joint effects of 2D
and 3D morphology are noteworthy (fraction iii, 15.6%, 18.6%, and
9.7% for the residential, industrial and public service zones). The re-
sults offer insights into the contribution of different variable groups to
the LST, indicating that 2D urban morphology outperforms 3D mor-
phology in LST modulation and LST variability cannot be predicted well
with 3D urban morphological parameters alone.

5. Discussion

5.1. Influence of 2D/3D urban morphology on LST

According to the theory of the “urban energy balance”, when the
horizontal heat advection is not considered, the energy absorbed by the
surface from solar radiation and that generated by anthropogenic ac-
tivities is balanced by heating up the air above the surface (via con-
vection and radiation), evapotranspiration, as well as heat storage in
surface materials (Oke, 1988b). The urban morphology can affect the
partitioning of this energy balance and can therefore modify the urban
microclimate. This study reveals that the summer HTCs in Wuhan are
most often found in built-up functional zones. Overall, four land-cover
classes have a major impact on intra-urban LST variation at a fine scale
during summer daytime: buildings, OISA, grass/shrubs, and trees.

The proportion of trees is the most important cooling factor to LST
(Tables 5 and 7), which is well in line with previous studies (Elmes
et al., 2017; Peng et al., 2014; Weng et al., 2004). Trees help reduce LST
primarily by evapotranspiration and blocking of solar radiation from
directing heating of the surface through casting shade (Oke et al.,
1989). In this research, however, we found few significant correlations
between LST and the spatial configuration of trees, which differs from
the findings of some other studies (Maimaitiyiming et al., 2014; Zhang
et al., 2017b). The possible reason is that aforementioned studies did
not consider the effect of the proportion of trees when quantifying the
relationship between their spatial configuration and LST. On the one
hand, the increase in ED and LSI may increase the shade provided by
trees and enhance the interface between trees and surrounding built-up
areas (e.g., buildings, impervious surfaces), which may favor LST re-
duction by shading effect and convective heat loss (Zhao et al., 2014).
On the other hand, given the same area of trees, the increase in ED and
LSI is accompanied with more fragmented patches, resulting in a re-
duced canopy density and evapotranspiration efficiency, which may
lead to higher LST (Shahidan et al., 2012). Consequently, the changes in
LST caused by the increase in ED and LSI largely depend on the net
effects of the aforementioned two processes. Please note that, the
magnitude of LST changed by shading may be larger than evapo-
transpiration since shading directly impacts the temperature of the
surroundings. Hence, how to locate urban trees to maximize their
benefits from the joint effect of shading and evapotranspiration is an
important concern for urban design. Compared to trees, the relation-
ships between landscape configuration of grass/shrubs and LST are
statistically significant, although their contribution is less than that of
trees. Our results demonstrate that the increase in PD and ED of grass/
shrubs may decrease LST. The possible reason is that urban areas are
characterized by a mosaic landscape dotted with heat sources (e.g.,
impervious surfaces, buildings) and heat sinks (e.g., grassland, trees,
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water). The transition between them is sharp, making the microscale
advection vital in the UCL. Irrigated grass/shrubs are heat sinks that are
usually surrounded by impervious surfaces. When hot and dry air ad-
vects across them, the heat carried by it can be a source of energy for
evapotranspiration, and the dryness enhances the surface-air vapor
gradient. Since irrigation supplies moisture, the evapotranspiration ef-
ficiency will not be limited (Elmes et al., 2017; Oke, 1988b). Therefore,
the dispersed distribution of grass/shrubs can enhance energy flow but
has little effect on evapotranspiration efficiency.

Replacement of vegetation with impervious surfaces leads to an
increase of LST, which is generally consistent with the findings of
previous studies (Estoque et al., 2017; Zhou et al., 2011). These ma-
terials (e.g., concrete, cement, asphalt) exhibit lower emissivity and
higher heat capacity. The impervious and dry surface can reduce the
evapotranspiration efficiency relative to natural land, and hence favor
partitioning solar radiation into sensible rather than latent heat
(Landsberg, 1981; Oke et al., 2017). However, our results further re-
vealed the significant effect of the spatial arrangement of individual
buildings on LST, i.e., compacted and concentrated forms of buildings
have positive relationships with LST. Connected buildings obstruct

ventilation, which induces the trapping of heat and air pollutants.
Moreover, under the circumstance of high temperature and pollutant
levels, as well as poor natural air circulation, air conditioning systems
may be extensively used, resulting in further heat release (Wong and
Lau, 2013).

The relationship between 3D urban morphology (e.g., aspect ratio,
SVF, volume of human constructions) and air temperature has been the
subject of several studies (Chen et al., 2010; Wu and Lung, 2016). Our
results revealed that 3D urban morphology also has an influence on LST
during summer daytime, but the relationships are not as close as that
for the 2D urban morphology. MH and SVF are the most significant 3D
landscape metrics in our research. MH is found to have a significant
negative relationship with LST in summer, which diverges from the one
observed by Berger et al. (2017). High-rise buildings are capable of
casting more shadows and improving the surface roughness to generate
mechanical turbulence, and thereby enhances the convective heat dis-
sipation (Li et al., 2011). This was also suggested by Zhao et al. (2014),
that an increase in building height can mitigate UHI during daytime. In
particular, in this study, it is interesting to find that the correlation
between SVF and LST changed from negative to positive after

Table 7
Regression result of LST and the urban morphological parameters. R2 represents the proportion of the
LST variation that can be explained by the regression model, and β represents the relative contribution of
each variable to LST.

The color in the table indicates the value of β (as shown in the bottom of the table), where the color
scales of red and blue represent high positive and negative values, respectively.
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controlling for the effect of 2D building morphology. SVF can regulate
the LST in two ways: ventilation and incoming solar radiation. Speci-
fically, on the one hand, higher SVF, representing more visible open
sky, can help enhance air circulation and wind speed in a densely built
environment and therefore decrease the temperature (Yang et al.,
2013). On the other hand, lower SVF could reduce the incoming solar
radiation to penetrate into surface, and thus can help LST reduction
(Jamei et al., 2016). Previous research on the issue of the relationship
between SVF and temperature are, in some cases, contradictory. Both
positive (Charalampopoulos et al., 2013), negative (Berger et al., 2017),
and insignificant (Hove et al., 2015) relationships have been reported.
This can be attributed to the relative strength of the influence of the two
processes, which is associated with the local climatology, geography,
and surface topology of the study sites (Zhou et al., 2017c).

The relationship between LST and urban morphology is determined
by the comprehensive influence of various factors. Yet, to our knowl-
edge, the comprehensive relationship between LST and urban mor-
phology of different UFZs is still lacking. In this study, the results of the
multivariate regression and variation partitioning in the four built-up
functional zones suggest that the factors affecting LST are different in
each UFZ. The statistics for the variables in the four UFZs are described
in Supplementary Tables S3. The proportion of trees is the most im-
portant factor on reducing LST, and the relationship is weaker in in-
dustrial and commercial zones where PLAND_Trees are smaller with
respect to the other zones. Public service zone has the lowest building
density, and we found that in this zone, 2D building morphology has
little effect on LST variation. Similarly, in industrial zones, which show
the lowest building height, 3D building morphology presents little ef-
fect. In commercial zones, characterized by high-density and high-rise
buildings, the visible open sky is rather limited. LST is positively related
to SVF, indicating that shading has a larger impact in this area.

The highest LST in Wuhan is found in the commercial and industrial
zones, which is consistent with previous findings (Li et al., 2011). The
commercial zone has the lowest coverage of trees and grass/shrubs and
the highest proportion of buildings and impervious surfaces
(Supplementary Tables S3), corresponding to lower emissivity and
higher heat capacity (Landsberg, 1981; Oke et al., 2017). Although the

industrial zone has more green spaces and fewer artificial surfaces, its
LST is second only a little to the commercial zone. This phenomenon
further suggests the complex mechanism of urban microclimate at fine
scales. It is influenced not only by biophysical processes, but also by
anthropogenic factors. Wuhan is a large industrial city with heavy in-
dustries such as steel, mechanical manufacturing, petrochemicals,
which consume a great deal of energy and release a large amount of
heat (Li et al., 2014). The explanatory power of urban morphology is
relatively low in the commercial and industrial zones, implying that
other factors such as energy consumption and emissions may play more
important roles with regard to LST (Zhou et al., 2012).

Water areas are the coolest UFZ and can significantly reduce the
LST. Vegetation dominated regions also have a crucial mitigation effect.
The LST in the urban green space zone is significantly higher than that
in the agricultural zone and forest zone. A possible reason is that urban
green spaces are usually found in areas with a high intensity of built-up
areas nearby, and are composed of a number of soil and artificial
structures (e.g., trails, squares), which have low water-retention rates
and specific heat capacities (Kjelgren and Montague, 1998). As a result,
the soil moisture and evapotranspiration intensity are less than that in
agricultural and forest areas, resulting in less heat release and more
sensible heat (Kotzen, 2003).

5.2. Seasonal stability and variations of the relationships

The relationship between 2D and 3D urban morphological para-
meters and LST as well as the relative contributions of the parameters to
LST have been also verified in spring, autumn, and winter. The results
are shown in Supplementary Fig. S2 and Tables S4–S8.

Tables S4–S8 indicate that the relationship between 2D/3D urban
morphological parameters and LST is generally consistent in spring,
summer and autumn. However, results in winter show some variations.
One of the most prominent variations is the increase in the magnitude
of correlations between 3D building metrics and LST in winter. Such
impact may stem from the changes in the amount of solar radiation
reaching the Earth. The sun elevation in winter (34.95°) is much lower
than that in summer (65.80° and 63.41°, respectively). This

Fig. 5. The contributions (expressed as the percentage of the total explained variance) of the predictor variables for LST in urban functional zones. (i: unique effect of
2D urban morphology; ii: unique effect of 3D urban morphology; iii: joint effect of 2D and 3D urban morphology; iv: unexplained variation).
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circumstance is accompanied by a significant reduction in solar radia-
tion and an increase of shadowing effect which is caused by the ob-
structions of vertical building walls (Theeuwes et al., 2014). The
strength of correlation between 2D landscape and LST is decreased,
which is well in line with the results of (Ma et al., 2016; Zhou et al.,
2014). Moreover, with the reduced solar radiation, the sensible heat
partitioned by impervious surfaces can be decreased. On the other
hand, the metabolic activity of vegetation greatly weakens in winter.
The decrease in the rate of evapotranspiration leads to a reduction in
cooling. In addition, grassland has been degraded into bare soil, so that
its cooling effect is barely evident. Some studies have determined that
vegetation-related variables are not good factors for predicting LST in
winter (Yuan and Bauer, 2007). It can be seen from Fig. 1 that the
relationships between urban morphological parameters and LST is
weaker in winter. Given that the SUHI intensity and footprint together
with its adverse effects on environment and human health have been
found to be more intense during daytime in summer (Peng et al., 2012;
Yang et al., 2019), this is probably the reason that many SUHI studies
focus on summer.

5.3. Implications for urban planning and management

The results of this study imply that urban morphology, including 2D
urban morphology, 3D urban morphology, and UFZ have important
impacts on intra-urban LST during summer daytime.

Special attention should be paid to buildings, grass/shrubs, and
trees for urban planning at a fine scale. Buildings have a significant
effect on LST since they determine the absorption of solar radiation, the
formation of airflow, and the generation of anthropogenic heat. It is
suggested that urban planners could optimize the spatial arrangement
of the urban landscape by dispersing built-up surfaces. However, it is
unrealistic to reduce the amount of artificial surfaces in urban areas
where land resources are valuable and scarce, but we could mitigate the
daytime SUHI effect by replacing the horizontal expansion of buildings
with vertical extension. The distribution of trees and grass/shrubs helps
to mitigate the SUHI effect via evapotranspiration and shading effect.
Their proportion is an important factor for the alleviating effect. In
addition, the configuration of grass/shrubs can also affect LST. Given
limited available space for urban greening, interspersing grass/shrubs
into urban area may be an effective way to mitigate the SUHI effect
rather than concentrated distribution.

In terms of UFZs, the LST characteristics of the UFZ classes revealed
by this study could help to minimize the impacts of urbanization by
targeted landscape optimization and land-use planning. For instance, in
the commercial and residential zones with high-density and high-rise
buildings, the design of the 3D building morphology should be paid
more attention to. The explanatory power of urban morphology is re-
latively high in the residential and public service zones, indicating that
the rational planning of the urban landscape can efficiently mitigate the
urban warming effect in these regions. Apart from the urban mor-
phology, other strategies (such as modifying albedo of construction
materials, green roofs and green facades) also have cooling effects on
urban environment on urban environment (Aflaki et al., 2016;
Kikegawa et al., 2006; Kleerekoper et al., 2012).

5.4. Limitations and recommendations for future studies

While this study has revealed the effect of 3D urban morphology on

the SUHI effect in different UFZs, there are several limitations deserving
further studies. First, nighttime LST was not considered in this study
since Landsat data is only available at daytime. Second, the satellite-
based sensors tend to observe horizontal surfaces and may ignore the
vertical walls, while the latter is important to the climate near street
level, especially in densely built areas. Hence, the representation of
vertical wall surfaces via satellite-based remote sensing remains lim-
ited. In future research, multiple daytime and nighttime thermal data
(e.g., mid-resolution ASTER data, low-resolution MODIS data) may be
included to explore the diurnal relationship between urban morphology
and LST. Furthermore, we plan to conduct this research in more cities
with various climatic conditions to examine the generality of the re-
sults.

6. Conclusion

This study aimed at investigating the effects of urban morphology
on intra-urban LST variation, including 2D urban morphology, 3D
urban morphology, and UFZs. Based on high-resolution remote sensing
data and geographic information data, our results suggest the complex
mechanism of the relationships between 2D/3D urban morphology and
LST during summer daytime at a fine scale. Local LST is closely related
to microscale landscape design characteristics. The relationships be-
tween LST and 2D/3D urban morphology were quantified using a
partial Pearson correlation analysis, to control for the interactions
among explanatory variables. From the landscape viewpoint, both the
composition and configuration of buildings are significantly related to
LST. The scattered distribution facilitates the mitigation of LST. 3D
urban morphology, such as MH, SVF, is also found to affect the varia-
tion of LST. Daytime LST could be reduced with increasing building
height. The influence of SVF is context-dependent, as SVF has com-
peting effects on LST via regulating the ventilation, incoming solar
radiation, as well as trapping thermal radiation. Trees are the most
influential factor in reducing LST, and the cooling efficiency mostly
depends on their proportions. The spatial distribution of grass/shrubs
can also help to mitigate LST, and the fragmented and irregular dis-
tribution is therefore recommended.

Another contribution of this research is to reveal the different effects
of urban morphology to LST in different urban function zones (UFZs).
Our results show that the residential zone is the largest heat source in
the urban, while the highest LST occurs in commercial and industrial
zones. Vegetation and water areas form the ‘cool islands’ in urban areas.
Results of the multivariate regression and variation partitioning in-
dicate that the relative contribution of 2D and 3D morphological
parameters in explaining the variation of LST also varies among the
different UFZs. This study can provide an insight into deeper under-
standing of the mechanisms of the SUHI effect and provide re-
commendations for mitigating surface temperature during extremely
hot summer daytime.
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SVF Sky view factor
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ZY-3 ZiYuan-3
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