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9 Abstract  Urban is one of the hottest research topics in the field of remote sensing. With the 

10 accumulation of high-resolution (HR) remote sensing data and emerging of new satellite sensors, HR 

11 observation of urban areas has become increasingly possible, which provides us with more elaborate 

12 urban information. However, the strong heterogeneity in the spectral and spatial domain of HR imagery 

13 brings great challenges to urban remote sensing. In recent years, numerous approaches were proposed 

14 to deal with HR image interpretation over complex urban scenes, including a series of features from 

15 low level to high level, as well as state-of-the-art methods depicting not only the urban extent, but also 

16 the intra-urban variations. In this paper, we aim to summarize the major advances in HR urban remote 

17 sensing from the aspects of feature representation and information extraction. Moreover, the future 

18 trends are discussed from the perspectives of methodology, urban structure and pattern 

19 characterization, big data challenge, and global mapping. 

20 Key words  High-resolution, Urban remote sensing, Feature extraction, Land use/land cover 

21 classification, Change detection 

22

23 1.  Introduction

24 Urban is the core of human habitation, and is also the most active region for social and economic 

25 activities. According to the United Nations, the proportion of global urban residents increased from 

26 30% to 55% between 1950 and 2018, and it is predicted to reach 68% by 2050. About 90% of this 

27 growth will take place in Africa and Asia, where the level of urbanization is relatively low at present 

28 (United Nations, 2018). Although cities account for only a small share (< 3%) of the Earth’s land 

29 surface, they significantly impact both natural and human systems from regional to global scales 

30 (Gamba and Herold, 2009). The rapid urban expansion is accompanied by the disappearance of the 
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31 surrounding cultivated land, forest, and water areas, which brings a series of resource, environmental, 

32 and ecological problems (Gong et al., 2012; Pesaresi et al., 2015).

33 Table 1  Typical high-resolution satellites (PAN: panchromatic band, MS: multispectral bands)

Satellite Launch time Country Bands and spatial resolution Swath width 
Revisit 
cycle 

IKONOS-2 1999-09 America

a) PAN: nadir 0.82 m; off-nadir 
1 m 
b) 4 MS (blue, green, red, 
near-infrared): nadir 3.20 m; 
off-nadir 4 m

11.3 km 3 days

QuickBird-2 2001-10 America
a) PAN: 0.61 m 
b) 4 MS (blue, green, red, 
near-infrared): 2.40 m 

16.5 km 1–3.5 days

Cartosat-1 2005-05 India PAN: 2.50 m 26 km 5 days

Beijing-1 2005-10 China
a) PAN: 4 m
b) 3 MS (green, red, 
near-infrared): 32 m

a) PAN: 24 km
b) MS: 600 km

3–7 days

ALOS-PRISM 2006-01 Japan PAN: 2.50 m 35 km 5 days
EROS-B 2006-04 Israel PAN: 0.70 m 7 km 2–10 days

Cartosat-2
2A: 2007-01
2B: 2008-04

India PAN: 0.80 m 9.6 km 4 days

TianHui-1
01: 2010-08
02: 2012-05
03: 2015-10

China

a) PAN: 5 m 
b) HR PAN: 2 m
c) 4 MS (blue, green, red, 
near-infrared): 10 m

60 km 1 days

ZiYuan-3
01: 2012-01
02: 2016-05

China

a) PAN: nadir 2.10 m; off-nadir 
3.50 m (01), 2.50 m (02) 
b) 4 MS (blue, green, red, 
near-infrared): 5.80 m

50 km 5 days

SPOT-6/7

SPOT-6:
2012-09
SPOT-7:
2014-06

France
a) PAN: 1.50 m
b) 4 MS (blue, green, red, 
near-infrared): 6 m

60 km 1–5 days

GaoFen-1 2013-04 China
a) PAN: 2 m
b) 4 MS (blue, green, red, 
near-infrared): 8 m and 16 m

68 km with two 
HR cameras and 
830 km with 
four wide-field
imager 

≤ 4 days

WorldView-3 2014-08 America

a) PAN: nadir 0.31 m; off-nadir 
0.34 m 
b) 8 MS (red, red edge, coastal, 
blue, green, yellow, 
near-infrared1, near-infrared2): 
nadir 1.24 m; off-nadir 1.38 m
c) 8 short-wave infrared: nadir 
3.70 m; off-nadir 4.10 m
d) 12 CAVIS: nadir 30 m

13.1 km 1–4.5 days

GaoFen-2 2014-08 China
a) PAN: 0.81 m
b) 4 MS (blue, green, red, 
near-infrared): 3.24 m

45 km ≤ 4 days

SuperView-1

01/02: 
2016-12
03/04: 
2018-01

China
a) PAN: 0.5 m
b) 4 MS (blue, green, red, 
near-infrared): 2 m

12 km
1 day with 
4 satellites
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34 Urban remote sensing, as one of the most important branches in the field of remote sensing, 

35 mainly refers to the use of remote sensing technologies to obtain urban information for monitoring, 

36 understanding, and predicting the various urban phenomena, and to support decision making in urban 

37 planning, disaster response, and sustainable development. In recent decades, with the considerable 

38 developments of aerospace technology, a number of high-resolution (HR) satellites have been launched 

39 (Table 1). The spatial resolution of civilian/commercial remote sensing imagery has achieved meter 

40 and even sub-meter levels. Through different observation modes, such as satellite networking and 

41 a l o n g - t r a c k  o r  c r o s s - t r a c k  i m a g i n g ,  m a n y  o f  t h e  H R  s a t e l l i t e s  ( e . g . ,  Q u i c k B i r d ,  

42 Cartosat-1/2, ZiYuan-3 (ZY-3), and SPOT-6/7) have the ability of stereo mapping. HR imagery can 

43 substantially reduce the phenomenon of mixed-pixels with enhanced spatial details of ground objects. 

44 Meanwhile, multi-angle observation is able to provide three-dimensional (3D) information, which 

45 increase the dimension of urban information extraction (Huang et al., 2018b; Huang et al., 2017a; Peng 

46 et al., 2017). Nevertheless, the problems such as spectral heterogeneity, shadow, occlusion, and 

47 disparity are distinct in HR images, especially in urban settings, which present new challenges for 

48 urban information extraction. Hence the traditional methods that rely purely upon spectral 

49 characteristics may be insufficient to tackle these problems (Huang et al., 2007b; Peng et al., 2015). 

50 Compared to natural surfaces, urban areas have more distinct textural and structural variations in 

51 HR images, due to the inclusion of artificial surfaces such as buildings and roads. Given these 

52 characteristics, many studies have incorporated both spectral and spatial features to improve the 

53 interpretation accuracy of HR images over urban areas. In this paper, we mainly focus on introducing 

54 state-of-the-art urban features, as well as urban information extraction based on HR remote sensing 

55 imagery from the following aspects: 1) detection of urban targets, e.g., buildings, roads, impervious 

56 surfaces, urban vegetation, and water bodies; 2) classification of urban land use/land cover, such as 

57 urban scene recognition and functional zone mapping; 3) change detection, i.e., dynamic monitoring of 

58 the urban landscape; and 4) urban ecology and climate, e.g., urban heat island and ecosystem service 

59 assessment. A framework of HR urban remote sensing is illustrated in Figure 1. Finally, the future 

60 research trends in HR urban remote sensing are prospected.
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61
62 Figure 1 The framework of urban information extraction from high-resolution remote sensing imagery.
63

64 2.  Urban feature extraction from high-resolution remote sensing imagery

65 The widely used texture features are calculated based mainly on statistical and spatial-frequency 

66 domain analysis, e.g., the gray-level co-occurrence matrix (Haralick and Shanmugam, 1973), wavelet 

67 transform (Mallat, 1989), and local binary patterns (Ojala et al., 1996). Moreover, a series of planar and 

68 stereo features, e.g., the pixel shape index (Zhang et al., 2006), PanTex (Pesaresi et al., 2008), 

69 morphological features (Pesaresi and Benediktsson, 2001), and angular features (Huang et al., 2018b), 

70 were specially designed for HR images to characterize urban environments. In addition, the recent 

71 advances in the domain of machine learning (e.g., deep learning) show strong abilities for high-level 

72 feature representation, which show promising avenues to address complex HR urban remote sensing 

73 problems (Zhu et al., 2017).

74 2.1  Textural features

75 2.2.1  Gray-level co-occurrence matrix 

76 The gray-level co-occurrence matrix (GLCM) is a classical statistical texture extraction method. A 

77 series of statistical measures, e.g., homogeneity (HOM), contrast (CON), angular second moment 
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78 (ASM), and entropy (ENT), were defined to characterize the co-occurrence matrix to reflect the 

79 grayscale changes and textural features of the image (Haralick and Shanmugam, 1973). For HR urban 

80 remote sensing, Puissant et al. (2005) and Su et al. (2008) combined the spectral information and the 

81 GLCM textures of HR images for urban classification, demonstrating the effectiveness of the GLCM 

82 features to complement the spectral information. To overcome the influence of the “window effect” of 

83 the spatial features, Huang et al. (2007a) presented an adaptive multi-scale feature fusion method, 

84 which automatically selects the best window size according to the spectral and boundary information, 

85 and integrates the multi-scale features to extract ground objects of different sizes. Standard GLCM 

86 textures are calculated based on one band, therefore the first principal component or one of the bands is 

87 widely employed when dealing with multi/hyperspectral imagery (Pacifici et al., 2009). In order to 

88 exploit all the useful information, Huang et al. (2014b) proposed a multichannel GLCM calculation 

89 method via image coding techniques to extract the synthesized texture features from 

90 multi/hyperspectral bands. 

91  2.1.2  Wavelet transform

92 Wavelet transform (WT), which was developed in the 1980s (Mallat, 1989), has been widely applied in 

93 texture analysis. The standard WT is based on orthogonal wavelet basis, aiming to obtain the 

94 multi-scale information, and extract the high- and low-frequency features of each layer. Myint et al. 

95 (2004) compared the WT, GLCM, spatial autocorrelation, and fractal approaches for extracting urban 

96 textures from HR images, suggesting that WT was more effective than the other methods. Ouma et al. 

97 (2006) constructed multi-scale textural features through WT, and combined them with the spectral 

98 features to extract urban trees from QuickBird imagery. The 3D-WT processes the multispectral 

99 imagery as a cube and extracts spectral and spatial information simultaneously, hence it provides a 

100 more adequate feature representation for multi/hyperspectral images (Guo et al., 2014; Huang and 

101 Zhang, 2012b; Li et al., 2017a; Qian et al., 2013; Yoo et al., 2009). For instance, Yoo et al. (2009) 

102 constructed the urban complexity index (UCI) based on 3D-WT, in order to discriminate complex 

103 urban areas and natural surfaces. Accordingly, Huang and Zhang (2012b) proposed the multi-scale UCI 

104 (M-UCI) to further enhance the performance over urban and suburban areas.

105  2.1.3  Local binary patterns

106 The local binary patterns (LBP) descriptor was proposed by Ojala et al. (1996) to characterize the local 

107 textural features of an image, and has been widely used in the fields of image registration, target 
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108 tracking, etc. The basic idea is to compare the gray value of the center pixel with its neighboring pixels, 

109 so that a set of binary codes of the center pixel can be obtained. Furthermore, improved versions of 

110 LBP were developed with illumination and rotation invariant properties (Ojala et al., 2002). LBP has 

111 been widely applied to characterize the complex urban textures in HR images. For example, Song et al. 

112 (2010) combined the LBP and spectral features to classify HR imagery, and achieved higher accuracy 

113 with the addition of LBP. Musci et al. (2013) extracted the LBP texture features of urban areas from 

114 QuickBird and IKONOS images for land cover classification, and obtained better results compared to 

115 the GLCM features. Li et al. (2015a) extracted local features of HR hyperspectral imagery based on 

116 LBP and obtained good classification results.

117

118 2.2  Spatial features for high-resolution imagery

119 2.2.1  Pixel shape index

120 The pixel shape index (PSI) is a spatial index describing local shape features (Zhang et al., 2006). The 

121 idea of the algorithm is to define a set of anisotropic direction lines radiating from the central pixel to 

122 its surrounding pixels. Under the constraints of the spectrum and the space, the number of neighboring 

123 pixels with spectral similarity to the central pixel along each direction line is counted as the length of 

124 this direction line. The length values of all the directional lines then constitute a histogram, and the 

125 mean value of the histogram is finally defined as the PSI value of the center pixel. PSI can detect more 

126 than 20 directions, which makes up for the insufficient scanning directions of the GLCM and 

127 sufficiently explores the spatial context features in HR images. The authors combined the spectral 

128 information and PSI to conduct urban classification, and demonstrated the superiority of PSI by 

129 comparing it with texture features such as the GLCM and WT. Furthermore, the structural feature set 

130 (SFS) was defined as an extension of PSI based on the histograms of the direction lines, including six 

131 operators such as length-width ratio, weighted PSI, and variance (Huang et al., 2007b). PSI is more 

132 efficient for urban structures than natural surfaces (Huang and Zhang, 2012b), so it is often used as a 

133 local spatial feature together with other features to classify complex urban areas (Li et al., 2017a; 

134 Zhang et al., 2013).

135  2.2.2  PanTex

136 PanTex (Pesaresi et al., 2008) is a rotation-invariant built-up presence index computed based on the 

137 GLCM. Specifically, PanTex extracts the GLCM from panchromatic imagery by using the offset 
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138 vectors in 10 directions and the CON measure. Only when the texture values in all the directions are 

139 high can the pixel be considered as a built-up pixel. Therefore, the minimum value of all the directions 

140 is taken as the PanTex value of the pixel. Since PanTex has false alarms from scattered trees, 

141 high-brightness bare soil, rocks, etc., it was further improved by utilizing the normalized difference 

142 vegetation index (NDVI) and morphological filtering, which increased the accuracy by 2.44% and 

143 20.76%, respectively (Pesaresi and Gerhardinger, 2011). This index has also been employed by the 

144 European Commission’s Joint Research Centre in the Global Human Settlement Layer (GHSL) project 

145 to extract large-scale built-up areas in Europe from HR images (Florczyk et al., 2016; Pesaresi et al., 

146 2011; Pesaresi et al., 2013).

147  2.2.3  Morphological features 

148 Morphological feature refers to the spatial structure features of an image obtained through basic 

149 morphological operations (e.g., erosion and dilation, opening and closing) with the structural element 

150 (SE). Pesaresi and Benediktsson (2001) proposed the multi-scale morphological profiles (MPs) and 

151 applied it to HR image classification successfully. Since the strength of the morphological feature 

152 response is determined by the SE radius and the local structure size, MPs extracts multi-scale bright 

153 and dark structures of the image with a set of SEs of different sizes (Pesaresi and Benediktsson, 2001). 

154 To detect the morphological features of different scales more effectively, the derivative morphological 

155 profiles (DMPs) were further defined as the sequential differences of the MPs between two adjacent 

156 scales. MPs and DMPs have been utilized for HR image processing in many studies, achieving 

157 satisfactory results (Benediktsson et al., 2003; Chanussot et al., 2006; Chini et al., 2009; Tuia et al., 

158 2009). In order to apply MPs to hyperspectral imagery, Benediktsson et al. (2005) proposed extended 

159 MPs (EMPs) by using the principal components as the base images to calculate the MPs. Since the 

160 spectral information of hyperspectral imagery was not sufficiently explored by EMPs, Fauvel et al. 

161 (2008) further fused the spectral information and MPs for urban classification. Dalla Mura et al. 

162 (2010b) proposed morphological attribute profiles (APs) to obtain the morphological attributes, such as 

163 area and standard deviation. Similarly, extended APs (EAPs) have also been proposed and applied to 

164 hyperspectral imagery (Dalla Mura et al., 2010a). Huang et al. (2014a) investigated the influence of the 

165 different base image strategies for MPs, and constructed the multiple morphological profiles (MMPs) 

166 for hyperspectral image classification. Ghamisi et al. (2015) reviewed and summarized the different 

167 morphological features. Since DMPs only consider the difference between adjacent scales and ignore 
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168 the cross-scale information, Huang et al. (2016) developed generalized DMPs (GDMPs) to obtain the 

169 difference between arbitrary scales, which can better describe the multi-scale property of complex 

170 urban scenes.

171 In recent years, the morphological building index (MBI) was proposed for unsupervised building 

172 extraction (Huang and Zhang, 2011). MBI describes the spectral and spatial features of buildings, such 

173 as brightness, structure, and anisotropy, based on morphological operators. Since buildings and their 

174 shadows have similar structures and are spatially adjacent, Huang and Zhang (2012a) also constructed 

175 the morphological shadow index (MSI) for the automatic detection of building shadows. Experiments 

176 were conducted on GeoEye-1, IKONOS, and WorldView-2 images of Wuhan, Hangzhou, and 

177 Washington DC, which confirmed the superiority of this algorithm. The MBI can effectively detect 

178 buildings from HR remote sensing images, but it may also induce false alarms from bright bare ground 

179 and roads. In order to further strengthen the efficacy of the MBI in suburban, mountainous, and 

180 agricultural areas, Huang et al. (2017b) proposed a post-processing framework and obtained more 

181 accurate building extraction results by applying spectral, shadow, and shape constraints successively on 

182 the initial MBI results, to filter out commission errors such as bright vegetation, soil, playgrounds, and 

183 roads. In addition, a number of studies combined the MBI, MSI, and spectral features for urban 

184 classification, built-up area extraction, change detection, etc. (Huang et al., 2017a; Li et al., 2017a; 

185 Wen et al., 2016; Zhang and Huang, 2018; Liu et al., 2019), confirming the effectiveness of these 

186 indices in urban feature extraction. 

187  2.2.4  Stereo features 

188 HR stereo observation satellites can acquire images from multiple viewing angles, which can be 

189 employed to produce a digital surface model (DSM), and applied to height estimation and 3D 

190 reconstruction. In recent years, many researchers have found that the application of stereo features, e.g., 

191 a DSM, to urban classification can increase the separability of land cover types such as building 

192 structures and roads (Longbotham et al., 2012; Peng et al., 2015; Qin, 2014; Qin and Fang, 2014; Tian 

193 et al., 2014). In terms of the fact that the elevation of roads, grassland, and bare land are relatively 

194 consistent while buildings have abrupt changes to the surrounding ground surface, Peng et al. (2017) 

195 proposed the stereo pair disparity index (SPDI) to extract built-up areas by describing the intensity of 

196 the elevation change. This method firstly generates disparity maps from multi-view images by using 

197 stereo matching algorithm (e.g., semiglobal matching), and then calculates the disparity gradients with 
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198 multi-directional offset vectors. Finally, the built-up areas can be extracted from the gradient features. 

199 However, in dense urban areas, the quality of a DSM or disparity map is susceptible to many factors 

200 such as the base-height ratio, the image matching algorithm, and occlusions, which further influence 

201 the accuracy of urban information extraction. In order to fully exploit the angular information of HR 

202 stereo imagery, Huang et al. (2018b) proposed the angular difference feature (ADF) to describe the 

203 dissimilarities between different viewing images from the pixel, feature, and label levels. The ZY-3 

204 multi-angle images were utilized in the experiments, and the results indicated that the joint use of ADF 

205 and spectral features can significantly improve urban classification accuracy, and the ADF can help to 

206 distinguish complex artificial structures with spectral similarity (e.g., roads, high-rise houses, urban 

207 villages, and residential buildings).

208
209 Figure 2 Illustrations of the typical spatial features extracted from ZY-3 stereo imagery in central 
210 Shanghai.

211 Demonstrations of some typical spatial features are displayed in Figure 2. The eight textural, 

212 structural and stereo features were extracted from ZY-3 imagery in central Shanghai. Note that the 

213 stereo features (DSM and ADF) were generated from multi-view images, while the remaining features 
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214 were calculated from the nadir panchromatic image. 

215

216 2.3  Deep learning-based feature representation

217 The previous features were designed based mainly on domain-specific knowledge. Nevertheless, their 

218 discriminative ability may still be limited to tackle complex or large-scale urban analysis. In recent 

219 years, deep learning-based methods have been increasingly investigated in the field of remote sensing, 

220 such as land use classification (Huang et al., 2018a), scene recognition (Li et al., 2017c), and urban 

221 expansion monitoring (He et al., 2019). Unlike handcrafted features, deep neural networks (DNNs) can 

222 directly extract high-level features from data based on neural networks with deep architecture in an 

223 automated fashion (Reichstein, et al., 2019; Zhu, et al., 2017). Sufficient learning of a deep neural 

224 network is very difficult and costly since it relies on massive samples and computational resources. The 

225 pre-training and fine-tuning strategies are widely adopted (Li et al., 2019). For instance, Marmanis et 

226 al. (2016) directly extracted the features by transferring the convolutional neural networks (CNNs) 

227 pre-trained on natural images (e.g., ImageNet) for HR remote sensing scene classification. Hu et al. 

228 (2015) proposed two scenarios to generate global feature representations for HR image scenes by using 

229 the CNNs, which achieved remarkable classification accuracies on two public HR datasets. Nogueira et 

230 al. (2017) adapted the existing CNN architectures to HR image classification by fine-tuning with a 

231 small sample set of HR images, demonstrating the effectiveness of fine-tuned networks for 

232 performance improvements compared with using only the pre-trained networks. 

233

234 3.  Urban information extraction from high-resolution remote sensing imagery 

235 3.1  Target recognition

236 Target recognition is one of the major tasks of information extraction. Urban targets, mainly including 

237 buildings, built-up, impervious surface, roads, vegetation, and water bodies, are of great interest to 

238 researchers and city planners since they are vital indicators of human distribution, economic 

239 development and city’s livability (Weng, 2012). With the availability of HR data, these detailed targets 

240 are now possible to be recognized. Numerous approaches have been proposed to extract the thematic 

241 information of the urban target of interest. In this section, some representative methods are briefly 

242 introduced.

243 3.1.1 Impervious surfaces, buildings, and roads
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244 Impervious surface, or other similar semantic abstractions such as artificial surfaces, urban footprint, 

245 human settlement, and built-up areas, are the major components of urban land. A large amount of 

246 researches have been focused on impervious surface extraction from coarse and medium resolution 

247 images over large areas (Chen et al., 2016; Li et al., 2015b; Schneider et al., 2010; Weng, 2012). HR 

248 imagery can significantly reduce the problems of mixed-pixels and blurred boundaries but also brings 

249 new challenges, such as the confusion between different ground objects (e.g., bright impervious layers 

250 and bare soil, dark impervious layers and water) and the problems brought by shadows. To address 

251 these issues, Hu and Weng (2011) proposed an object-based method to extract impervious surfaces for 

252 residential and central business district (CBD) areas from IKONOS imagery, which obtained high 

253 accuracies and precise feature boundaries. The attributes considered in the rule set included spectral, 

254 spatial, and textural features, which were used to comprehensively describe the properties of 

255 impervious surfaces. To tackle the underestimation of impervious area caused by shadows, Zhang and 

256 Huang (2018) presented a two-stage object-based framework by integrating multiple features. 

257 Specifically, the spatial relationships of different land covers (e.g., the distance between shadow and 

258 vegetation) were further considered in the second stage to extract more detailed impervious surface 

259 information in shaded areas. Since synthetic aperture radar (SAR) is sensitive to the structural or 

260 geometric features of built environment, integration of optical and SAR images at pixel, feature, and 

261 decision levels are explored to improve the estimation of impervious layers (Shao et al., 2016; Zhang et 

262 al., 2014). More recently, Liu et al. (2019) proposed a framework for built-up extraction by 

263 characterizing building properties from structural, textural and vertical aspects, demonstrating the 

264 complementation of multi-feature fusion. It was also suggested that the employ of stereo features can 

265 effectively reduce the omission errors of dark built-up areas. 

266 For building extraction, knowledge-based automatic approaches, which construct the building 

267 extraction rules by considering the spectral, shape, texture, and spatial characteristics of buildings, are 

268 commonly adopted. Generally, the sizes of most urban buildings are within a certain range; buildings 

269 have vertical structures and high reflectivity; buildings and their shadows are spatially adjacent (Huang 

270 et al., 2017b; Pesaresi et al., 2008). These characteristics have been extensively exploited to infer the 

271 existence of buildings in HR images, by characterizing the brightness, local contrast, shape, height, and 

272 the spatial relationships between buildings and their shadows with the information of solar incident 

273 angle. For instance, in Ok et al. (2013), the shadow areas in the image were firstly extracted, then the 
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274 candidate buildings were detected according to the spatial directional relationship of shadows and 

275 buildings. Since this method highly dependent on initial shadow extraction accuracy, post-processing 

276 and optimization of the shadow were conducted in Ok (2013) in order to further improve building 

277 detection accuracy. The MBI and MSI discussed in Section 2.2.3 were also employed in many studies 

278 for automatic building detection (Huang and Zhang, 2012a). When dealing with complex urban scenes, 

279 supervised approaches are widely used for building extraction. For example, the widely used 

280 object-oriented multi-feature fusion methods, for which the selection of the segmentation scale and 

281 feature extraction are the two important steps. The optimization of the segmentation scale ensures the 

282 independence and integrity of the extracted buildings (Tian and Chen, 2007), while spectral, texture, 

283 shape and stereo features are commonly applied to depict the within-object information (Fauvel et al., 

284 2008; Liu et al., 2017; Zhang et al., 2017). 

285 Road detection from HR images is a challenging task because of the spectral and spatial 

286 complexity of road networks. Similar to building extraction, the spectrum, shape, and topology 

287 properties of road are extensively considered. For example, roads generally present a curvilinear shape; 

288 the width of a road does not change drastically; and roads have apparent edge lines and crossings, and 

289 often form networks. Based on this knowledge, Huang and Zhang (2009) proposed an object-based 

290 method to extract road centerlines from HR imagery, by integrating multi-scale spectral-structural 

291 information based on support vector machine (SVM). Poullis (2014) presented an automatic road 

292 extraction method that combined tensor encoding, Gabor filter, and Graph-Cuts for the inference of 

293 road features. Shanmugam and Kaliaperumal (2015) proposed the active deformable model for 

294 semi-automatic road extraction. This method first selected the road seed points manually, from which 

295 the propagation started and was restrained by the width and color of the road. Then, the interconnected 

296 road networks can be extracted. Sghaier and Lepage (2016) applied the beamlet transform in road 

297 border detection to find the most suitable scale for each road in HR image. The SFS structural feature, 

298 mathematical morphology, and Canny detector were also employed in preprocessing steps for edge 

299 candidate selection.

300 3.1.2 Urban vegetation and water areas

301 Vegetation and water have distinct spectral characteristics, hence some classic spectral indices, such as 

302 the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), 

303 and the modified NDWI (MNDWI), were designed for their detection based on simple band operations. 
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304 However, most of the existing indices are not very appropriate to be directly applied to HR images in 

305 urban environment due to the spectral similarity of some urban structures (e.g., temporary building, 

306 shadow) which also show high response of these indices. Moreover, many HR imagery have only four 

307 spectral bands (i.e., blue, green, red, near-infrared), hence lack the prerequisite channel to calculate 

308 some indices (e.g., MNDWI). To tackle these problems, Kumar et al. (2012) created a new vegetation 

309 index by taking advantages of the NIR-2 and red edge bands of WorldView-2 imagery to extract 

310 vegetation, which obtained improved accuracy compared to the conventional NDVI. Xie et al. (2016) 

311 proposed a HR water index based on combinations of WorldView-2 eight-band data. This new water 

312 index was further combined with the MSI, in order to alleviate the disturbance from shadows. 

313 According to their tests, the water index calculated by coastal-NIR2 or green-NIR2 bands achieved the 

314 best performance to highlight urban water areas in multiple big cities.

315 In addition to the binary extraction of vegetation and water, some studies further concerned the 

316 identification of their subclasses. For instance, Wen et al. (2017) conducted semantic classification of 

317 the urban tree functions from HR imagery. Unlike general vegetation extraction and tree species 

318 classification, this study considered the location and function of trees, by dividing trees into park trees, 

319 roadside trees and residential-institutional trees based on a multi-level framework (pixel-object-patch). 

320 Specifically, the vegetation index was firstly calculated for vegetation extraction at the pixel level. 

321 Object-oriented segmentation was then performed over the vegetated area, and the spectral and texture 

322 features were extracted at the object level to distinguish between trees and ground vegetation. Finally, 

323 the semantic functions of the trees were obtained based on the area, shape, structure, and spatial 

324 relationships at the patch level. Huang et al. (2015b) identified different water-body types including 

325 lakes, rivers, canals and ponds in Wuhan and Shenzhen. A two-layer machine learning framework was 

326 presented, which first detected preliminary water areas by using water, shadow, and vegetation indices. 

327 The geometrical and textural features were then extracted at the object level, and the different urban 

328 water types were finally identified. 

329 In general, courtesy of the rich spatial details in HR imagery, massive efforts have been devoted to 

330 propose automatic or semi-automatic approaches for urban object extraction, by characterizing the 

331 physical properties (i.e., texture, shape, height) of the target of interest. Although impressive results 

332 were obtained, their applicability may be limited since the spatial contexts of complex and varying 

333 urban scenes are often difficult to be described as a set of “rules”. Current studies that integrate domain 
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334 knowledge with machine learning techniques (e.g., deep learning) show a promising direction for urban 

335 target detection from HR imagery (Zhou et al., 2016; Zhu et al., 2017).

336

337 3.2  Land use/land cover mapping

338 Urban land use/land cover (LULC) information are crucial data to understand the complex interactions 

339 between human and the environment (Kuang et al., 2016; Yu et al., 2016). Land cover focuses on the 

340 physical property of the land surface, e.g., impervious surfaces, vegetation and water, while land use 

341 places emphasis on the social functional attributes, such as residential, industrial or commercial. 

342 Numerous methods have been proposed for LULC mapping, which can generally be categorized into 

343 three types according to their basic processing units (i.e. pixels, objects, and moving windows). Pixel- 

344 and object-based approaches are widely used for land cover mapping (Myint et al., 2011). While 

345 classifying land use is more difficult since it relates to human activities and one land use type is often 

346 mixed by multiple land covers. The texture, geometry, contexture, land cover proportion, or other 

347 auxiliary data (e.g., Google Street View) are often incorporated to recognize land use patterns and 

348 configurations (Li et al., 2017b; Zhang et al., 2019). Machine learning techniques for supervised 

349 classification have been extensively exploited for urban LULC mapping from HR imagery, such as the 

350 classification and regression tree (CART), k-nearest neighbor (KNN), random forest (RF), SVM, and 

351 multilayer perceptron (MLP) (Qian et al., 2015; Zhang and Huang, 2018). Since traditional low-level 

352 features may be insufficient to characterize urban land use, mid-level features are constructed by means 

353 of dictionary learning and sparse coding such as the popular bag-of-visual-words (BOVW) and latent 

354 Dirichlet allocation (LDA) models. Based on these scene models, Huang et al. (2015a) extracted the 

355 urban villages from QuickBird and WorldView-2 images covering Wuhan and Shenzhen; Zhang and 

356 Du (2015) employed city blocks as the processing unit to map the urban functional zones in Zhuhai and 

357 Beijing. Moreover, a variety of landscape metrics were calculated in order to better describe complex 

358 urban scenes. For example, Voltersen et al. (2014) combined HR images and a normalized DSM 

359 (nDSM) to classify basic urban features. Several landscape metrics of buildings and vegetation, e.g., 

360 volume, height, and vegetation fraction, were then extracted at the block level to describe the urban 

361 structure types, dividing the urban land use into residential, commercial, and industrial areas, parks, 

362 woodland, etc. Liu et al. (2017) correlated the physical structure properties of urban villages (e.g., high 

363 building density and scarce vegetation) and the landscape metrics for urban village mapping. Recently, 
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364 more endeavors have been devoted to employ the new deep learning methods for LULC mapping, 

365 which achieved state-of-the-art performances by learning the most discriminative features 

366 hierarchically (Huang et al., 2018a; Zhang et al., 2019; Zhu, et al., 2017). 

367

368 3.3  Change detection

369 In developing regions, many cities are undergoing rapid urban expansion as well as internal formation 

370 and demolition. Timely and efficient monitoring of urban changes helps us to understand human 

371 activity and provide a decision-making basis for urban planning (Marin et al., 2015). HR remote 

372 sensing imagery enables detection of subtle urban changes, but also poses great difficulties to the 

373 traditional methods. The major challenge of change detection from HR imagery is the confusion of 

374 radiometric and real semantic changes. False alarms are mainly induced by the distinct spectral 

375 heterogeneity of the multi-temporal HR images (i.e., the spectral behavior of the same object varies at 

376 different dates), due to different imaging conditions, mis-registration, disparity of vertical structures, 

377 etc. (Bruzzone and Bovolo, 2012). The widely used change detection methods include machine 

378 learning approaches (Volpi et al., 2013) and automatic methods such as the multilevel change vector 

379 analysis (Bovolo, 2009), the pulse-coupled neural networks (Pacifici and Del Frate, 2010), and the 

380 multi-temporal morphological attribute profiles (Falco et al., 2013). In order to tackle the problems of 

381 spectral complexity and mis-registration of the multi-temporal HR images, Wen et al. (2016) employed 

382 several basic urban primitives (building, vegetation, and water) to represent complex urban scenes and 

383 utilized blocks as the basic unit to calculate their composition and arrangement. The information of the 

384 primitive features in the corresponding blocks between multi-temporal images were compared, then the 

385 changed area and type can be identified. In addition, Huang et al. (2017a) proposed a multi-level (pixel, 

386 grid, and city block) framework for urban change analysis from HR images. The ZY-3 stereo images 

387 were employed to produce the multi-temporal orthographic images covering Wuhan and Beijing, and 

388 the multi-features and rules were integrated for land cover classification. The authors also compared 

389 the results of ZY-3 and Landsat images, suggesting that HR imagery was indispensable for subtle urban 

390 change detection. 

391

392 3.4  Ecology and climate analysis

393 Urban LULC types have profound impacts on the urban ecological environment and climate (Kuang et 
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394 al., 2017; Shi et al., 2016). On the basis of LULC data, more in-depth information of a city can be 

395 explored, such as the quantitative assessment of ecosystem service capacities or simulation of local 

396 climate. Burkhard et al. (2012) proposed a clear and applicable conceptual framework for ecosystem 

397 service mapping. The authors linked the different land cover types to ecosystem service supply and 

398 demand, and synthesized the expert knowledge from many studies to give the capacity scores of 

399 different land cover types. Following the ecosystem service concept and assessment scheme, Haas and 

400 Ban (2017) assessed the ecological changes in the urban core districts of Shanghai in China. The 

401 authors first generated the basic urban LULC types from multi-temporal IKONOS and GeoEye-1 

402 images. The LULC changes were then analyzed in terms of ecosystem service supply and demand, and 

403 the ecosystem balance of central Shanghai from 2000 to 2009 was modeled. 

404 On the other hand, the distribution and variation of the urban climate have received broad 

405 attention, as the urban climate is closely related to environmental and human health issues. The dense 

406 population and heterogeneous landscapes in urban areas make the intra-urban climate distinctly 

407 different. Stewart and Oke (2012) introduced a universal classification scheme for the land surface, 

408 called local climate zones (LCZ), for urban climate studies. According to the building properties (e.g., 

409 height, density, material), the LCZ system classifies 10 built types, such as compact high-rise, open 

410 low-rise, and heavy industry. Meanwhile, seven land cover categories, including dense trees, low 

411 plants, water, etc., are also defined to represent natural landscapes. The spatial scale of LCZ studies is 

412 generally between 100 and 1000 m. Bechtel et al. (2015) investigated the feasibility of using remote 

413 sensing imagery for LCZ mapping, and developed the World Urban Database and Access Portal Tools 

414 (WUDAPT) for global HR LCZ mapping. Some follow-up studies were carried out, for instance, 

415 Bechtel et al. (2016) integrated multispectral data and SAR imagery for LCZ mapping in arid areas. 

416 Wang et al. (2018) performed LCZ classification in arid desert cities using open-source image data and 

417 software. The LCZ properties were evaluated and compared to the original value ranges in Stewart and 

418 Oke (2012), and their relationships with the surface urban heat island effect were also analyzed. 

419

420 4.  Conclusions and perspectives

421 As an emerging research field, the development of high-resolution (HR) urban remote sensing is 

422 inseparable from sensor technology, photogrammetry, image processing technique, etc. 
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423 High-resolution, multi-temporal, multi-angle, and multi-platform urban observations allow more 

424 elaborate urban application, which also call for more effective data interpretation approaches. In this 

425 paper, we examined the major advances in HR urban remote sensing from the feature level to the scene 

426 level. A series of advanced textural, structural and stereo features, as well as the new techniques for 

427 urban information extraction were summarized. Although HR urban remote sensing has achieved 

428 substantial improvements, many of the existing researches only involve small-scale applications and 

429 their robustness and generalization ability are unproved. There are still great challenges to meet the 

430 requirements of practical production or commercialization. The trends for future development are 

431 discussed from the following perspectives: 

432 1) Progress in methodology: Recent developments in machine learning, especially deep learning, 

433 have achieved notable success in plenty of scientific fields. For instance, convolutional neural 

434 networks (CNNs) and recurrent neural networks (RNNs) are the two important branches for spatial 

435 learning and sequence learning, respectively, which are highly effective in urban remote sensing 

436 tasks. Nevertheless, applying deep learning to remotely sensed image interpretation is still in its 

437 infancy mainly due to the strong data heterogeneity, inadequate sample annotation, and high 

438 complexity of the model. Specialized training datasets for HR remote sensing imagery are still few 

439 in number. There is an urgent need for creating large-volume benchmark data with abundant, 

440 diverse, and reliable representation of various urban landscapes. Unsupervised, semi-supervised, or 

441 weakly supervised learning approaches are also promising to reduce the work of manual 

442 annotation. 

443 2) Characterizing urban structure and pattern: Identifying the internal pattern, configuration or 

444 functional attributes (e.g., commercial/residential/industrial areas, urban villages, 

445 ecological/leisure land) of urban land is significant for effective urban management and planning. 

446 By virtue of HR stereo imagery (e.g., ZY-3, WorldView), 3D urban form can be conveniently 

447 derived, which can support the future researches on urban dynamics in both horizontal and vertical 

448 dimensions, as well as providing new avenues for multidisciplinary applications such as 

449 socioeconomic research, disaster response, environmental assessment, and ecological modelling.

450 3) Big data challenge: The astonishing geospatial data acquisition ability and the trend of elaborating 

451 urban information extraction over time and space calls for increased computational power to 

452 address the big data challenges (Ma et al., 2015). The abundant high-performance computing 
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453 resources and cloud technology offer promising solutions (Li et al., 2016; Sun et al., 2019). One 

454 such example is GEE (Gorelick et al., 2017), which has archived petabytes of EO data and allows 

455 interactive data process and algorithm development over its online system, facilitating lots of 

456 researchers to carry out global or continental urban mapping and studies (Gong et al., 2019a; Gong 

457 et al., 2019b; Liu et al., 2018).

458 4) Global mapping: The exponentially growing HR data facilitates urban remote sensing towards 

459 larger scales hence increase our knowledge about the fast urbanizing world. Historically, urban 

460 mapping at the global scale are mostly relied on coarse resolution imagery (e.g., MODIS). With 

461 the availability of the global Landsat archives, some fine resolution global products were generated 

462 in recent years, such as the FROM-GLC30 (Gong et al., 2013), GlobeLand30 (Chen et al., 2015), 

463 GHSL (Pesaresi et al., 2015), and MGIS (Liu et al., 2018), which provide us valuable information 

464 about the location and extent of urban areas worldwide. More recently, the global land cover map 

465 at 10 m resolution, i.e., FROM-GLC10 (Gong et al., 2019), was derived from Sentinel-2 data at so 

466 far the highest spatial resolution. In addition, new satellites, such as GaoFen series, ZY-3 

467 constellation, PlanetScope, and Luojia-1, can acquire optical, SAR and nighttime light data at high 

468 spatial/temporal resolution, which have great potentials for global urban information extraction in 

469 the future.

470
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