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A B S T R A C T   

Timely and accurate global urban maps are fundamental in monitoring urbanization process and understanding 
environmental degradation. Therefore, this paper proposed a locally adaptive and fully automated global 
mapping method and produced an updated 250 m MODIS global urban area product (MGUP) from 2001 to 2018. 
The proposed approach mainly consists of 1) automated samples extraction from existing global products, 2) 
locally adaptive samples selection and trained classification in each 5◦ × 5◦ grid, and 3) post-processing in terms 
of the spatio-temporal context. To validate the product, 9 groups of samples for every two years from 2001 to 
2018, amounting to over 150,000 sample points, were collected manually from Landsat imagery as global 
validation dataset. Accuracy assessment indicates that MGUP has a F-score of 0.88, achieving better results than 
the contemporary global products, i.e., MCD12Q1.v5 (0.82), MCD12Q1.v6 (0.86), and CCI-LC (0.86). Analysis of 
urban expansion based on MGUP shows that the world’s urban area increased to 802233 km2 and accounted for 
0.54% of the Earth’s land surface in 2018. The total global urban area expanded by 1.68 times from 2001 to 
2018. At continent level, urban density varies considerably, and the highest and lowest one is in Europe (1.78%) 
and Oceania (0.15%), respectively. At national level, large increment of urban area mainly occurs in North 
America, Asia, and South America; and countries having high growth rates are mainly developing countries in 
Africa and Asia. MGUP can be downloaded at https://www.researchgate.net/publication/339873537_MGUP_ 
annual_global_2001_2018.   

1. Introduction 

Rapid urbanization is sweeping the globe, as indicated by the 
compelling evidence that the proportion of urban population from 
1960′s 33% to today’s 55% (UN, 2018). Dense population and various 
social-economic activities concentrating in urban areas cause profound 
impacts on biodiversity (McDonald et al., 2013; Pauchard et al., 2006), 
hydrology (Carlson and Arthur, 2000; Shao et al., 2019), air pollution 
(Han et al., 2014; Li et al., 2012), health (Moore et al., 2003; Nicolaou 
et al., 2005), and resource consumption (Madlener and Sunak, 2011; 
Poumanyvong and Kaneko, 2010), yet relation of urbanization and 
environment remains controversial and still arouses public concerns 
(Seto et al., 2010). Therefore, timely and accurate depiction of urban 
area is of vital importance to monitor urbanization process, which 
provides essential data for environmental research (Wang et al., 2012). 

Urban extent mapping at global scale offers a macro scenario to 

explore imbalance of urbanization development among regions. The 
contemporary global urban maps are summarized in Table 1, which can 
be divided into three types according to their spatial resolution: the 
coarse (≥1 km), moderate (250–500 m), and high (≥30 m) resolution 
products. Coarse-resolution products are difficult in depicting small-size 
urban areas and solving the mixed pixel problem (Schneider et al., 2010; 
Yang et al., 2017). More importantly, the increased spatial resolution of 
global urban maps allows detailed delineation of urban area. Whereas, 
global mapping with high-resolution imagery is subject to heavy 
computational burden due to the large data volume to be processed. 
Thanks to the development of data storage and process capability, it is 
becoming feasible to delineate urban areas at finer resolution. However, 
relatively high-resolution sensors, such as Landsat, is difficult in 
providing consistent global coverage of data at annual or higher 
observation frequency. Therefore, considering the huge computation 
cost and unavailability of high-resolution data, medium-resolution 
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remote sensing imagery is still an appropriate data source for developing 
continuous global urban extent products. 

Among moderate-resolution sensors, MODIS (Moderate Resolution 
Imaging Spectrometer) is regarded as an ideal data source for global 
mapping considering its high temporal resolution (nearly daily visit of 
the globe) and free accessibility (Boschetti et al., 2015; Estel et al., 
2015). More frequent cloud-free observations allow it to capture 
detailed temporal signature of phenological information, which is 
beneficial for distinguishing urban from other land covers (Schneider 
et al., 2010). A number of efforts have been made to delineate global 
urban area with MODIS data (Huang et al., 2016; Mertes et al., 2015; 
Schneider et al., 2010), of which the MODIS Land Cover Type product 
(MCD12Q1) is the most widely used one with continuous and long time 
series. The user’s accuracy of urban area for MCD12Q1 products is over 
90% through cross-validation analysis since no independent validation 
data set at global scale is available (Schneider et al., 2010; Sulla- 
Menashe et al., 2019). Some studies reported the overestimation of 
this product along the city boundaries (Wan et al., 2015). Hence, making 
full use of the high-temporal advantages of MODIS data to produce more 
reliable and continuous global urban maps still needs to be explored. 

Among a number of global mapping methods, supervised classifica-
tion is widely adopted due to superiority in strong adaptability and fine 
mapping accuracy (Friedl et al., 2010; Gong et al., 2013; Schneider et al., 
2010; Sulla-Menashe et al., 2019). It is well agreed that the quality of 

training samples, e.g., size, distribution, and representativeness, 
strongly affect performance of supervised methods (Pal and Mather, 
2006), even more than the impact of classifier (Li et al., 2014). However, 
using conventional ground survey or visual interpretation, collection of 
high-quality samples at the global scale is labor and cost intensive, not to 
mention over a long-term basis for continuous mapping (Radoux et al., 
2014; Yifang et al., 2015). However, it should be noted that the land 
cover information in the existing maps is potential for collection of time- 
series samples. 

Within this context, we adopted the definition of urban areas in the 
MCD12Q1 products, i.e., more than 30% impervious surface area. This 
research presents an annual 250 m global urban area product from 2001 
to 2018 by proposing an automated mapping approach. The proposed 
method includes the following three steps: 

1) Automated sample extraction based on urban probability from the 
existing products and spatio-temporal constraints to reinforce the di-
versity and representativeness of samples; 

2) Locally adaptive sample selection and classification method in 
each 5◦×5◦ grid to mitigate the interference from regional differences in 
urban morphology; 

3) Post-processing in a spatio-temporal context to improve classifi-
cation reliability and temporal consistency. 

To validate our product (namely, MGUP, updated global urban 
product), 9 groups of samples for every two years from 2001 to 2018, 
amounting to over 150,000 spatially independent sample points, were 
collected as global validation dataset. The results were compared 
against the reference data and other contemporary global urban prod-
ucts. Finally, analysis of urban land expansion at global, continent, and 
national scale was conducted using our annual MGUP. 

2. Methods 

The proposed approach is composed of five blocks: 1) establishment 
of training sample pools, 2) locally adaptive sample selection based on 
Kullback-Leibler divergence, 3) features and classifiers, 4) post- 
processing in a spatio-temporal context, and 5) accuracy assessment. 

2.1. Establishment of training sample pools 

Extraction of highly reliable global samples in an appropriate 
manner is the key to developing global mapping methods. The existing 
maps, containing a wealth of urban information, are actually potential 
for providing automated training samples at global level. However, 
there are two problems while extracting information from the existing 
urban maps. One is the incompatible urban definition in different 
products and the other is the errors in these maps (Radoux et al., 2014). 
To deal with the aforementioned issues, we proposed an automated 
sample extraction method involving 1) urban probability from the 
existing urban extent products and 2) spatio-temporal constraints to 
reinforce the diversity and representativeness of the samples. 

Specifically, four state-of-the-art medium-resolution urban products, 
GlobCover (Bontemps et al., 2011; Defourny et al., 2006), CCI-LC (ESA, 
2017), MCD12Q1.v5 (Friedl et al., 2010), and MCD12Q1.v6 (Sulla- 
Menashe et al., 2019) (see Table 1), were considered in our research for 
their similarity in the resolution and definition. These four products are 
hereafter called urban and built-up (URB) datasets. It should be noted 
that only URB datasets during 2001–2013 were used here since after 
2013 some of them are not available. Therefore, we used the training 
sample in 2013 for urban mapping after 2013. The establishment of 
training sample pools is described in detail as follows. 

2.1.1. Extraction of urban samples 
The workflow of the automated extraction of urban samples for time- 

series global urban land mapping is presented in Fig. 1, which includes 
two major steps: (1) identification of potential urban sample location 
and (2) spatio-temporal constraints. 

Table 1 
The global urban products presented in order of increased spatial resolution.  

Products Time Resolution Definition of 
urban 

References 

Global Land 
Cover-SHARE 
(GLC-SHARE) 

2012 1000 m Artificial 
surfaces 

(Latham 
et al., 2014) 

Global Land 
Cover 2000 
(GLC2000) 

2000 998 m Artificial 
surfaces and 
associated 
areas 

(Bartholome 
and Belward, 
2005) 

Global Rural- 
Urban Mapping 
Project 
(GRUMP) 

1995 927 m Urban extent (CIESIN, 
2004) 

The MODIS Land 
Cover Type 
product 
(MCD12Q1) 

2001–2013/ 
2001–2018 

500 m Urban and 
built-up 
areas 

(Friedl et al., 
2010; Sulla- 
Menashe 
et al., 2019) 

GlobCover 2004–2006, 
2009 

300 m Artificial 
surfaces and 
associated 
areas 

(Bontemps 
et al., 2011; 
Defourny 
et al., 2006) 

ESA Climate 
Change 
Initiative land 
cover maps 
(CCI-LC) 

1992–2015 300 m Urban extent (ESA, 2017) 

Global land cover 
types at 250 m 
resolution 
(GLC250 
m_CN) 

2001, 2010 250 m Impervious 
surfaces 

(Wang et al., 
2015) 

Finer Resolution 
Observation 
and Monitoring 
of Global Land 
Cover (FROM- 
GLC) 

2010 30 m Impervious 
surfaces 

(Gong et al., 
2013) 

China’s 30 m GLC 
data product 
(GlobeLand30) 

2000, 2010 30 m Artificial 
surfaces 

(Chen et al., 
2015) 

Global Urban 
Land 

1990–2010 30 m Impervious 
surfaces 

(Liu et al., 
2018) 

Global Artificial 
Impervious 
Area (GAIA) 

1985–2018 30 m Artificial 
impervious 
surfaces 

(Gong et al., 
2020)  
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In step 1, urban probability at pixel × for a certain year t (p(t, x), t ∈ i, 
i = 2001, 2002, …, 2013) was thresholded with 50% to identify the 
potential urban sample location x. p(t, x) is defined as the ratio between 
the times that a pixel is labeled as urban land and the total number of 
URB datasets available in year t. 

In step 2, the potential sample locations were further separated into 
two groups in terms of high and low population density (i.e., Can(A, t) 
and Can(B, t)) using a threshold value of 150 persons per km2. Here, the 
average population density in urban patches for pixel × (i.e., Avg_pop(x)) 
was calculated based on the 2015 Global Human Settlement Population 
Layer (GHS-POP). Urban patches are defined as spatially continuous 
pixels that have ever been labeled as urban in any URB dataset during 
2001 ~ 2013. Different spatio-temporal constraints were applied to 
these two groups separately, due to the following reasons: (1) In high 
population density areas, urban samples are abundant and hence, can be 
extracted more easily; (2) On the other hand, in low density areas, urban 
samples show different characteristics (e.g., sparse urban areas mixed 
with natural land covers), which are relatively difficult to be captured 
from the existing products. 

We first constructed two constraint datasets, Con(A, t) and Con(B, t), 
respectively, to carry out different spatio-temporal constraints for Can 
(A, t) and Can(B, t) for the year t. They were obtained in terms of p(i, x): 

Con(A, t) : p(i, x) = 100%,

Con(B, t) : p(i, x) > 50%
withi = 2001, 2002,⋯, 2013, i ∕= t

(1)  

where p(i, x) denotes the ratio between the times that a pixel is labeled as 
urban land and the total number of URB datasets available in year i 
except for t. 

Based on the datasets Con(A, t) and Con(B, t), the proposed spatio- 
temporal constraints were imposed on Can(A, t) and Can(B, t), respec-
tively (also demonstrated in Fig. 2):  

• Spatial constraint: 

8 neighboring pixels around urban pixel (x, y) in year t are all urban 
land;  

• Temporal constraint: 

fbefore = 1and fafter greater than 0.5, where fbefore and fafter denote the 
frequencies of urban land for location (x, y) during the period before and 
after the year t, respectively. 

The sample location × was retained when either condition is satis-
fied. As aforementioned, urban areas with high and low population 
density were processed separately, with strong and weak constraints, 
respectively, since they correspond to dense and sparse urban samples. 
In this way, more samples can be obtained in the sparse or small urban 
areas. 

After filtering the Can(A, t) and Can(B, t), the derived sample location 
A and B were combined as the urban sample pool for year t. When urban 
sample pool for every year from 2001 to 2013 were established, the 
sample points that appear in both years t − 1 and t + 1 were added to the 
pool of year t, in order to ensure sufficient number of samples. 

2.1.2. Extraction of non-urban samples 
For extraction of non-urban samples, an erosion filter was used since 

non-urban areas are large and widely distributed. Firstly, when class 
labels for pixel × in year t in all the URB datasets are all non-urban area, 
pixel × was identified as potential non-urban sample. Afterward, a 
morphological erosion with a radius of 2 km was performed to obtain 
the final samples. Including both urban and non-urban samples, the 
sample pool for year t can be established. 

Fig. 1. Workflow of the automated extraction of urban samples for time-series global urban land mapping.  

Fig. 2. Graphical diagram of the spatio-temporal constraints.  
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2.2. Locally adaptive sample selection based on Kullback-Leibler 
divergence 

Some studies indicated that a larger number of training samples can 
lead to saturation in classification accuracy and decrease in classifica-
tion efficiency (Heydari and Mountrakis, 2018). Therefore, a locally 
adaptive sample selection method was proposed in this research to find 
the best sampling rate in each local region and establish a tradeoff be-
tween accuracy and efficiency. Specifically, the global land was divided 
into grids with the size of 5◦ × 5◦. In each grid, the difference between 
the samples extracted with different rates and all the training data in the 
sample pool were measured through Kullback-Leibler divergence. The 
Kullback-Leibler divergence is able to quantify the difference between 
two probability distributions (Kullback and Leibler, 1951), and a lower 
value indicates more similarity between them: 

DKL =
∑N

k=1
p(fk)ln

p(fk)
q(fk)

(2)  

where DKL is the Kullback-Leibler divergence, N (N = 1000) is the 
number of bins of the histogram for the features of urban sample in a 
grid, p(fk) and q(fk) is the frequency of the feature value fk in the kth bin 
for the extracted samples and the entire sample pool in the grid, 
respectively. The feature values were derived from the first principal 
component of the features considered in the mapping (see Section 2.3), 
after the processing of normalization and discretization. Theoretically, 
as the sampling rate increases, Kullback-Leibler divergence becomes 
smaller, since the difference between the selected samples and all the 
training samples in the pool decreases. 

To find a proper sampling rate, Kullback-Leibler divergences for 
different sampling rates from 5% to 50% with an interval of 1% were 
calculated, and the sampling was repeated 10 times for each sampling 
rate. Subsequently, a nonlinear function in Eq. (3) was computed for 
each grid to desribe the relationship between divergence and sampling 
rate: 

DKL = aRb + c (3)  

where R is sampling rate, DKL is the fitted Kullback-Leibler divergence, 
and a, b, and c are fitting coefficients. It is a monotone decreasing and 
convex function. With this function, when the sampling rate is increased 
and the divergence does not significantly change, this sampling rate is 
determined as the optimal one. Therefore, the point where the first 

derivative of DKL equals to − 1 was found, and the corresponding sam-
pling rate was adopted for sampling in the grid. For a grid with small 
number of urban samples, the samples in the neighboring 8 girds were 
added to the current pool. 

2.3. Features and classifiers 

The input data sources for classification are shown in Table 2. All the 
input data were set to WGS 84 and resampled to 250 m for further 
feature extraction. Our classification approach employed the time series 
data within each year to fully take advantage of high temporal resolu-
tion of MODIS data since vegetation phenology information can improve 
the discrimination between urban areas and other land cover types 
(Sung and Li, 2012). Specifically, the four seasons are defined as Winter 
(Decemeber-Febrary), Spring (Marach-May), Summer (June-August), 
and Autumn (September-November). In this way, the seasonal spectral 
and temperature features were extracted since they are potential in 
discriminating urban areas (Keramitsoglou et al., 2011; Schneider et al., 
2010). Spectral features include seasonal composite spectral bands and 
normalized difference spectral indices. For seasonal composite spectral 
bands, the 40th quantile of spectral values of data in each season was 
obtained, which can guarantee data integrity and reduce cloud-coverage 
influence. Normalized difference spectral indices were adopted since 
they can maximize the differences between different land cover types (Li 
et al., 2019). The calculations of these spectral indices are specified 
below: 

NDXI =
Band(s,u) − Band(s,v)

Band(s,u) + Band(s,v)
(4)  

where NDXI denotes normalized difference spectral index; Band(s,u) and 
Band(s,v) are seasonal composite spectral features in season s for channel 
u and v, respectively. For seasonal temperature features, mean values of 
nightime land surface temperature (LST) in each season were adopted. 
In total, 116 features were fed to the classifier for each year, including 7 
composite spectral bands, 21 normalized difference spectral indices, and 
1 night-time LST band for each season. 

Since random forests classifier has good generalization ability and 
can handle high dimensional data at relatively low computational cost 
(Gislason et al., 2006), it was adopted for global urban area mapping 
from 2001 to 2018 in this study. In addition, to improve the classifica-
tion efficiency, classification was conducted only for pixels within an 
urban mask. The urban mask was created by the union of urban pixels in 
the URB datasets during 2001 ~ 2018, and a 5 km buffer zone was 
included in the mask to cover all the potential urban areas. Using a 
locally selected training samples and seasonal features, the random 
forest classification was performed for pixels in each grid. In this study, 
the number of random forest tree is set as 10. 

2.4. Post-processing in a spatio-temporal context 

When the initial classification results were obtained, a post- 
processing approach was proposed under the assumption of irrevers-
ible nature of urbanization process, to deal with the issue of temporal 
inconsistency (Schneider and Mertes, 2014). The existing algorithms, 
such as spatio-temporal Markovian classifier (Wehmann and Liu, 2015), 
bidirectional Markov random field model (Chen et al., 2019) and spatio- 
temporal transition probability matrix (Liu et al., 2019), have been 
proved to be effective by considering the spatio-temporal context. 
However, the high computational cost hinders the implementation of 
these methods at a global scale. In addition, since there are misclassi-
fication errors in the time-series mapping results, the initial classifica-
tion results should be modified to reduce error progation and improve 
temporal consistency. In this study, therefore, a new post-processing 
scheme, including weighted-fusion for correcting the initial results and 
spatio-temporal filtering, was proposed. 

Table 2 
Input data sources used to produce the MGUP product.  

Type Dataset Description Source Application 

Classification MOD09Q1 Surface 
Reflectance 8- 
Day L3 Global 
250 m 

https 
://lads 
web.mod 
aps.eosdis. 
nasa.gov 

Obtain surface 
reflectance B1 
and B2 for 
spectral feature 
extraction. 

MOD09A1 Surface 
Reflectance 8- 
Day L3 Global 
500 m 

Obtain surface 
reflectance B3, 
B4, B5, B6 and 
B7 for spectral 
feature 
extraction. 

MOD11A2 Land Surface 
Temperature/ 
Emissivity 8- 
Day L3 Global 
1 km 

Obtain night- 
time LST for 
temperature 
feature 
extraction. 

Auxiliary GHS-POP 2015 Global 
Human 
Settlement 
Population 
Layer 1 km 

https://gh 
sl.jrc.ec. 
europa.eu 

Provide 
population data 
to assist the 
establishment of 
training sample 
pool.  
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2.4.1. Weighted fusion for correcting the initial results 
A weighted fusion strategy was designed to reduce classification 

errors by combing time-series URB datasets and the initial mapping 
results. The fusion weight values were defined in terms of the classifi-
cation reliability in different years. The classification reliability was 
measured as the difference between the average urban area in the URB 
dataset (Ref_area(g, i)) and the urban area of our initial classificatin 
result (Area(g, i)) in gird g of year i: 

Dif (g,i) =
⃒
⃒Area(g,i) − Ref area(g,i)

⃒
⃒ (5) 

A smaller Dif(g,i) value indicates higher classification reliability. 
Subsequently, the weight values (w1(g, i)) were assigned for grid g in 
different years on the basis of descending order of Dif(g,i). For instance, 
the weight values were set to 18 and 1 for years with smallest and largest 
Dif(g,i) values, respectively. 

Subsequently, weighted frequencies of urban area in pixel × during 
the period before and after year t, ffore(x, t) and fback(x, t),were obtained 
by: 

ffore(x, t) =
∑t− 1

i=t0w1(g, i)c(x, i)
∑t− 1

i=t0w1(g, i)
(6)  

fback(x, t) =
∑2018

i=t+1w1(g, i)c(x, i)
∑2018

i=t+1w1(g, i)
(7)  

where c(x, i) is class label for pixel x in year i with values 0 and 1 rep-
resenting non-urban and urban area, respectively; t0 is the starting year 
of the period before year t. As shown in Fig. 3, there are two situations 
for determination of t0: 

1) When pixel x is labeled as urban in year t, t0 is the first year of the 
consecutive appearance of urban pixels; 

2) When pixel x is labeled as non-urban in year t, t0 is the first year of 
appearance of urban pixels. 

Using the weighted frequencies ffore(x, t) and fback(x, t), the initial 
calss label c(x, t) can be modified as c’(x, t) according to the rule 
described below: 

c’(x, t) =

⎧
⎨

⎩

1, c(x, t) = 1andffore(x, t) ≥ th1andfback(x, t) ≥ th1
1, c(x, t) = 0andffore(x, t) ≥ 0.98

0, otherwise
(8)  

th1 =

{
0.8,Area(g, t) > Ref area(g, t)
0.6,Area(g, t) ≤ Ref area(g, t) (9)  

where th1 is an empirical threshold value. 

2.4.2. Spatio-temporal filtering 
Only temporal content was considered in the weighted fusion 

correction, thus, we developed a spatio-temporal filtering to further 
refine the classification results. Firstly, for each pixel (yc, zc) in the time 
sequence tc, we calculated its urban probability (p(yc, zc, tc)) through the 
inverse distance weighted average of pixels in a 3 × 3 × 5 spatio- 
temporal window (a 3 × 3 window in 5 years): 

p(yc ,zc ,tc) =
∑yc+1

y=yc − 1

∑zc+1

z=zc − 1

∑tc+2

t=tc − 2
w2(y, z, t)c new(y, z, t) (10)  

where (yc, zc, tc) is the center pixel in the 3 × 3 × 5 spatio-temporal 
window, and w2(y, z, t) denotes the weight of pixel (y, z, t). w2(y, z, t) 
is calculated based on the normalized inverse distance, and the pixels 
with larger distance values are assigned as lower weights. Considering 
the importance of the label of the center pixel (yc, zc, tc), its weight, 
w2(yc, zc, tc), is empirically set to 0.1. In this way, a higher value of p(yc, 
zc, tc) indicates larger confidence that the center pixel is identified as 
urban. If p(yc, zc, tc) is larger than 50%, the center pixel is labeled as 
urban, otherwise non-urban. In this way, the initial classfication result 
can be further improved in a spatio-temporal context. Based on the 
modified classification result, the final label for each pixel was given 
according to the assumption of irreversible nature of urbanization 
process. 

2.5. Accuracy assessment 

To objectively evaluate our results, global validation samples for 
every two years from 2001 to 2018, i.e., 9 groups of time-series samples, 
were collected manually. Using the random-stratified sampling strategy 
in terms of the population size, 5 cities were randomly selected from the 
first, second, and third level cities (Table 3), respectively, in each group, 
generating 135 validation cities. The distribution and details of these 
cities are presented in Fig. 4 and Table 4, respectively. Over 150,000 
sample points were randomly generated and labeled through visual 
interpretation of Landsat images. In order to ensure the spatial inde-
pendence among the validation samples, the minimum distance between 
them is set as 1 km. 

Using the validation sample set, we performed accuracy assessment 
to the proposed MGUP and the current state-of-the-art products 
including MCD12Q1.v5, MCD12Q1.v6, and CCI-LC, using the F-score 
measure. 

Precision =
TP

TP+ FP
(11)  

Recall =
TP

TP+ FN
(12)  

F − score = 2 ×
Precision× Recall
Precision+ Recall

(13)  

where TP is the number of correctly detected urban pixels, FP is the 
number of non-urban pixels that are wrongly detected as urban, FN is the 
number of urban pixels that are wrongly detected as non-urban, and 

Fig. 3. Schematic diagram on determination of starting year t0 of the period before year t.  

Table 3 
Division of city levels based on population.  

City levels Population(thousand) 

First level ≥10,000 
Second level 1,000 ~ 10,000 
Third level ＜1,000  
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Precision and Recall indicate correctness and completeness, respectively. 

3. Results and discussions 

3.1. Visual inspection 

The MGUP products were evaluated at global, regional, and city 
scales. Firstly, the global urban change intensity map at a grid scale of 1◦

is shown in Fig. 5 to demonstrate the hotspots of urban expansion. The 
change intensity is the ratio of the size of urban change during 2001 ~ 
2018 to the size of the total land area in this grid. It can be observed that 
the global urban expansion is unevenly distributed, and urban expansion 
hotspots are mainly located in North America, Europe, and Asia. 4 
representative hotspot regions, including Eastern China, United States, 
Western Europe, and India, are presented in Fig. 6. As indicated by Fig. 6 
(d), there is significantly rapid urbanization in Eastern China. In addi-
tion, mapping results in the 4 Chinese cities, i.e., Shanghai, Chengdu, 
Nanning, and Zhengzhou, were compared against their multi-temporal 
Landsat images (Fig. 7). Generally, our results provide accurate repre-
sentation of urban land and reliable monitoring of urban dynamics. 
Based on the mapping results, urban expansion in the urban fringe of 
Shanghai is the most active, especially in the southeast area. In Chengdu, 
the urban land was expanding to the north and southwest. In the case of 
Nanning, the urban land expanded mainly on the fringes, and mean-
while, new urban areas appeared in the southwest of the city. Zhengz-
hou’s urban land was sprawling towards the east. 

To further assess the reliability of the MGUP products, they were 
compared to MCD12Q1.v5, MCD12Q1.v6, and CCI-LC through visual 
inspection. The urban dynamics for the 4 representative cities, Berlin 
(Germany), Chicago (United States), Cape Town (South Africa), and 
Shanghai (China), are presented in Fig. 8. In addition, the zoom-in re-
sults corresponding to the yellow frames in Fig. 8 are shown in Fig. 9. It 
can be seen that by referring to the Landsat and Google images, MGUP 
and CCI-LC can delineate urban areas more accurately with fine spatial 
details. However, the two MCD12Q1 products show slight over- 
estimation in the urban core and under-estimation in the outskirts 
(See Fig. R1). With respect to temporal dynamics of urban areas, the 
MGUP products present better quality in both spatial and temporal 

distribution. Please notice that MGUP and MCD12Q1 products are based 
on the MODIS images, but better results are observed for the former, 
since MGUP strengthened the number and quality of the training sam-
ples by effectively integrating the existing state-of-the-art global 
datasets. 

3.2. Quantitative accuracy assessment 

F-score values for the four global products at global scale are 
compared in Fig. 10. Our results have the greatest F-scores in most years. 
Only in 2010, the F-score of our results is slightly smaller than the one of 
CCI-LC by 0.004. There is variability in accuracies among different years 
since the validation cities chosen for each year are different. For 
instance, the number of the relatively small-size cities selected for 
validation in 2016 is more than that in other years, therefore, their ac-
curate mapping is challenging and relatively lower accuracy is obtained 
(Schneider et al., 2010). 

Furthermore, Fig. 11(a) and (b) show the mapping accuracies at 
different cities and continents, respectively. MGUP acquires the highest 
accuracy in all the city levels. The F-score of MGUP for all the validation 
cities is 0.88, followed by CCI-LC (0.86), MCD12Q1.v6 (0.86), and 
MCD12Q1.v5 (0.82). The F-scores of our results for the first-, second- 
and third-level cities are 0.9079, 0.8521, and 0.7512, respectively, 
reflecting a tendency that the accuracy decreases with low city levels 
(corresponding to small-size urban areas). This phenomenon also occurs 
in the other global products, and a possible reason is the lack of repre-
sentative urban features and fragmented urban morphology in the low 
level cities. However, our results are still better than other products in 
the thrid-level cities, and outperform the second best CCI-LC by an in-
crease of 0.037 in F-score. The improved accuracy of MGUP in the third- 
level cities can be explained by the following two factors: (1) The pro-
posed sample extraction method can generate diverse and representa-
tive samples; and (2) The locally-adaptive classification can take into 
account the regional differences in urban morphology. 

As for the continent-level accuracy evaluation, MGUP achieves the 
highest F-score in North America, South America, Asia, and Europe; and 
the F-score of MGUP is slightly smaller by 0.006 in Africa than that of 
MCD12Q1.v6 and 0.008 in Oceania than that of CCI-LC, respectively. 

Fig. 4. The distribution of validation cities in this research.  
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Table 4 
The detailed information including countries and continents of the 135 validation cities.  

2002  2004 2006  2008 2010         

City Country Continent City Country Continent City Country Continent City Country Continent City Country Continent 

1 Karachi Pakistan Asia 1 Istanbul Turkey Asia 1 Bangkok Thailand Asia 1 Shenzhen China Asia 1 Karachi Pakistan Asia 
2 Barcelona Spain Europe 2 Chongqing China Asia 2 Barcelona Spain Europe 2 Mexico City Mexico North 

America 
2 Jakarta Indonesia Asia 

3 Shanghai China Asia 3 Los Angeles America North 
America 

3 Buenos Aires Argentina South 
America 

3 Sao Paulo Brazil South 
America 

3 Osaka Japan Asia 

4 Istanbul Turkey Asia 4 Sao Paulo Brazil South 
America 

4 Beijing China Asia 4 Paris France Europe 4 Mexico City Mexico North 
America 

5 Cairo Egypt Africa 5 Paris France Europe 5 Moscow Russia Europe 5 Man Nila Philippines Asia 5 Sao Paulo Brazil South 
America 

6 Umm Durman Sudan Africa 6 Hanoi Vietnam Asia 6 Guarulhos Brazil South 
America 

6 Lusaka Zambia Africa 6 Ho Chi Minh Vietnam Asia 

7 Baltimore America North 
America 

7 Sydney Australia Oceania 7 Changsha China Asia 7 Montreal Canada North 
America 

7 Addis Ababa Ethiopia Africa 

8 Naples Italy Europe 8 Minneapolis America North 
America 

8 Vienna Austria Europe 8 Santa Cruz Bolivia South 
America 

8 Warsaw Poland Europe 

9 Zhaoqing China Asia 9 Baghdad Iraq Asia 9 Monterrey America North 
America 

9 Ahmedabad India Asia 9 Kabul Afghanistan Asia 

10 Santiago Chile South 
America 

10 Belgrade Serbia Europe 10 Adelaide Australia Oceania 10 Beirut Lebanon Asia 10 San Diego America North 
America 

11 Qufu China Asia 11 Temuco Chile South 
America 

11 Sinop Brazil South 
America 

11 Uman Ukraine Europe 11 Nanning China Asia 

12 Jequie Brazil South 
America 

12 Matsuyama Japan Asia 12 Saint 
Catherine 

Canada North 
America 

12 Cheonan South Korea Asia 12 Texacomora Mexico North 
America 

13 Salt Lake City America North 
America 

13 Batumi Georgia Europe 13 Arzars Russia Europe 13 Fort Worth America North 
America 

13 Madison America North 
America 

14 Khomeini Iran Asia 14 Murahara India Asia 14 Kina Egypt Africa 14 Florida 
Budaca 

Columbia South 
America 

14 
Severodvinsk 

Russia Europe 

15 Junagadh India Asia 15 Ulaanbaatar Mongolia Asia 15 Gold Coast Australia Oceania 15 Bayamo Cuba North 
America 

15 Ain Oussera Algeria Africa 

2012   2014   2016   2018      
City Country Continent City Country Continent City Country Continent City Country Continent    
1 Moscow Russia Europe 1 Lahore Pakistan Asia 1 Delhi India Asia 1 Tianjin China Asia    
2 Seoul South Korea Asia 2 Man Nila Philippines Asia 2 Beijing China Asia 2 Istanbul Turkey Asia    
3 Los Angeles America North 

America 
3 Tokyo Japan Asia 3 Lagos Nigeria Africa 3 Buenos Aires Argentina South 

America    
4 Buenos Aires Argentina Europe 4 Los Angeles America North 

America 
4 Lima Peru South 

America 
4 Mumbai India Asia    

5 Mumbai India Asia 5 Sao Paulo Brazil South 
America 

5 Jakarta Indonesia Asia 5 Bogota Colombia South 
America    

6 Harare Zimbabwe Africa 6 Medan Indonesia Asia 6 Shiraz Iran Asia 6 Singapore Singapore Asia    
7 Hefei China Asia 7 Bamako Mali Africa 7 Pretoria South 

Africa 
Afirca 7 Kampala Uganda Africa    

8 Phoenix America North 
America 

8 Calgary Canada North 
America 

8 Cincinnati America North 
America 

8 Chicago America North 
America    

9 Donetsk Ukraine Europe 9 Sapporo Japan Asia 9 Tbilisi Grunia Asia 9 Suwon South Korea Asia    
10 Urumqi China Asia 10 Worcester England Europe 10 Milan Italy Europe 10 Ufa Russa Europe    
11 Kot Adu Pakistan Asia 11 Jinchang China Asia 11 Vancouver Canada North 

America 
11 Kansas America North 

America    
12 Winnipeg Canada North 

America 
12 Khammouan Laos Asia 12 Lhasa China Asia 12 Ural Kazakhstan Asia    

13 Quetzaltenango Guatemala South 
America 

13 Thika Kenya Africa 13 Itajai Brazil South 
America 

13 Hanzhong China Asia    

14 Cuttack India Asia 14 Teofilo 
Otoni 

Brazil South 
America 

14 Tyre Lebanon Asia 14 Villaverde Spain Europe    

15 Leipzig Germany Europe 15 Atlanta America North 
America 

15 Kindia Guinea Africa 15 Iquitos Peru South 
America     
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Fig. 5. Global change intensity map at a grid scale of 1◦ during 2001 ~ 2018.  

Fig. 6. Mapping results of MGUP for the 4 representative hotspot regions: (a) United States, (b) India, (c) Western Europe, and (d) Eastern China.  
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The relatively poorer performance in Africa and Oceania can be possibly 
attributed to the confusion of spectrally similar classes, bare soil and 
urban land. Specifically, there is great inconsistency among different 
URB datasets in these two continents, resulting in lack of high-quality 
samples for the proposed automated sampling strategy. However, this 
issue can be well addressed by adding more reliable samples to these 
regions in future work. 

To assess the quality of the training samples, two representative 
countries, i.e., China and USA, has been regarded as the test areas. For 
China, a 30 m land cover product CLUD (China’s Land-Use/cover 
Datasets) in 2005, 2010, 2015 were used as the reference (Liu 
et al.,2014), and for USA, the 30 m NLCD (National Land Cover Data-
base) (Fry et al.,2011) in 2006, 2011, 2016 were adopted as the refer-
ence. The accuracy of the automatically selected samples is assessed in 
Table 5. Considering that the RF classifier used in our research is robust 
to the random noise and is tolerant to the noise level up to 25%–30% 
(Pelletier et al., 2017), it can be stated that our automatically generated 
samples are satisfactory. 

To investigate the effect of the features, the permutation-based 
importance of each feature is measured (Breiman, 2001) and shown in 
Fig. 12. It can be seen that in all the seasons, spectral features and their 
difference indexes (NDXI) show similar contributions to classification, 
and the night time LST features are the most important. Among the 

spectral bands, band2 and band5 are of higher importance. In general, 
the feature importance in the four seasons shows similar patterns. 

3.3. Analysis of urban expansion 

Based on the annual MGUP from 2001 to 2018, urban expansion at 
global, continent, and national scale was analyzed. 

3.3.1. Urban expansion at global scale 
Fig. 13 shows the annual dynamics of global urban area from 2001 to 

2018 for the four global products. As indicated by MGUP and CCI-LC, 
global urban area is rapidly and continuously increasing, which is 
consistent to the visual inspection in Section 3.1. A linear and slow 
growth trend is observed for MCD12Q1.v6, whereas almost no dynamic 
change is found in MCD12Q1.v5. The global urban areas derived from 
MGUP exhibit high agreement with those from CCI-LC in most years 
with a slight difference in 2015–2018. In contrast to MCD12Q1.v5, 
MGUP shows smaller global urban areas during 2001 ~ 2010 but higher 
values after 2010. Compared with MCD12Q1.v6, MGUP has less urban 
area during 2001 ~ 2016, and becomes the same from 2017. It should be 
emphasized that MGUP, MCD12Q1.v5, and MCD12Q1.v6 are all 
MODIS-based products and the main data sources for CCI-LC are Me-
dium Resolution Imaging Spectrometer (MERIS) imagery. However, 

Fig. 7. Mapping results of MGUP for the 4 representative Chinese cities.  
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although different data sources are used for MGUP and CCI-LC, their 
annual dynamics of global urban area are highly similar, implying the 
reliability of both products. In summary, we can conclude that the 
proposed automatic sample extraction method can effectively collect 
global time-series urban and non-urban samples and the presented 
MGUP is an improved version of the existing MODIS-based urban 
products. 

3.3.2. Urban expansion at continent scale 
Based on the MGUP, the urban area for each continent is compared in 

Fig. 14. Urban density, i.e., the percentage of urban area size in the total 
land area, can partly reflect urbanization level. Urban area (density) in 
2018 is 304,575 km2 (0.68%) in Asia, 201,512 km2 (0.84%) in North 
America, 180,549 km2 (1.78%) in Europe, 52,835 km2 (0.30%) in South 
America, 49,772 km2 (0.17%) in Africa, 12,989 km2 (0.15%) in Oceania, 
respectively. Even though the total land area in Asia is the largest and 
about two times as large as that in Europe, its urban density is still lower 
than Europe and North America. Only the urban density for Europe, 
North America, and Asia is larger than the global average (0.54%) with 
that of Europe (1.78%) significantly higher than that of other continents. 

Regarding the annual dynamic, there is a rapid increase of urban 
area in Asia, South America, and Africa, whereas a steady increase trend 
is observed for North America, Europe, and Oceania. The largest in-
crease in urban area occurs in Asia from 2001 to 2018 (156,344 km2), 
followed by Europe (65,886 km2), North America (55,839 km2), Africa 
(27,685 km2), South America (18,134 km2), and Oceania (3245 km2). As 
for the percentage of the urban area for each continent in the global total 
urban area, it has increased from 31% in 2001 to 38% in 2018 for Asia. 
However, a decreased trend is observed for Europe (from 24% in 2001 to 
22% in 2018) and North America (from 30% in 2001 to 25% in 2018). 

The percentages for Africa, South America, and Oceania vary little 
during the period, and the variations are no more than 1%. 

3.3.3. Urban expansion at national scale 
The area and rate of urban growth at national scale from 2001 to 

2018 are shown in Fig. 15(a) and (b), respectively. The urban expansion 
at national scale is found to be unevenly distributed, and is intensive 
mainly in North America, Asia, and South America. The top four coun-
tries having the largest urban area increment are China (92,645 km2), 
United States (43,594 km2), Russia (13,405 km2), and India (11,294 
km2). The increment of China accounts for 28% of total urban area 
change in Asia, and is 3.6 times the sum of the increase in Russia and 
India. The urban expansion in Europe and North America (except for 
Greenland) is spatially even. Urban expansion in South America is 
mainly concentrated in the eastern Brazil and southern Argentina, and 
the rest of South America experiences relatively small urban sprawl. In 
Africa, most countries have smaller urban area change except for South 
Africa (4020 km2) and Nigeria (4145 km2). 

In contrast, the spatial distribution of the urban growth rate is quite 
different from that of the growth area at the national level. The countries 
having high growth rates mainly involve developing countries in Africa 
and Asia. The growth rates in most Africa countries are high, which 
exceed 200% in Africa West and South. As for Asia, countries with high 
growth rates are mainly located in East, South, and Southeast Asia. It is 
worthy noticing that both urban growth area and rate are high in Asia. 

4. Conclusions 

In this research, we proposed an automated global sample extraction 
scheme, and produced 250-m urban extent datasets from 2001 to 2018 

Fig. 8. Comparison of the urban dynamics for the 4 representative cities in MGUP, CCI-LC, MCD12Q1.v5, and MCD12Q1.v6.  
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using MODIS imagery. Using our validation samples, the global level F- 
score for this dataset is as high as 0.88, achieving better results than the 
current state-of-the-art global products with similar spatial resolution, i. 
e., MCD12Q1.v5 (0.82), MCD12Q1.v6 (0.86), and CCI-LC (0.86). MGUP 
achieves the most accurate results in different years, different level 
cities, and different continents. The results reveal that the proposed 

method can effectively collect global time-series urban and non-urban 
samples and the MGUP can be regarded as an improved version of the 
existing MODIS-based urban products (e.g., MCD12Q1.v5 and 
MCD12Q1.v6) and a reliable data source for monitoring the global 
urban expansion. It should be acknowledged that the relatively higher 
accuracy of MGUP is attributed to the fusion of the current state-of-the- 

Fig. 9. The zoom-in results of MGUP, CCI-LC, MCD12Q1.v5, and MCD12Q1.v6, corresponding to the yellow frames in Fig. 8, used to highlight the over-estimation in 
the urban core and the under-estimation in the outskirts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

Fig. 10. F-score values at global scale for different years.  
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art products as well as the proposed mapping strategy, e.g., sample 
refinement, locally adaptive classifier, and the spatio-temporal post- 
processing. 

In terms of MGUP, the world’s urban land area increased to 802,233 
km2, accounting for 0.54% of the Earth’s land surface in 2018. In 
continent level, urban area (density) in 2018 was 304,575 km2 (0.68%) 
in Asia, 201,512 km2 (0.84%) in North America, 180,549 km2 (1.78%) 
in Europe, 52,835 km2 (0.30%) in South America, 49,772 km2 (0.17%) 
in Africa, 12,989 km2 (0.15%) in Oceania, respectively. There was a 
rapid increase of urban area in Asia, South America, and Africa, whereas 
relatively steady increase trend is observed for North America, Europe, 
and Oceania. In national level, urban area increments are high mainly in 
North America, Asia, and South America; and countries having high 
growth rates mainly involve developing countries in Africa and Asia. 
The top four countries having the largest urban area increment are China 
(92,645 km2), United States (43,594 km2), Russia (13,405 km2), and 
India (11,294 km2). 

Fig. 12. Feature importance in the four seasons. The bar indicates the average feature importance calculated in different grids, and the error bar denotes their 
standard deviation. 

Fig. 11. F-score values at different (a) level cities and (b) continents.  

Table 5 
Accuracy of the automatically selected samples.  

Test Area Year Urban Samples Nonurban Samples 

China 2005 0.8214 0.9834 
2010 0.8882 0.9808 
2015 0.8470 0.9757 

USA 2006 0.7884 0.9991 
2011 0.7840 0.9990 
2016 0.8137 0.9988  
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Fig. 14. Annual dynamics of urban area in different continents from 2001 to 2018: (a) urban area and (b) their percentage in the global urban land.  

Fig. 13. Annual dynamics of global urban area from 2001 to 2018.  
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