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Detailed and precise urban land-cover maps are crucial for urban-related studies. However, there are
limited ways of mapping high-resolution urban land cover over large areas. In this paper, we propose
an operational framework to map urban land cover on the basis of Ziyuan-3 satellite images. Based on
this framework, we produced the first high-resolution (2 m) urban land-cover map (Hi-ULCM) covering
the 42 major cities of China. The overall accuracy of the Hi-ULCM dataset is 88.55%, of which 14 cities
have an overall accuracy of over 90%. Most of the producer’s accuracies and user’s accuracies of the
land-cover classes exceed 85%. We further conducted a landscape pattern analysis in the 42 cities based
on Hi-ULCM. In terms of the comparison between the 42 cities in China, we found that the difference in
the land-cover composition of urban areas is related to the climatic characteristics and urbanization
levels, e.g., cities with warm climates generally have higher proportions of green spaces. It is also inter-
esting to find that cities with higher urbanization levels are more habitable, in general. From the land-
scape viewpoint, the geometric complexity of the landscape increases with the urbanization level.
Compared with the existing medium-resolution land-cover/use datasets (at a 30-m resolution), Hi-
ULCM represents a significant advance in accurately depicting the detailed land-cover footprint within
the urban areas of China, and will be of great use for studies of urban ecosystems.

� 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Urbanization, which is characterized by a population shift from
rural to urban and a transformation in the surface physical and
geometric properties, has dramatically changed human habitats
[1]. The evolution of the urban landscape has had a pronounced
influence on the energy balance, carbon cycle, hydrological pro-
cess, and climate of the urban systems [2,3]. Meanwhile, the
accompanying problems include air and water pollution, the urban
heat island (UHI) effect, environmental noise, and biodiversity
reduction, which are threatening our health and future develop-
ment [4–6]. Measuring and analyzing the urban landscape is thus
essential for many applications in climatology, hydrology, environ-
mental planning, and resource management, where detailed and
precise urban land-cover maps are indispensable [7–9].

It is widely recognized that the satellite remote sensing tech-
nique can provide an effective tool for land-cover mapping at local,
regional, and global scales [10]. Several global land-use/cover data-
sets have been developed based on satellite images, with spatial
resolutions of 300 m to about 1 km [11–14]. However, the draw-
backs of these datasets are the coarse spatial resolutions, low accu-
racies, and poor agreement concerning time, space, and theme
[15,16]. With the free availability of medium-resolution satellite
images such as the Landsat and Sentinel series, more precise
land-cover datasets with 10–30 m resolutions have become feasi-
ble. At the global level, the state-of-the-art products include the
Finer Resolution Observation and Monitoring of Global Land Cover
(FROM-GLC) maps [17], the Global Land Cover Dataset (Globe-
Land30) [18], FROM-GLC-agg [19], and FROM-GLC10 [20]. At the
regional level, the products include the European CORINE dataset
[21], the United States National Land Cover Dataset (NLCD) [22],
and the National Land Cover/Use Database of China (NLUD-C)
[23]. Nevertheless, restricted by their spatial resolutions, none of
these datasets can offer the necessary level of details within urban
areas, such as individual buildings, sidewalks, and urban green
spaces (e.g., roadside trees), which are crucial for the in-depth
interpretation of the urban landscape. In this context, although
the existing products are effective for the large-scale measurement
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and analysis of urban areas, they are still far from satisfactory for
some urban planning and environmental analysis applications,
due to the dearth of spatial details [8].

High-resolution satellite images can minimize the mixed-pixel
phenomenon, and can thus provide abundant information in the
spatial domain. Given their potential in delineating the structure
and shape of individual objects (e.g., buildings, trees), high-
resolution satellite images have been successfully applied in many
urban-related studies, e.g., monitoring subtle urban dynamics [24],
interpreting urban scenes [25], and investigating the effects of the
landscape on the environment, such as the UHI effect [26]. Never-
theless, these studies were usually carried out in several small-size
urban areas, for the purpose of classification algorithm analysis. To
the best of our knowledge, to date, there has been very little prac-
tical research on techniques for high-resolution urban land-cover
mapping over a large number of cities, and the related urban
map products are also lacking.

The Ziyuan-3 (ZY-3) satellites are the first high-resolution civil-
ian stereo mapping satellites in China, and the ZY-3 01 and ZY-3
02 satellites were successfully launched in 2012 and 2016, respec-
tively. With a large swath width (50 km), the ZY-3 satellites can
cover a large spatial extent with a spatial resolution of 2.1 m. The
satellites are equipped with three high-resolution panchromatic
cameras positioned 22� from each other to provide forward, nadir,
andbackward imagingmodes,which enables themtoprovide abun-
dant three-dimensional (3D) information to support accurate classi-
fication in complex urban scenes. Compared with othermulti-angle
high-resolution satellites (e.g., the WorldView series and the Car-
tosat series), the unique imaging mode of the ZY-3 satellites
(along-track stereo mode with stable nadir-view cameras) enables
them to provide nearly orthographic images, which can effectively
minimize the angular effects, and therefore delineate urban surface
cover more precisely. The angular effects can trigger distortion and
occlusion of the land-cover maps, especially in urban scenes with
complex high-rise structures, where the occlusion of buildings seri-
ously hampers the accurate interpretation of the land-cover foot-
print [27]. With the available ZY-3 satellite imagery, we now have
an unprecedented opportunity for mapping urban land cover.

In recent years, from the perspective of high-resolution image
classification, auxiliary geospatial data has been increasingly uti-
lized in land-use/cover classification, e.g., OpenStreetMap (OSM),
open social data, and socioeconomic data [28,29]. However, the
related studies have been carried out only at the local scale or in
a small area, and we do not yet have an effective and feasible map-
ping scheme for large-scale use. In this context, we propose an
operational mapping approach by integrating ZY-3 high-
resolution satellite imagery and auxiliary geospatial data (A-map,
Map World, and OSM). Under this framework, we developed a
high-resolution (2 m) urban land-cover map (Hi-ULCM) covering
the 42 major cities of China. China is currently undergoing urban-
ization at an unprecedented rate, and by the end of 2017, the urban
population in China accounted for 58.52% [30], which is higher
than the world average level (55%) [31]. During the past few years,
significant land-cover changes have occurred in China [32], and a
unified high-resolution land-cover map is urgently required. The
Hi-ULCM dataset has the potential to fill this gap by providing
detailed land-cover information of the urban areas. In this paper,
based on this new land-cover dataset, the landscape patterns of
the 42 major cities of China are analyzed and compared. Moreover,
the potential of the Hi-ULCM dataset is fully discussed.
2. Materials and methods

In this study, we focused on the 42 major cities in China, includ-
ing four municipalities, 26 provincial capitals, and 12 large cities
(Fig. 1). These cities are spread over a wide range of climatic zones
[33], and represent a variety of urban sizes, landscape characteris-
tics, and urbanization intensities. The 42 cities were stratified into
three levels according to the urban population in 2016 [34]: level Ⅰ
(greater than 5 million, 8 cities), level II (2 million to 5 million, 20
cities), and level III (<2 million, 14 cities) (Table S1 online). The
2015 NLUD-C dataset was adopted to extract the area of the
municipal districts of the 42 cities [35], whose area and population
are given in Table S1 (online), referring to the China City Statistical
Yearbook for 2017. The NLUD-C dataset is a visually interpreted
land-cover product derived from Landsat Thematic Mapper (TM),
China-Brazil Earth Resources Satellite (CBERS), and HJ-1A images,
with a spatial resolution of 30 m and an overall accuracy of more
than 95% [23].

A total of 69 scenes of high-quality ZY-3 images acquired
around 2015 were collected for the 42 cities. To make the vegeta-
tion conditions consistent, the acquisition dates of the ZY-3 images
used in this study were limited to the growing season, i.e., from
April to October (Table S1 online). As China’s first high-resolution
civilian stereo mapping satellite constellation, the deployment of
two satellites (ZY-3 01 and ZY-3 02) significantly improves the
data availability. Specifically, each satellite is equipped with
panchromatic three-line array cameras (i.e., a nadir camera with
a spatial resolution of 2.1 m, and two oblique cameras with spatial
resolutions of 3.5 and 2.5 m for ZY-3 01 and ZY-3 02, respectively)
and a multispectral camera with a 5.8-m resolution. Importantly,
the availability of stable nadir images can minimize the angular
effect and promote the accurate delineation of the urban surface
cover. These merits make ZY-3 an excellent platform for providing
high-resolution images for urban mapping. Apart from the satellite
imagery, other geospatial data were also employed in the classifi-
cation, including A-map, Map World, and OSM data. A-map and
Map World are web map service providers of China, and they were
used to supply the building footprint, road, and water area infor-
mation in this research. OSM is a series of user-generated maps
that are collaboratively edited by a large number of volunteers
[36]. The quality of the geospatial data used in this study was eval-
uated from the perspective of positional accuracy, topological con-
sistency, and completeness, by visual inspection [37].

A classification system consisting of seven representative land-
cover categories was applied in this study: buildings, grass/shrubs
(low vegetation), trees (tall vegetation), bare soil, water, roads, and
other impervious surface areas (OISAs) (including squares, open
areas, and pavements) [26]. The proposed framework is made up
of four modules (Fig. 2): (1) pre-processing; (2) object extraction
(for buildings, roads, and water) from ancillary data; (3) supervised
classification (for grass/shrubs, trees, bare soil, and OISAs) from
remote sensing imagery; and (4) land-cover map production and
accuracy assessment.

In the pre-processing module, the digital surface model (DSM)
was first generated from the ZY-3 stereo images (nadir and for-
ward images were selected in this study) by the use of the semi-
global matching (SGM) method [38]. Based upon the generated
DSM, the panchromatic nadir ZY-3 imagery was then orthorecti-
fied. The multispectral images were then registered to the
panchromatic nadir image, with a root-mean-square error (RMSE)
of less than one pixel. Finally, the Gram-Schmidt pan-sharpening
technique was performed to improve the spatial resolution of the
multispectral images via fusing them with the panchromatic nadir
image. Note that all the images were resampled to a uniform spa-
tial resolution of 2.1 m. Using the pan-sharpened multispectral
image as the benchmark, the multi-source geospatial data were
spatially registered to it, and the RMSE was less than one pixel.

The geospatial data (A-map, Map World, and OSM) were then
employed for identifying buildings, roads, and water. Buildings
were obtained by synthesizing the A-map and Map World data.



Fig. 1. Spatial distribution of the 42 study sites within the five climatic zones in China. EW: equatorial climate and warm, fully humid temperate climate; W: warm temperate
climate with dry winter; A: climate of arid steppe and desert; S: snow climate with dry winter; TS: tundra climate and snow climate with cool summer and cold winter.
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Specifically, building footprints from A-map and Map World which
were originally in vector form were converted to building objects.
Footprints from A-map were utilized as the benchmark, that is, for
the intersected or common objects (i.e., the building objects that
appear on both A-map and Map World), the footprints from A-
map were adopted. Map World served as the supplement for the
omitted objects in A-map. Roads were a synthesis of the OSM road
network and Map World data. Buffer zones were established, and
the width of the buffer for each road was estimated by referring
to both the road hierarchy (i.e., primary, secondary, tertiary, trunk,
and motorway) of the OSM vectors and the corresponding ZY-3
imagery. Similarly, MapWorld was used to supplement OSM, espe-
cially for some pathways that were omitted in OSM. Water was
extracted fromMapWorld. In this way, the label images, consisting
of the land-cover categories of buildings, roads, and water, could be
generated.

Subsequently, the aforementioned three land-cover classes
were applied as a mask layer to the ZY-3 imagery. The random for-
est (RF) classifier was performed to classify the remaining part of
the imagery into the other four land-cover types (i.e., grass/shrubs,
trees, bare soil, and OISAs) by taking the normalized DSM (nDSM),
normalized difference vegetation index (NDVI), normalized differ-
ence water index (NDWI), and spectral features into account. RF is
an ensemble classifier that uses classification and regression tree
(CART) analysis to yield a prediction by majority voting [39]. Each
tree is built by a randomly selected subset of variables and training
samples. The attribute disturbance and sample disturbance
increase the variation of the trees, contributing to a forest with
high variance and low deviation. Generally speaking, RF is regarded
as a robust classifier [40]. For training the classifier, the number of
trees (Ntree) was set to 100 and the number of features selected at
each node (Mtry) was set to 3, as suggested by Belgiu and Drăgut�
[40]. The nDSM, which delineates the height of objects above the
Earth’s surface by removing topographic effects, was derived from
the DSM by morphological top-hat transformation [41]. The train-
ing and test samples were generated by in-situ investigation and
visual inspection of the ZY-3 images and the corresponding
higher-resolution Google Earth images. For each city, 80 polygons
(each containing around 20 sample pixels) per class were selected
to train the classifier, and around 200 pixels per class were ran-
domly collected to assess the accuracy of Hi-ULCM. The test sam-
ples were independent of the training samples, and the
minimum distance between test samples was 100 m, to ensure
their independence and randomness. To guarantee the accuracy
of the mapping, manual correction was conducted to further refine
the classification results.

3. Results and validation

The Hi-ULCM product for two representative cities is presented
in Fig. 3. We also provide the results for an additional four repre-
sentative cities in Fig. S1 (online). These maps demonstrate that
the footprint of the land cover, e.g., buildings, can be well depicted
by the Hi-ULCM dataset. In particular, the product can delineate
compact and small buildings, such as those found in urban villages
and residential areas. Some buildings with low reflectance that are



Fig. 2. The proposed framework for land-cover mapping using high-resolution ZY-3 images and geospatial data.
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difficult to distinguish from the surrounding vegetation can also be
easily identified. With respect to roads, Hi-ULCM can reveal their
linear morphology, preventing them from being interrupted by
the occlusion of roadside trees, which can be attributed to the com-
bined use of OSM vector data and ZY-3 satellite data. Furthermore,
the spectral, textural, and height features extracted from the ZY-3
imagery improves the separability of grass/shrubs and trees, lead-
ing to satisfactory classification results.

A total of 41,571 test samples were generated in the 42 cities.
The confusion matrix calculated from the test samples is provided
in Table 1, to indicate the overall accuracy (OA) of the map, along
with the corresponding producer’s accuracy (PA), user’s accuracy
(UA), and F1 score for each class, where PA and UA indicate the
completeness and precision of the classification, respectively, and
the F1 score represents a trade-off between PA and UA. The OA
based on all the samples is 88.55%, with the PAs and UAs for all
the land-cover classes (except for OISAs) being over 85%, suggest-
ing very promising mapping results (Table 1), especially when con-
sidering the high spatial resolution and the large-scale dataset
used in this research. The major difficulty arose from incorrectly
identifying buildings, roads, and bare soil as OISAs. Consequently,
the UA of OISAs is lower than that of the other land-cover classes.
These errors originated from a small number of faults in the vector
data of buildings and roads, and also from the spatio-temporal mis-
match between the vector products and the satellite images. These
errors could be further mitigated through more intensive visual
inspection. Compared with the artificial land-cover classes (i.e.,
buildings, roads, and OISAs), the natural land-cover classes present
a higher accuracy. The results suggest that the Hi-ULCM product is
able to meet the demand for the analysis of urban spatial patterns,
since the accuracies for buildings (PA 86.93%, UA 86.25%) and roads
(PA 92.14%, UA 89.63%), which are the basic components of urban
scenes, can be regarded as satisfactory.

For individual cities, the OAs range from 85.38% (Haikou) to
94.34% (Hefei), of which very high accuracies (above 90%) are
achieved in 14 cities (Table S2 online). With respect to the accuracy
of each land-cover class (Fig. 4), expect for OISAs, the PA, UA, and
F1 scores of the six land-cover classes all exceed 80%, with average
values over 85%. When focusing on the F1 scores, the accuracies for
roads, soil, trees, grass/shrubs, and water are all higher than 85% in
the majority of the cities. For buildings, roads, trees, and water,
there is not much difference between the PA and UA. However,
the PAs for soil and grass/shrubs are significantly lower than the
UAs, indicating that more omission errors exist than commission



Fig. 3. An illustrationofHi-ULCM(i),NLUD-C (ii), and close-upmaps (iii) for somesample areas and the correspondingZY-3 images in tworepresentative cities: Beijing andWuhan.
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Table 1
Confusion matrix for the high-resolution land-cover dataset of the 42 cities.

Buildings Roads OISAs Soil Grass/shrubs Trees Water UA (%)

Buildings 5728 18 401 291 129 64 10 86.25
Roads 34 5524 229 83 53 226 14 89.63
OISAs 668 383 5011 292 94 31 231 74.68
Soil 94 23 207 5105 39 12 11 92.97
Grass/shrubs 14 29 35 38 5229 189 24 94.08
Trees 39 10 8 9 437 5575 33 91.23
Water 12 8 25 92 79 40 4641 94.77
PA (%) 86.93 92.14 84.70 86.38 86.29 90.84 93.49
OA (%) 88.55

Fig. 4. Statistical results for the PA, UA and F1 scores in the 42 cities.
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errors. These omission errors are partly from the soil pixels that
were misclassified as OISAs, and the grass/shrubs misclassified as
trees, due to their similar spectral reflectance. It can be seen from
the length of the box (Fig. 4) that, except for OISAs, there is little
variation in the accuracy among the 42 cities, implying fairly
robust mapping results. Specifically, the PA, UA, and F1 scores of
all the land-cover classes in each city are provided in Fig. S2
(online).

We made a comparison between the Hi-ULCM dataset and the
30-m resolution NLUD-C dataset (Fig. 3). The results of this com-
parison indicate that the most significant difference is that Hi-
ULCM shows more spatial details in urban areas. Due to the lack
of detailed land-cover information within the urban areas, as can
be seen in Beijing (Fig. 3), NLUD-C shows little spatial information
in built-up areas. Moreover, the urban green spaces, which have
been proved to play a crucial role in environmental regulation
(e.g., mitigating the UHI effect and urban noise [26,42]), also can-
not be revealed by NLUD-C. In contrast, Hi-ULCM, which applies
an urban-oriented land-cover classification system, performs well
in characterizing detailed urban objects that are omitted in
NLUD-C, such as buildings, roads, and urban green spaces. In addi-
tion, Hi-ULCM can better identify the small-size water bodies (e.g.,
Beijing in Fig. 3 and Xiamen in Fig. S1 online). To sum up, Hi-ULCM
represents a great advance in accurately depicting the detailed
land cover of urban areas. The Hi-ULCM product is a high-
resolution land-cover product dedicated to urban-related studies,
which could be a valuable complement to the existing NLUD-C
dataset.

4. Discussion

Based on the Hi-ULCM dataset, the land-cover composition of
the 42 cities was analyzed with respect to the climatic zones
(Fig. 5a) and city levels (Fig. 5b). The area percentage of OISAs is
the largest among the 42 cities, with an average percentage of
27.49%, followed by buildings (16.23%), grass/shrubs (15.22%),
trees (14.18%), roads (11.13%), soil (10.08%), and water (5.67%).
The area percentages of artificial surfaces (i.e., buildings, roads,
and OISAs) do not exhibit significant divergence in the different cli-
matic zones. The proportion of green spaces is higher in cities with
a warm climate (i.e., the EW and W climatic zones), accounting for
28.71% and 28.73%, respectively. In addition, most of the cities in
the EW climatic zone are characterized by a higher proportion of
water areas, whereas cities in the A climatic zone have higher pro-
portions of bare soil. With respect to the city levels, the analysis of
variance (P < 0.05) indicates that the composition of buildings and
trees varies significantly in the three urban level groups. The pro-
portion of buildings in level Ⅰ is significantly lower than that in



Fig. 5. Land-cover composition of the 42 cities in China, categorized by (a) climatic zones, and (b) city levels.
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levels II and III. In contrast, the proportion of trees in the cities of
level I is significantly higher than that in levels II and III, but the
difference between levels II and III is not significant.

To further evaluate the amenities for residents in the 42 cities,
we employed the ratio of open space (ROS) and the ratio of imper-
vious space (RIS) to measure the porosity and intensity of artificial
structures in the cities, respectively, where open space includes
trees, grass/shrubs, and water, and impervious space includes
buildings, roads, and OISAs [43]. Fig. 6a and b shows the relation-
ships between the two landscape metrics and urban area (as urban
area is a crucial indicator of urbanization). It can be seen that there
is a significant positive relationship between urban area and ROS
and a significant negative relationship between urban area and
RIS. The possible reason for this is that, on the one hand, most of
the cities with higher levels of urbanization are located in warm
climatic zones with abundant precipitation, which is ideal for veg-
etation growth. On the other hand, with the development of urban-
ization, the government tends to pay more attention to public
ecological space, and the importance of sustainable development
is also highlighted.

In addition to land-cover composition, the Hi-NLUM dataset can
also reveal the landscape configuration patterns of the urban areas.
The complexity and dispersion of the urban landscape can be
described by the landscape shape index (LSI) (Eq. (1) at the land-
scape level, and Eq. (2) at the class level), which has been proved
effective in evaluating the geometric complexity of urban scenes
[44,45]:

LSI ¼ 0:25E
ffiffiffi
A

p ; ð1Þ

LSI—i ¼ 0:25
Pm

k¼1eikffiffiffi
A

p ; ð2Þ

where E and A are the total length of edge and total landscape area,
respectively; and eik is the total length of edge in the landscape
between class i and k. The more complex and irregular the shape
of the urban area, the higher the value of LSI. Fig. 6c–f demonstrates
that LSI has a strong and positive linear correlation with urban area
at both the landscape and class levels (for buildings, trees, and
grass/shrubs). Studies based on medium- to low-resolution images
have concluded that the shape complexity of built-up areas
increases with urbanization [45,46]. In this study, we further found
that the complexity and dispersion of the urban elements (i.e.,
buildings, trees, and grass/shrubs) also show increasing trends with
the urbanization level. It is believed that a more complex and dif-
fused urban shape is associated with a greater investment in infras-
tructure (e.g., pipeline networks and public transportation) and
increased environmental risk (e.g., greenhouse gas emissions and
degradation of natural resources) [46,47] and, consequently, the
ecological and environmental effects of the fine-scale urban land-
scape patterns are worthy of further research.

Urban areas are hotspots that drive environmental change at
local, regional, and global scales. Although the importance of urban
ecology has been increasingly recognized, the relevant studies are
still rather limited, partly due to the dearth of high-resolution
urban land-cover maps covering large areas [1,48]. The Hi-ULCM
dataset has the potential to address this data gap and to help us
to further understand the ramifications of urbanization. Specifi-
cally, the Hi-ULCM product could be further applied to the follow-
ing research aspects:

(1) The urban heat island (UHI) effect. The UHI effect is closely
related to the surface biophysical characteristics in urban
areas. However, most of the current knowledge of the con-
tributors to the UHI effect is with regard to coarse land-
cover types, such as vegetation and impervious surfaces,
and urbanization dynamics, due to the lack of high-
resolution images [35,49]. From the urban microclimate
point of view, the interplay between the fine-scale urban land-
scape (e.g., building density and layout, and fragmentation of



Fig. 6. The correlation between urban area and ROS (ratio of open space, (a)), RIS (ratio of impervious space, (b)), LSI (landscape shape index, (c)), LSI_building (d), LSI_grass/
shrubs (e), and LSI_tree (f), respectively.
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trees/grass) and the UHI effect is still unclear. The Hi-ULCM
dataset will allow the discrimination of detailed individual
urban elements and characteristics, so that it will be suitable
for investigating the relationship between the fine-scale
urban landscape and the UHI effect.

(2) Urban environmental pollution. Urban pollution, including
both air pollutants (e.g., ozone, nitrogen oxide, and fine par-
ticulate matter (PM2.5)) and environmental noise, has
become of great concern because of its adverse impact on
public health (e.g., coughs, asthma, and lung cancer) and
mental stress [5,50]. Urban design can influence the forma-
tion, dispersion, and exposure to urban pollutants and noise
via land cover, land use, and travel behavior [51]. The Hi-
ULCM dataset could therefore contribute to the studies of
the air and acoustic environments in terms of depicting
detailed land cover and configurations (e.g., road networks),
as well as being used to estimate anthropogenic emissions
inventories [42,52].

(3) Deep learning (DL). DL has shown great potential in many
applications (e.g., object detection, image classification,
and scene understanding). However, it requires a substantial
number of training samples to satisfy the network learning
requirements, especially for high-resolution images [53].
From the algorithm development viewpoint, the Hi-ULCM
dataset could be used to establish the correspondence
between urban land cover and high-resolution images at
the pixel level, based on the nadir-view images provided
by the ZY-3 satellite, which could serve as a huge training
pool for high-resolution land cover mapping. By using DL
and transfer learning, we could develop a robust and trans-
ferable deep network for urban land-cover classification that
could be adopted for other high-resolution images, to realize
their automatic interpretation [54,55].

(4) Urban semantic scene classification. Urban semantic scene
classification (i.e., labeling urban scenes with a set of seman-
tic categories cognized and conceptualized by people) is cru-
cial for urban environment and social analyses [56].
However, due to the heterogeneous patterns in high-
resolution images, it is challenging to directly interpret the
semantic labels from the images [57]. The Hi-ULCM dataset
provides the basic land-cover classes in urban areas that can
be applied to mine spatial semantic information and further
identify the urban scenes, including land use, urban func-
tional zones, and local climate zones, through spatial met-
rics, neighborhood graphs, and DL methods.

Apart from the applications discussed above, the Hi-ULCM data-
set could also contribute to other social science research, such as
sustainability assessment, habitat evaluation, risk and disaster
assessment, energy consumption estimation, population estima-
tion, and city health studies [58,59].

This study has opened a new avenue for producing high-
resolution urban land-cover maps in a great number of cities.
However, the current version of Hi-ULCM provides the land-
cover product of the 42 largest cities in China. In our future work,
we will supply the results for more cities to form a more holistic
high-resolution urban land-cover product for China. In addition,
we plan to update the product every five years, and to develop
new methods to monitor the subtle urban land-cover changes
[24]. On the other hand, in this study, we generated the nDSM
derived from ZY-3 stereo images of the 42 cities to indicate the
vertical information of the urban areas. However, there exists
much uncertainty in the building height information estimated
from the nDSM, due to the spatial precision of the ZY-3 satellites
(i.e., spatial resolution and positioning accuracy) and the inherent
difficulties of DSM generation (e.g., inaccurate image matching
and incompleteness) [46]. In our future study, we will further
improve the multi-view 3D reconstruction algorithm and estimate
the building height from ZY-3 multi-view imagery accurately. As
mentioned above, we will also try to apply Hi-ULCM to a variety
of environmental and algorithm development applications. Other
researchers are welcome to employ the Hi-ULCM dataset for the
purpose of academic research, and we are willing to share the pro-
duct when required.
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5. Conclusion

In this paper, we have proposed an operational mapping frame-
work for high-resolution urban land-cover mapping, and we have
described the development of the first high-resolution (2 m) urban
land-cover product—Hi-ULCM—covering the 42 major cities of
China, courtesy of the high-resolution images acquired by the
ZY-3 satellites. The proposed framework achieved a satisfactory
performance, with an OA of 88.55%. Meanwhile, the PA and UA
of each land-cover type exceeded 85%, for most of the categories.
The landscape analysis indicated that the land-cover composition
of the urban areas in China is related to the climatic characteristics
and urbanization levels, e.g., cities with warm climates generally
have higher proportions of green spaces. It is interesting to find
that cities in level Ⅰ are characterized by large proportions of open
space areas (i.e., the sum of the tree, grass/shrubs, and water
areas), suggesting that they could provide more amenities for res-
idents. From the landscape viewpoint, it was revealed that the geo-
metric complexity of the landscape (LSI) increases with the
urbanization level, at both the landscape level and class level (for
buildings, grass/shrubs, and trees).

Compared with the medium-resolution (30 m) NLUD-C land-
cover/use dataset, the Hi-ULCM dataset represents a great advance
in accurately depicting detailed land-cover footprints in urban
areas. It can be regarded as a high-resolution version of the current
NLUD-C dataset, and it has the potential to be used in a number of
applications, e.g., studying the problems accompanying urbaniza-
tion, such as the UHI effect and air and noise pollution; supporting
algorithm development, such as transfer learning and DL; facilitat-
ing urban semantic scene classification; and many other social
benefits. As a result, the Hi-ULCM dataset could help us to establish
meaningful urban planning strategies to accommodate urban
growth while improving the urban environment.
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