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Spatially continuous satellite data have been widely used to estimate monthly air temperature (Ta). How-
ever, it is still not clear whether the estimated monthly Ta is temporally consistent with observed Ta or not.
In this study, the accuracies of interannual variations and temporal trends in estimated monthly Ta were
systematically analyzed for Mainland China during 2001–2018. The differences in accuracy among five
ways to input data into the model were investigated. The Cubist algorithm and ten variables were used to
estimate monthly Ta. It was found that inputting data for the same month into the model can generate
more accurate results than inputting all data into the model. Using temporal variables (i.e., month and
year) can significantly increase the accuracy of estimated Ta. These results can be explained by different re-
lationships between Ta and auxiliary variables that appear at different times. Thus, using temporal variables
can help distinguish between different relationships and improve accuracy levels of the estimated Ta. When
applying the best method (inputting data for the same month into the model and using the year as a tem-
poral variable), the coefficient of determination (R2) of estimated monthly mean Ta, interannual variations
in monthly mean Ta and temporal trends in monthly mean Ta were recorded as 0.997, 0.731 and 0.848, re-
spectively. The root mean squared errors (RMSEs) of estimated monthly mean Ta, interannual variations in
monthly mean Ta and temporal trends in monthly mean Ta were recorded as 0.629 °C, 0.593 °C and
0.201 °C/decade, respectively. An accurate, national coverage, 1 km spatial resolution and long time series
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(2001–2018) monthly mean, maximum and minimum Ta dataset was finally developed. The dataset can be
of great use to many fields such as climatology, hydrology and ecology.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Near surface air temperature (Ta) is a key variable in multiple fields
including climatology, hydrology, ecology and epidemiology (Alkama
and Cescatti, 2016; Medina-Ramon et al., 2006; Warren et al., 2018;
Liu et al., 2018a). Traditionally, Ta is measured by meteorological sta-
tions at a height of 2 m. It has high accuracy and temporal resolution
but only provides point spatial coverage, which is usually inadequate
for urban heat island (UHI), climate change and epidemiological studies
(Kloog et al., 2014; Zhu et al., 2019; Zhou et al., 2019; Xu et al., 2018; Liu
et al., 2018b). Fortunately, the wall-to-wall coverage of satellite obser-
vations can provide spatially continuous data. Land surface temperature
(Ts) derived from satellite sensors shows strong relationships with Ta.
Thus, spatially continuous Ta data can be developed using satellite Ts
data. Moderate Resolution Imaging Spectroradiometer (MODIS) Ts
data have beenwidely used to estimate Ta owing to their high temporal
resolution and global coverage (Benali et al., 2012; Kloog et al., 2014; Li
and Zha, 2019a; Lu et al., 2018; Vancutsem et al., 2010; Zhu et al., 2017;
Zhu et al., 2019).

The Ta estimation using MODIS Ts data can generally be grouped
into two categories. Some studies have estimated daily Ta (Kloog
et al., 2012; Kloog et al., 2014; Li et al., 2018; Lin et al., 2012; Yoo
et al., 2018; Zhu et al., 2013). For example, Li et al. (2018) used gapfilled
MODIS Ts data and a geographically weighted regression method to
map daily maximum and minimum Ta in the conterminous United
States for 2010. The authors found that the root mean squared errors
(RMSEs) of predicted daily maximum and minimum Ta were 2.1 and
1.9 °C, respectively. Other studies have mapped monthly Ta (Hooker
et al., 2018; Li and Zha, 2019a; Lin et al., 2016; Lu et al., 2018; Xu
et al., 2018; Zhu et al., 2019). For example, Lu et al. (2018) used a hier-
archical Bayesian method to estimate monthly Ta in Qinghai province
(China) for the period of 2003–2011, and recorded the RMSEs of esti-
matedmonthlymaximum andminimumTa as 2.15 and 1.97 °C, respec-
tively. Using the Cubistmodel and 11 variables, Xu et al. (2018)mapped
monthly mean Ta for the Tibetan Plateau during 2001–2015. Mean ab-
solute error (MAE) and RMSE were recorded as 0.73 and 1 °C, respec-
tively. Hooker et al. (2018) used geographically and climate space
weighted regressions to map monthly mean Ta at a global scale during
2003–2016, finding RMSEs of 1.14–1.55 °C.

However, two questions still have not been comprehensively ad-
dressed by the previous studies. First, are the interannual variations
and long-term trends of estimated monthly Ta consistent with those
of observed monthly Ta? Accurate interannual variations in estimated
Ta are needed when investigating climate variability and its relation-
ships with other variables (e.g., vegetation dynamics, animal growth
and other climate variables) (Honsey et al., 2019; Piao et al., 2014;
Wang et al., 2019; Zhang et al., 2017; Liu et al., 2017), and accurate
long-term trends of estimated monthly Ta are needed to evaluate pat-
terns of climate change (e.g., global warming and changes in UHI) (Li
and Zha, 2019b; Li and Zha, 2019c; Xu et al., 2018). However, to our
knowledge, only Li and Zha (2019b) have shown that the accuracy of
temporal trends of estimated monthly Ta was acceptable (coefficient
of determination (R2): 0.630, MAE: 0.00132 °C/month, RMSE:
0.00178 °C/month) for the period of 2001–2015 in China. Second, previ-
ous studies generally input all data (all years and months) to build a
model when estimating monthly Ta (Li and Zha, 2019a; Lu et al.,
2018; Xu et al., 2018; Zhu et al., 2019). The model can also be built
using: (1) data for only one month and (2) data for the same month
from multiple years. To our knowledge, few studies have compared
the accuracy of different methods to input data. Thus, the following
question is raised as well: do different approaches to inputting data
vary in accuracy?

Thepresent study aims at answering the twoquestions raised above,
and at developing an accurate monthly Ta dataset. Mainland China
(Fig. 1) was selected as our study area, as it is a hot spot of climate
change and UHI research (Huang and Wang, 2019; Luo and Lau, 2017,
2018; Niu et al., 2019; Yang et al., 2019; Yao et al., 2017; Zhou et al.,
2019). Specifically, the objectives of this study are: (1) to investigate
the accuracy of estimatedmonthly Ta for Mainland China for the period
of 2001–2018; (2) to analyze the consistency of interannual variations
in estimated and observed monthly Ta; (3) to reveal the consistency
of long-term trends of estimated and observed monthly Ta; and (4) to
develop a spatially and temporally accurate monthly mean, maximum
and minimum Ta dataset for Mainland China for the period of
2001–2018.

2. Data and methods

2.1. Data information and preprocessing

The data used in the present study are presented in Table 1. Daily
mean,maximumandminimumTadata drawn from699meteorological
stations during 2001–2018 were collected from the ChinaMeteorologi-
cal Data Service Center (CMDC). 5 stations have more than 7 missing
daily values in amonth. Theywere excluded from this study and the re-
maining 694 meteorological stations were thus used (Fig. 1). Subse-
quently, daily mean, maximum and minimum Ta were averaged to
monthly mean, maximum and minimum Ta. There are 0.03% missing
daily values in the remaining 694 meteorological stations. These miss-
ing daily values were ignored when daily values averaged to monthly
values. For example, if there were 30 valid and 1 missing Ta values in
a month, the monthly mean Ta was calculated as the average Ta of the
30 valid Ta values.

Ts and vegetation information for the period of 2001–2018were de-
rived fromMODISMOD11A2 andMOD13A3 enhanced vegetation index
(EVI) data, respectively (Table 1). Data drawn from the Terra satellite
rather than those from the Aqua satellite were used, as they cover lon-
ger time series (Terra satellite: February 2000 to the present; Aqua sat-
ellite: July 2002 to the present) (He et al., 2017; Yao et al., 2019; Yao
et al., 2018). These data have been widely validated and have shown
to exhibit good performance (Huete et al., 2002; Wan, 2008; Wan,
2014). Eight-day composite Ts was averaged into monthly Ts (missing
values were not processed (Lai et al., 2018; Li et al., 2017)). In addition,
latitude and longitude information was obtained from MODIS data.

Monthly solar radiation data with a 1 km spatial resolution were
mappedusing theArea Solar Radiation Tool available in ArcGIS software
(Xu et al., 2018; Yoo et al., 2018). Topographic index data were
downloaded directly from the Environmental Information Data Centre.
Positive and negative topographic index values of this dataset represent
valley and ridge landforms, respectively. Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Digital Elevation Model
(DEM) data were derived from Geospatial Data Cloud. Topographic
index and DEM data were resampled to a 1 km spatial resolution.
Monthly solar radiation was assumed to remain the same in different
years. Latitude, longitude, topographic index and DEM data were as-
sumed to remain the same over the whole study period (2001–2018).



Fig. 1. Study area and locations of the 694 meteorological stations of this study.
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2.2. Methods

2.2.1. Variable and model selection
Daytime Ts, nighttime Ts, EVI, solar radiation, topographic index,

DEM, latitude and longitude were used as auxiliary variables in this
study, since these variables have positive effects in predicting Ta accord-
ing to the published literatures (Li and Zha, 2019a; Noi et al., 2016; Xu
et al., 2018; Yoo et al., 2018). Machine learning methods have been
widely used to estimate Ta (Li and Zha, 2019a; Li and Zha, 2019b; Noi
et al., 2016; Yoo et al., 2018; Zhang et al., 2016). The Cubist algorithm
(Quinlan, 1992) is a rule-based algorithm that is an extension of the
M5 model tree. While it is a commercial product, it is also a widely
Table 1
Data used in this study.

Data Information Source

Meteorological
data

1 day temporal resolution,
694 stations

http://data.cma.cn/

Ts 8-day composite, 1 km
spatial resolution

https://ladsweb.modaps.eosdis.
nasa.gov/search/

EVI Monthly composite, 1 km
spatial resolution

https://ladsweb.modaps.eosdis.
nasa.gov/search/

Latitude and
longitude

1 km spatial resolution MODIS data

Solar radiation Monthly composite, 1 km
spatial resolution

Calculated in ArcGIS software

Topographic
index

15 second spatial resolution http://eidc.ceh.ac.uk/

DEM 30 m spatial resolution http://www.gscloud.cn/

Ts: land surface temperature. EVI: enhanced vegetation index. MODIS: Moderate Resolu-
tion Imaging Spectroradiometer. DEM: digital elevation model.
used regression and classification algorithm, as it is made available
through R statistical software (Kuhn et al., 2018). Among various ma-
chine learning methods, the Cubist algorithm is generally more precise
than other methods in terms of predicting Ta (Noi et al., 2017; Xu et al.,
2018; Zhang et al., 2016). For instance, Xu et al. (2018) found the accu-
racy of Cubist algorithm to be more accurate than ten other machine
learningmodels. Zhang et al. (2016) found the Cubist and random forest
algorithms to be more accurate than four other algorithms. Thus, in the
present study, the Cubist algorithm was used to estimate Ta using the
‘Cubist’ add-on package available in R. Model parameters were selected
using the bootstrap method via the ‘caret’ add-on package.

2.2.2. Different approaches to input data
The values of pixels positioned closest to eachmeteorological station

were extracted from daytime Ts, nighttime Ts, EVI, solar radiation and
topographic index data. DEM, latitude and longitude information ob-
tained frommeteorological stations was directly applied. Subsequently,
these variables (independent variables) and Ta (dependent variable)
were input into the Cubistmodel. To analyze differences in the accuracy
levels of different ways to input data, a total of 5 methods were used in
the present study (Table 2). Method 1 involved using data for one
month to build the model and predicting Ta for the corresponding
month. Method 2 involved using data for the same month from all
years to build the model and predicted Ta for the corresponding
month from all years. Method 3 is the same as Method 2 but year
(2001–2018) was used as an additional variable. Method 4 involved
using all data to build the model and predicting Ta for the whole study
period. This method has been widely used in previous studies (Li and
Zha, 2019a; Lin et al., 2016; Lu et al., 2018; Xu et al., 2018; Yoo et al.,
2018; Zhu et al., 2019). Method 5 is the same as Method 4 but year
and month (1−12) were utilized as additional variables. It was worth

http://data.cma.cn/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
http://eidc.ceh.ac.uk/
http://www.gscloud.cn/


Table 2
Different ways to input data used in this study.

Method Description Variable

Method
1

Data for one month were used to
build the model and to predict Ta
for the corresponding month

Daytime Ts, nighttime Ts, EVI,
DEM, latitude, longitude,
topographic index and solar
radiation

Method
2

Data for the same month from
multiple years were used to build
the model and to predict Ta for the
corresponding month from all
years

Daytime Ts, nighttime Ts, EVI,
DEM, latitude, longitude,
topographic index and solar
radiation

Method
3

Data for the same month from
multiple years were used to build
the model and to predict Ta for the
same month from all years; year
information (2001–2018) was used
as an auxiliary variable

Daytime Ts, nighttime Ts, EVI,
DEM, latitude, longitude,
topographic index, solar radiation
and year

Method
4

All data were used to build the
model and to predict Ta for the
whole study period

Daytime Ts, nighttime Ts, EVI,
DEM, latitude, longitude,
topographic index and solar
radiation

Method
5

All data were used to build the
model and to predict Ta for the
whole study period; year and
(2001–2018) month (1–12)
information were used as auxiliary
variables

Daytime Ts, nighttime Ts, EVI,
DEM, latitude, longitude,
topographic index, solar radiation,
month and year

Table 3
The accuracy of predicted monthly air temperature (Ta).

Method 1 Method 2 Method 3 Method 4 Method 5

Monthly mean Ta
MAE (°C) 0.742 0.730 0.474 0.790 0.633
RMSE (°C) 1.051 0.964 0.629 1.068 0.830
R2 0.992 0.993 0.997 0.991 0.995

Monthly maximum Ta
MAE (°C) 0.918 0.948 0.607 0.986 0.811
RMSE (°C) 1.351 1.241 0.798 1.306 1.054
R2 0.985 0.987 0.995 0.986 0.991

Monthly minimum Ta
MAE (°C) 0.900 0.784 0.540 0.866 0.686
RMSE (°C) 1.224 1.029 0.719 1.169 0.902
R2 0.990 0.993 0.997 0.991 0.995

MAE: mean absolute error. RMSE: root mean squared error. R2: coefficient of
determination.
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noting that station relocation (latitude or longitude of the station
changed at least one time (Liao et al., 2016)) will not affect Ta estima-
tion. If the location of a meteorological station changes, values of auxil-
iary variables in new position will be extracted. The relationships
between Ta and auxiliary will not be affected by station relocation,
thus, the Ta estimation will not be affected.

2.2.3. Model validation
Parts of the goals of this study are to evaluate the accuracy of inter-

annual variations and long-term trends of estimated Ta. Meteorological
stationswith relocation for the period of 2001–2018 should not be used
to evaluate the accuracy of interannual variations and long-term trends
of estimated Ta. Therefore, a modified 10-fold cross-validation method
was employed in this study. There are 357 and 337 stations with and
without relocation, respectively, for the period of 2001–2018 (Fig. 1).
Samples taken from meteorological stations without relocation were
randomly and evenly partitioned into 10 subsets. Subsequently, 9 sub-
sets and samples taken from themeteorological stationswith relocation
were used to train themodel, and the remaining subset was utilized for
validation purposes. This step was repeated 10 times. Each subset was
used once for verification. That is to say, samples taken from meteoro-
logical stations with relocation were only utilized to train the model,
and only samples drawn from themeteorological stationswithout relo-
cationwere used to validate. Finally, R2, RMSE andMAEwere calculated
to describe the accuracy of estimated monthly Ta. Interannual R2, RMSE
and MAE for the period of 2001–2018 were calculated for each station
without relocation, to evaluate the accuracy of interannual variations
in estimated monthly Ta. Linear regression was used to calculate the
temporal trends of estimated and observed monthly Ta during
2001–2018 for each station without relocation. R2, RMSE and MAE
were then calculated to assess the accuracy of temporal trends of esti-
mated monthly Ta.

3. Results

3.1. The accuracy of predicted monthly Ta

The overall accuracy of predicted monthly Ta is shown in Table 3.
The accuracies of predicted monthly mean, maximum and minimum
Ta for each month are shown in Figs. 2, S1 and S2, respectively. Five
main results were found. First, there were significant differences in
the accuracy of predictedmonthly Ta derived from the variousmethods.
The MAE, RMSE and R2 values of estimated monthly mean Ta were
found to range from 0.474–0.790 °C, 0.629–1.068 °C and 0.991–0.997,
respectively (Table 3). Method 3 was the most accurate method. Sec-
ond, Method 2 was found to be more accurate than Method 4, and
Method 3 was found to be more accurate than Method 5. These results
indicate that inputting data for the samemonth into themodel can gen-
erate more accurate results than inputting all data into the model. This
can be attributed to different relationships between monthly Ta and
auxiliary variables across different months, but close relationships for
the same month. A model based on 12 months of data may generate a
bias for different months (Colombi et al., 2007; Zhang et al., 2011).
Third, using temporal variables (i.e., month and year) can significantly
increase the accuracy of estimated Ta, as Method 3 is more accurate
than Method 2 and Method 5 is more accurate than Method 4. This is
the case because the relationships between Ta and auxiliary variables
differ by season and year, and using temporal variables can help distin-
guish between different relationships found at different times and im-
prove accuracy levels (Colombi et al., 2007; Zhang et al., 2011). These
results echo those of Zhang et al. (2011), which show that applying
solar declination (a variable that is a function of the Julian day) can im-
prove the accuracy of estimated daily Ta. However, to our knowledge,
few studies have used temporal variables to predict monthly Ta. There-
fore, using temporal variables to predictmonthly Ta in future research is
highly recommended. Fourth, the accuracy of predicted monthly mini-
mum Ta was stronger than that of maximum Ta. This finding corrobo-
rates previous studies and can be attributed to stronger relationships
between Ts and minimum Ta than between Ts and maximum Ta
(Kloog et al., 2014; Lin et al., 2016; Vancutsem et al., 2010). Fifth, the
MAE and RMSE of predicted Ta for warmer months are generally
lower than those for colder months while most R2 values for warmer
months are lower than those for colder months (Fig. 2). This result ech-
oes Li and Zha (2019a) and can be attributed to the larger prediction
range of colder months than that of warmer months.

3.2. The accuracy of interannual variations in predicted monthly Ta

The overall accuracy of interannual variations in predicted monthly
Ta is shown in Table 4. The accuracy levels of interannual variations in
predicted monthly mean, maximum and minimum Ta for each month
are shown in Figs. 3, S3 and S4, respectively. Some of the results on
the accuracy of interannual variations in predicted monthly Ta are sim-
ilar to those found on the accuracy of predicted monthly Ta: significant
differences in accuracy levels were found across various methods; in-
putting data for the same month into the model can produce more



Fig. 2. The accuracy of predicted monthly mean air temperature (Ta) for eachmonth. MAE: mean absolute error. RMSE: root mean squared error. R-square: coefficient of determination.
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accurate results than inputting all data into the model; utilizing tempo-
ral variables can considerably increase accuracy levels; and theMAE and
RMSE of interannual variations in estimated Ta for warmer months are
Table 4
The accuracy of interannual variations in predicted monthly Ta averaged for 337 stations
and 12 months.

Method 1 Method 2 Method 3 Method 4 Method 5

Monthly mean Ta
MAE (°C) 0.742 0.730 0.474 0.790 0.633
RMSE (°C) 0.866 0.916 0.593 1.004 0.792
R2 0.774 0.431 0.731 0.404 0.544

Monthly maximum Ta
MAE (°C) 0.918 0.948 0.607 0.986 0.811
RMSE (°C) 1.066 1.181 0.757 1.235 1.011
R2 0.787 0.421 0.720 0.390 0.537

Monthly minimum Ta
MAE (°C) 0.900 0.784 0.540 0.866 0.686
RMSE (°C) 1.040 0.981 0.673 1.104 0.857
R2 0.700 0.337 0.656 0.324 0.471
generally lower than those for colder months while most R2 values for
warmer months are lower than those of colder months (Table 4 and
Fig. 3).

However, some different results were found. First, the R2 of inter-
annual variations in predictedmonthly maximum Tawas found to be
higher than the mean and minimum Ta while the MAE and RMSE of
interannual variations in predicted monthly maximum Ta were
found to be higher than the mean and minimum Ta (Table 4).
These results can be attributed to the fact the prediction range and
standard deviation of interannual variations in monthly maximum
Ta were found to be larger than those of mean and minimum Ta
(not shown). Second, an interesting finding was that the R2 of
Method 1 was the highest among all methods. This suggests that a
highly accurate predicted monthly Ta does not necessarily denote
highly accurate interannual variations in predicted monthly Ta, as
the accuracies of estimated monthly Ta were found to be similar for
Methods 1, 2 and 4 (Table 3). This also suggests that Method 1 can
best capture interannual variations in monthly Ta. This phenomenon
was observed because the model was built for each year separately
for Method 1, whereas one model was built for all years for other



Fig. 3. The accuracy of interannual variations in predicted monthly mean Ta for each month averaged for 337 meteorological stations without relocation.
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methods. Thus, differences in relationships between Ta and auxiliary
variables observed at different times can be better distinguished
using Method 1 than the other methods. In addition, it is difficult to
predict extreme values of interannual variations in Ta using a
model with data for multiple months or years, as extreme values
may be regarded as outliers when data for multiple months or
years are used. As indicated by Fig. 4, the interannual R2 of Method
1 was the highest among all methods. However, Ta was always
overestimated when using Method 1, as this model focuses on each
separate year, resulting in overestimations for each year. Addition-
ally, although Method 3 generated slightly lower interannual R2

values than Method 1, it produced significantly lower MAE and
RMSE values than Method 1 and did not generate obvious overesti-
mations or underestimations. Furthermore, it should be noted that
the magnitude of interannual variations in estimated Ta was found
to be lower than that of observed Ta for Methods 2–5 (Fig. 4). The ex-
treme values of interannual variations in observed monthly Ta were
clearly more obvious than those of estimated Ta for Methods 2–5, as
extreme values may be regarded as outliers when data for multiple
years are input into the model.
3.3. The accuracy of temporal trends of predicted monthly Ta

The overall accuracy of temporal trends of predicted monthly Ta is
shown in Table 5. The accuracy levels of temporal trends of predicted
monthly mean, maximum and minimum Ta for each month are
shown in Figs. 5, S5 and S6, respectively. Some of the results regarding
the accuracy of temporal trends of predicted monthly Ta echo the re-
sults on the accuracy of predicted monthly Ta: significant differences
in accuracy levels were observed among the various methods, Method
3 was the most accurate; inputting data for the same month into the
model can generate more accurate results than inputting all data into
the model; and using temporal variables can significantly increase the
accuracy of results (Table 5 and Fig. 5). However, the accuracy of tempo-
ral trends of estimated monthly Ta varied slightly by season due to in-
significant differences in prediction intervals among seasons (not
shown). In addition, the estimated monthly minimum Ta was found
to be more accurate than maximum Ta (Table 3). However, temporal
trends of the estimated monthly maximum Ta were found to be more
accurate than those of minimum Ta (Table 5). The cause of this strange
phenomenon is not clear and should be investigated further in future



Fig. 4. Interannual variations in observed and estimated mean Ta averaged for 337 stations and 12 months.
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studies. Finally, the R2 values of interannual variations and temporal
trends of predicted monthly Ta (always lower than 0.86, Tables 4 and
5) were found to be considerably lower than the R2 of predicted
Table 5
The overall accuracy of temporal trends in predicted monthly Ta.

Method 1 Method 2 Method 3 Method 4 Method 5

Monthly mean Ta
MAE (°C/decade) 0.249 0.351 0.155 0.394 0.189
RMSE (°C/decade) 0.322 0.443 0.201 0.509 0.245
R2 0.649 0.327 0.848 0.258 0.776

Monthly maximum Ta
MAE (°C/decade) 0.290 0.420 0.182 0.460 0.229
RMSE (°C/decade) 0.385 0.531 0.239 0.586 0.299
R2 0.671 0.318 0.858 0.270 0.777

Monthly minimum Ta
MAE (°C/decade) 0.314 0.460 0.185 0.488 0.216
RMSE (°C/decade) 0.413 0.571 0.245 0.625 0.282
R2 0.521 0.195 0.817 0.141 0.758
monthly Ta (always higher than 0.98, Table 3). This was observed be-
cause the ranges of interannual variations and temporal trends of Ta
were found to bemuch less pronounced than spatiotemporal variations
in Ta (Li and Zha, 2019a). These results show that the temporal accuracy
of estimated Ta has considerable room for further improvement.

3.4. The accuracy of predicted annual Ta

Although many previous works have generated monthly Ta using
satellite data (Hooker et al., 2018; Li and Zha, 2019a; Lu et al., 2018;
Zhu et al., 2019), seasonal and annual Ta have been more widely used
in climate research (Ge et al., 2013; Sun et al., 2016; Wang et al.,
2015; Zhang et al., 2017). Thus, changes in accuracy levels when esti-
mated monthly Ta is averaged to coarser temporal resolution Ta were
analyzed. Method 3 was employed, as it is the most accurate according
to the above results.

The errors of estimated annual Ta and interannual variations and
temporal trends in annual Ta were found to be considerably lower
than those of monthly Ta (Table 6). The MAEs and RMSEs of estimated



Fig. 5. The accuracy of temporal trends in predicted monthly mean Ta for each month averaged for 337 meteorological stations without relocation.

8 R. Yao et al. / Science of the Total Environment 706 (2020) 136037
annual Ta and interannual variations of annual Ta were found to be less
than half of monthly Ta (Table 3). There are some outliers in the auxil-
iary data (e.g., Ts and the EVI) that may affect the accuracy of estimated
Ta. The effects of outliers are reduced when monthly Ta is averaged to
annual Ta. Thus, the errors of estimated annual Tawere found to be con-
siderably lower than those of monthly Ta. However, the R2 did not
Table 6
The accuracy of predicted annual Ta using Method 3.

Annual mean Ta Annual maximum Ta Annual minimum Ta

The accuracy of predicted annual Ta
MAE (°C) 0.207 0.263 0.246
RMSE (°C) 0.264 0.334 0.316
R2 0.998 0.997 0.998

The accuracy of interannual variations in predicted annual Ta
MAE (°C) 0.207 0.263 0.246
RMSE (°C) 0.251 0.318 0.297
R2 0.771 0.773 0.722

The accuracy of temporal trends in predicted annual Ta
MAE (°C/decade) 0.086 0.092 0.122
RMSE (°C/decade) 0.111 0.119 0.162
R2 0.719 0.744 0.699
increase significantly and primarily because the prediction interval de-
creased when estimated monthly Ta was averaged to annual Ta. Inter-
estingly, the observed decrease in error values of temporal trends of
estimated annual Ta was found to be less significant than that of annual
Ta and interannual variations in annual Ta, as the MAEs and RMSEs of
temporal trends of estimated annual Tawere found to be approximately
half those of monthly Ta. In addition, the R2 of predicted annual Ta and
interannual variations in annual Ta were found to be slightly higher
than those of monthly Ta, while the R2 of temporal trends of predicted
annual Ta was found to be slightly lower than that of monthly Ta
(Tables 3 and 6). This is likely the case because temporal trends of Ta
were calculated using 18 years of data, while Ta and interannual varia-
tions in Ta were not. The effects of outliers may be more effective at
predicting monthly Ta and interannual variations in monthly Ta than
temporal trends of monthly Ta. Thus, averagingmonthly Ta into annual
Ta can increase the accuracy of annual Ta and of interannual variations
in annual Ta more than temporal trends of annual Ta.

3.5. Spatio-temporal variations of the estimated Ta

From the above results it was found that Method 3 was themost ac-
curate with the exception of its R2 value in interannual variations in



Fig. 6. Spatial and seasonal variations in monthly mean Ta averaged from 2001 to 2018 for Mainland China.

Fig. 7. Long-term trends of Ta for the period of 2001–2018 for Mainland China: (a) slope of annual mean Ta; (b) significance of trend of annualmean Ta; (c) slope of annualmaximumTa;
(d) significance of trend of annual maximum Ta; (e) slope of annual minimum Ta; (f) significance of trend of annual minimum Ta.

9R. Yao et al. / Science of the Total Environment 706 (2020) 136037



Fig. 8. Interannual variations in annual mean, maximum and minimum Ta for Mainland China during 2001–2018.
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estimated Ta. Thus, monthly Ta for 2001–2018 for Mainland China was
mapped using Method 3. Spatial and seasonal variations in monthly
mean Ta are shown in Fig. 6. Seasonally, summer months (e.g., June to
August) generally present higher mean Ta than winter months
(e.g., December to February). Spatially, northeastern China and the
Qinghai-Tibet Plateau present low mean Ta due to their high latitude
and elevation, respectively. The Tarim Basin shows higher mean Ta rel-
ative to its surrounding areas, as the area is covered with desert land
and is lower in elevation than surrounding areas. The observed spatial
and seasonal variations in monthly maximum and minimum Ta echo
those of monthly mean Ta (Figs. S7 and S8).

Long-term Ta trends for 2001–2018 for Mainland China are shown
in Fig. 7. Annual mean Ta increased at a rate of 0.182 °C/decade (p =
0.149). The increasing rate of annual minimum Ta (0.254 °C/decade,
p = 0.025) was found to be higher than that of maximum Ta
(0.127 °C/decade, p = 0.373). This is the case because minimum Ta is
primarily affected by the greenhouse effect, whereas maximum Ta is
also affected by solar radiation and atmospheric moisture (Ren et al.,
2017; Wang et al., 2018). Spatially, higher warming rates were found
in the Qinghai-Tibet Plateau, corroborating previous studies (Li and
Zha, 2019b; Xu et al., 2018). This can primarily be attributed to the in-
crease in heat storage at high altitudes due to changes in snow depth
and cloud cover (Yan et al., 2016).

Interannual variations in annual mean Ta forMainland China during
2001–2018 were similar to annual maximum andminimum Ta (Fig. 8).
Annual mean Ta was the lowest in 2012 (7.06 °C) and highest in 2017
(8.05 °C). There were downward trends of Ta for the period of
2001–2012. This is similar to previous studies and can be attributed to
the warming hiatus in this period (Du et al., 2019; Li et al., 2015). In ad-
dition, there were upward trends of Ta after 2012, indicating the
warming hiatus stopped.

The spatially continuous Ta maps developed in this study effectively
capture the UHI effect. Therefore, it can be used to investigate UHI effect
Fig. 9. Ta averaged for the period of 2001–2018 for Beijin
in future studies. The spatial distributions of Ta for Beijing and its sur-
rounding area averaged for 2001–2018 are shown in Fig. 9. High Ta
areas are mainly distributed across the city center of Beijing while low
Ta areas are generally distributed across themountains of northwestern
Beijing. In addition, theUHI effect ofminimumTawas found to be stron-
ger than that of maximum Ta. These diurnal variations echo those of
previous works, which show that nighttime UHI intensity levels are
stronger than daytime levels (Anniballe et al., 2014; Roth et al., 1989;
Zhou et al., 2019). Overall, the accurate, national coverage, 1 km spatial
resolution and long-term series monthly mean, maximum and mini-
mum Ta dataset developed in the present study can be used as a key
variable in many fields.

4. Discussion

The accuracies of the estimated Ta in the present study were gener-
ally higher than those of previous studies. First, the MAE and RMSE of
monthly mean Ta estimated using Method 3 were recorded as 0.474
and 0.629 °C, respectively. These error values are lower than those re-
corded in most previous works with RMSE values generally ranging
from 1 to 2 °C (Cristóbal et al., 2008; Hooker et al., 2018; Li and Zha,
2019a; Li and Zha, 2019b; Lu et al., 2018; Xu et al., 2018). Second, tem-
poral trends of predictedmonthly Ta derived fromMethod 3 (R2: 0.697,
MAE: 0.00073 °C/month, RMSE: 0.00093 °C/month; note that these data
were calculated using different methods from those in Table 5) were
found to be significantlymore accurate than those generated by a previ-
ous study (R2: 0.630, MAE: 0.00132 °C/month, RMSE: 0.00178 °C/
month) (Li and Zha, 2019b). These primarily occurred because temporal
information aswell as a differentmethod to input the sample data were
used. For example, Method 4 was widely used by previous studies. The
RMSE value of the estimated Ta of Method 4 was 1.068 °C, which was
relatively close to previous studies (Cristóbal et al., 2008; Hooker
et al., 2018; Li and Zha, 2019a; Li and Zha, 2019b; Lu et al., 2018; Xu
g: (a) mean Ta; (b) maximum Ta; (c) minimum Ta.
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et al., 2018). It is worth noting that Method 4 was found to be the least
accurate in measuring interannual variations and temporal trends in
predicted monthly Ta (Tables 4 and 5). Therefore, monthly Ta datasets
generated in previous studies are not suited to studies on interannual
variations and temporal trends in Ta and on their relationships to
other variables (e.g., vegetation dynamics, animal growth and other cli-
mate variables).

Themain contributions of this manuscript include two aspects. First,
this study systematically analyzed the temporal accuracy of estimated
monthly Ta, which is often ignored in previous studies. Second, this
study investigated the differences in the accuracy levels of five ways
to input data into the model. The results showed that the method
widely used by previous studies (Method 4) was found to be the least
accurate. Method 3was recommended to estimatemonthly Ta in future
studies.

5. Conclusions

In this study, the temporal accuracy of estimated monthly Ta was
comprehensively evaluated. The differences in the accuracy levels of
five ways to input data into the model were investigated. Our results
are summarized as follows. (1) Inputting data for the same month
into the model can generate more accurate results than inputting all
data into the model. This can be attributed to different relationships be-
tween Ta and auxiliary variables in different months. (2) Using tempo-
ral variables (i.e., month and year) can significantly improve the
accuracy of estimated Ta. This is because the temporal variables can
help distinguish between different relationships between Ta and auxil-
iary variables and then improve the accuracy of estimated Ta. (3) For the
best method (Method 3), the R2 of the estimatedmonthly mean Ta was
recorded as 0.997, the interannual R2 of the estimatedmonthlymean Ta
was recorded as 0.731, and the R2 of temporal trends of estimated
monthly mean Ta was recorded as 0.848. (4) An accurate, national cov-
erage, 1 km spatial resolution and long-termseriesmonthlymean,max-
imum and minimum Ta dataset was ultimately developed and can be
used in many fields such as climatology, hydrology and ecology. It was
found that annual mean Ta increased at a rate of 0.182 °C/decade
(p = 0.149) from 2001 to 2018 in Mainland China.

Overall, the present study comprehensively evaluated the temporal
accuracy of estimated monthly Ta and developed an accurate monthly
Ta dataset for Mainland China. In addition, caution should be exercised
when determining how data are to be inputted into themodel. Further-
more, the R2 of interannual variations and temporal trends in predicted
monthly Tawere found to be significantly lower than those of predicted
monthly Ta, suggesting that the temporal accuracy of estimated Ta has
considerable room for further improvement.
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