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Deep neural network for remote-sensing image interpretation: status
and perspectives
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Deep neural networks (DNNs) refer to
end-to-end mappings (i.e. from data to
information) by stacking a large num-
ber of filters learned from massive sam-
ples. By courtesy of the comprehensive
Earth observation platforms and conve-
nient data access, remote-sensing prac-
titioners are dealing with very large and
ever-growing data volumes, which call for
fast and transferrable machine-learning
technologies for the large-scale geospa-
tial information mining [1]. While some
progress has been made, research in
deep-learning-based remote-sensing im-
age interpretation is still in its infancy,
mainly subject to insufficient annota-
tion samples, high complexity of the
model, and lack of in-depth integration
between deep learning and remote sens-
ing. Construction of diverse and rep-
resentative remote-sensing benchmark
datasets, further investigation on task-
driven deep learning (i.e. the integra-
tion of deep learning and remote-sensing
physical mechanisms) and the efforts to-
wards promoting the practicality of the
networks should be considered in the
agenda. In this context, this paper aims to
summarize the developments of DNNs
for remote-sensing image interpretation
from the aspects of data, technology and
practicality (Fig. 1).

DEVELOPMENT OF DEEP
LEARNING FOR REMOTE
SENSING
Since 2013, neural networks with a core
of deep learning have entered the third
climax of artificial intelligence (AI)
research. With the explosive growth
of deep learning, the public, scientific

and industrial communities are paying
constant attention to its technolog-
ical advances [2]. Remotely sensed
imagery is a typical image data source
with periodic Earth observation. The
overwhelming advantages of DNNs have
been presented in many remote-sensing
applications. In the earliest stages,
remote-sensing researchers tended to
apply the existing networks that were
constructed in the fields of computation
vision or natural language processing,
to remote-sensing image classification,
object detection, spatio-temporal analy-
sis, etc. More recently, with the in-depth
development of the deep-learning tech-
niques, current research has focused on
the use of pre-trained models, in spite
of their limitations for generalization in
complex remote-sensing applications.
In this context, as an area closely related
to AI, remote-sensing image interpreta-
tion is facing both great opportunities
and challenges. Please refer to [3] for
glossaries of the terms in this paper.

STATUS AND PERSPECTIVES
Data
Deep learning is essentially a process
of learning big data using large-scale
computing power. Large-scale datasets
in diverse areas not only bring up public
benchmarks for evaluating the scal-
able and diverse DNN works, but also
improve the visibility, availability and fea-
sibility of the DNN models. Compared
with natural images, obtaining priori
remote-sensing samples is more expen-
sive, which requires extensive labor-
intensive expert analyses (including field

survey and visual inspection). Thus, the
mainstream approach [4] is to use a
small number of labeled remote-sensing
samples to fine-tune the existing DNN
models, which have been pre-trained on
large-scale data from other fields. How-
ever, a recent study reveals that the use of
the ‘pre-training and fine-tuning’ strategy
does not necessarily improve the final tar-
get task accuracy [5], even if the network
is pre-trained on a similar task. Besides,
there are numerous differences between
natural images and remote-sensing data.
First, in contrast to the natural images
with three bands (i.e. red, green, blue),
remote-sensing images have many more
spectral channels, such as from the
ultraviolet to the microwave spectrum.
Therefore, normally, the quality (e.g.
signal-noise ratio) of remote-sensing
images is much lower. Meanwhile, the
spatial dependence and spectral inter-
dependence of remote-sensing images
violate the basic assumption of the
natural image datasets, namely identical
and independent data distribution. The
imaging geometries, the differences of
multiple sensors, as well as the imaging
conditions in multiple time series can
further challenge the applicability of the
network trained by natural images for
remote-sensing interpretation.

To this end, remote-sensing com-
munities are starting to establish their
own datasets. The first category of
these datasets are composed of hun-
dreds of true-color small parcels (e.g.
256 × 256 feet per parcel in [6])
for tens of classes, which are mainly
used for image retrieval. The second
category involves the extremely-
high-spatial-resolution aerial images
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Figure 1. Deep learning for remote-sensing (RS) image interpretation, from the perspectives of data, technology and practicality.

with centimeter ground resolution [7].
On the basis of these efforts, several
studies train models from scratch and
start to promote the development of
DNNs from the perspective of remote
sensing [8]. However, these remote-
sensing benchmark datasets are still in
their infancy, owing to the following
deficiencies:

(i) Data volume: There is a limited
amount of information in these
datasets in spite of the large data

volume they have. In contrast to
natural image datasets that can
successfully train large-scale para-
metric networks with thousands
of layers, current remote-sensing
datasets are at high risk of overfit-
ting the models when interpreted
with such deep architecture,
since they only measure a small
area of the surface coverage and
lack general representative
ability.

(ii) Data heterogeneity: In addition to
a few instances that provide Light
Detection And Ranging (LiDAR)
and very-high-spatial-resolution
multispectral data, in most cases,
each dataset is collected from a
single data source. The hetero-
geneity of the remote-sensing
datasets with diverse modalities
(e.g. multi-sensor, multi-temporal
and multi-resolution) and plat-
forms (e.g. constellation) can
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challenge their collaboration and
transferability. Moreover, the
current datasets tend to focus
on urban areas, which limit their
generalization when applied to
monitoring natural scenes.

(iii) Data variety: Most of the cur-
rent image samples depict a small
and simple region clipped from
a large image scene, but ignore
various remote-sensing imaging
conditions (e.g. shadow, clouds),
making it difficult to adapt to the
real and complex applications of
Earth observation.

(iv) Difficulty of labeling: The expen-
sive label annotation, including in-
situ information, ground survey,
matched data and expert knowl-
edge, limits the size of remote-
sensing datasets. Moreover, un-
der the circumstances of large-
scale sample size, the label noise
from time inconsistency between
remote-sensing observation and
labeling is more severe.

In short, reliable, large-volume, di-
verse and representative benchmark data
are vital for developing deep learning in
the field of remote sensing.There is an ur-
gent need for building multi-modal and
multi-platform datasets with sufficient
land-cover diversity, terrestrial types and
various imaging conditions.

Technology
Deep learning designs hierarchical
architecture by stacking several blocks
composed of filters (or layers) with spe-
cific functions to capture the information
in the images. Convolution-based and
recurrence-based operators, embedded
in the convolutional neuro network
(CNN) and recurrent neuro network
(RNN), respectively, are two state-of-
the-art filters for remote-sensing images.
For CNN, the convolutional layer en-
ables the network to integrate the multi-
scale spatial measurements, which have
potential for exploring the contextual
information of remote-sensing images.
With regard to RNN, the directed graph
along a temporal sequence formed by the
connections between recurrent neuron

ensures its advantage in processing
multi-temporal remote-sensing images.
However, currently, scientists tend to
construct their networks by borrowing
or fusing the existing ones that originate
from other fields. From the viewpoint of
a learning paradigm, DNN-based works
in the field of remote sensing can be
divided into four categories:

(i) Supervised learning approaches
trained from scratch. With the aid
of current remote-sensing datasets
and the typical filters, some studies
design and train a small task-specific
architecture. As the current applica-
tions (e.g. land-use classification) of
deep learning in remote sensing only
involve small-scale pilot projects,
these small networks can avoid the
dilemmas of the large cost and risk
in training the existing ‘large-scale’
networks with high redundancy
and over-parametrization [8].
Nevertheless, considering the rapid
development of remote-sensing
data-acquisition capabilities and the
great demand for diverse and com-
plex remote-sensing applications,
such a learning approach suffers
from the limitation of labeled sam-
ple size when designing large-scale
DNNs.

(ii) Pre-training and fine-tuning ap-
proaches. When dealing with
complex remote-sensing interpreta-
tion tasks, most of the current work
either directly uses or fine-tunes
the existing network pre-trained by
large-scale data from other fields [4].
The key to the feasibility of these
learning approaches is based on the
transplantability of these pre-trained
networks in interpreting data with
spatial/temporal hierarchy, such as
the similarity of the data or task.
Owing to the lowdemand for sample
size and convenient implementa-
tion, this kind of transfer learning is
the most commonly used strategy
in remote sensing. However, the
gap between the data from remote
sensing and other fields, as well as
the high specificity of the deeper
layers in the existing pre-trained
networks, inevitably restricts the

performance of such pre-training
approaches. Considering the col-
laborative development of dataset
construction and DNN-model
design, it seems necessary to rethink
and revise the ‘pre-training and fine-
tuning’ paradigm for remote-sensing
applications.

(iii) Advanced learning. Recently, the
semi/un/weak supervised DNN
algorithms have been attracting
increasing attention, due to their low
cost for collecting remote-sensing
samples [9]. In particular, generative
adversarial networks is a promising
unsupervised algorithm devel-
oped in recent years. It comprises
two networks that compete with
each other in a zero-sum game
framework—that is, the generative
network generates candidates while
the discriminative network evaluates
them. This adversarial framework
can drive both sub-networks to
improve their performances until
the fakes are indistinguishable from
the genuine articles, and hence
can overcome the difficulty of
inaccurate parameter estimation in
the conventional generative model.
Meta-learning, the latest progress in
transfer learning, intends to rapidly
learn new skills or adapt to new
tasks with a few training examples
and meta knowledge. With these
advanced learning paradigms, deep
and task-driven architecture [10]
customized for remote-sensing
image interpretation is worthy of
further exploration.

(iv) Novel technologies developed by
the remote-sensing community. To
address the specific problems in
the remote-sensing field on the
basis of newly developed DNN
technologies, some novel filters
have been designed in the most
recent studies. For instance, the
blocks, including convolution
layers, activation function and
pooling layers, are extended to the
complex domain to represent the
amplitude and phase information
of synthetic aperture radar imagery
[11]. Focusing on a certain kind
of remote-sensing data source (e.g.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article-abstract/doi/10.1093/nsr/nw

z058/5484863 by w
uhan university user on 02 D

ecem
ber 2019



4 Natl Sci Rev, 2019, Vol. 0, No. 0 PERSPECTIVES

radar, hyperspectral and LiDAR),
a potential research direction is to
develop a physics-based model for
analysing the data structure and
understanding the physical process
of remote sensing. Moreover, with
the development of automatic
machine learning (e.g. Google’s
AutoML), it is also worthy of further
research to construct more flexible
and specific architecture to fuse
various remote-sensing data sources
and promote deep learning from the
perspective of remote sensing.

Practicability
Successful stories are still lacking for
deep learning in the field of remote
sensing. Although DNNs have reached
superiority to some degree, they are
far from ‘standardization and commer-
cialization’. The development status of
DNNs cannot fully meet the needs of
diverse and complex remote-sensing
applications (e.g. territorial, agriculture,
atmosphere, urban). In addition to the
above situations, the following issues
that restrict practicability should be
addressed:
(i) In terms of reliability, the geospa-

tial information interpreted from
remote-sensing data should be
robust with confidence estimates.
In this context, efforts in the
following two aspects (but not
limited to) can be conducted: (a)
conducting uncertainty analysis
to promise the confidence of the
information extracted by DNNs
and (b) investigating the functions
of DNN layers to facilitate the

direct use of these layers as a feature
extractor.

(ii) In terms of operational use, on the
one hand, the large-scale data
volume and the dense time-series
information-extraction tasks call
for light-weight networks with
high-throughput processing and
real-time/quasi-real-time tech-
nology. On the other hand, the
concurrent monitoring tasks that
come from the multi-functional
satellites (e.g. inversion of multi-
ple land surface parameters from
MODIS (i.e., Moderate Resolution
Imaging Spectroradiometer) data)
also require further development of
multi-task DNNmodels.

(iii) In terms of the remote-sensing prac-
titioners, in the era of AI, the bar
for building a DNN model is being
lowered. Several tools and platforms
(e.g. Google’s AutoML) for deep
learning have been available. In
this context, instead of learning
DNN from scratch, the users can
conveniently construct their deep
networks by only focusing on the
input samples. However, more
remote-sensing-oriented DNN
examples and libraries with open
licenses are necessary and in-depth
integration between remote sensing
and the DNNmodel is also needed.
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