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a b s t r a c t

As the two most common types of land cover in cities, vegetation (Veg) and artificial surfaces (AS) often
exhibit competitive effects, i.e., cooling effect and warming effect, on land surface temperature (LST).
Hitherto, the change of this competitive effect along the proportion gradient of AS within urban areas
and their implications for urban construction still lacks adequate attention and discussion. To fill this gap,
we made a quantitative analysis of the relationship between Veg (trees or grassland), AS and LST in 35
major cities of China by using Ziyuan-3 (ZY-3) high-resolution satellite observations. Results found that:
(1) in each city, there exists a certain threshold (or “turning point”) along the proportion gradient of AS,
exceeds which AS replaces Veg as the variable that have dominant effect on LST (i.e., the warming effect
of AS is always stronger than the cooling effect of Veg); (2) for most cities, the turning points of AS for
grassland and trees are 60% and 70%, respectively; (3) the turning point for cities at a higher development
level is lower, indicating that even a relatively low AS coverage (~50e60%) in these areas can lead to an
evident rise in LST; 4) compared to cities in temperate and tropical climate zones, the turning point for
arid/semi-arid cities is higher, implying that their urban Veg shows a better performance in mitigating
urban heat stress. This study represents a systematic investigation of the competitive effect of urban Veg
and AS on LST, and the understanding of turning point provides a new perspective for stakeholders to
integrate urban development and temperature regulation in planning initiatives.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Urban development has had a great effect on urban microcli-
mate changes worldwide, and is often accompanied by the urban
heat island (UHI) effect owing to the replacement of vegetation
(Veg) with artificial surfaces (AS) (Yang et al., 2018). The rising
temperature increases the risk of heat exposure for urban dwellers.
Studies have shown that high-temperature events (e.g., heat
waves) are closely associated with a range of fatal heat-sensitive
diseases (Shahmohamadi et al., 2011) and unsatisfactory socio-
economic factors (Santamouris and Kolokotsa, 2015; Carleton and
Hsiang, 2016). In this context, understanding the underlying
mechanism of how Veg and AS jointly affect the land surface
temperature (LST) is in urgent need to alleviate the UHI effect and
and Information Engineering,
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protect residents who are vulnerable to extreme heat, especially in
summer daytime.

The advent of remote sensing (RS) technology enables long-
term and large-scale observations of LST and provides explicitly
spatial data sets of land cover and land use (LCLU). Based on this,
intensive related researches have proved that the spatial hetero-
geneity of LST distribution is significantly related to the various
composition of urban land covers, particularly the Veg and AS
(Maimaitiyiming et al., 2014; Zhou et al., 2014; Tran et al., 2017).
When Veg and AS co-occur in a region, it is often considered that
these two land-cover categories show a competitive effect (i.e., the
Veg-induced cooling effect and AS-induced warming effect) on LST,
and the result of this so-called competition (i.e., the net effect)
determines the change of LST (Ziter et al., 2019). Nevertheless, there
are two major issues have not been clearly clarified in the extant
literature. On the one hand, the quantitative changes of this
competitive effect for different combinations of Veg and AS on LST
remain unclear. On the other hand, there lacks a bridge to connect
our understanding of the competitive effect with the needs of
actual urban planning.
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Accordingly, in this study, we propose an assumption that a
threshold exists with regard to the proportion of Veg or AS in their
competitive process, at which point the dominant feature affecting
LST changes. To better elaborate it, we layout a conceptual diagram
of the proposed assumption (Fig. 1). It has been agreed that with
the increment of the proportion of AS, the positive effect of AS on
LST is gradually enhanced but, instead, the negative effect of Veg is
weakened by degrees (Estoque et al., 2017). When the proportion of
AS exceeds a certain threshold, the category that has a dominant
effect on LST is AS, and otherwise the Veg dominates LST. This
threshold can be viewed as the “turning point” between AS and
Veg, which can not only serve as an intuitive and effective indicator
to quantitatively reflect their competitive effect on LST, but also
provides inspiring implications for stakeholders to balance urban
construction and temperature regulation.

Some previous studies have also attempted to discuss the
appropriate proportions of Veg or AS to maintain a pleasant urban
LST. For instance, through on-site survey and numerical modeling,
Moriyama and Tanaka (2009) and Ng et al. (2012) found that the
temperature dropped significantly when the tree coverage reached
around 30% in Hong Kong, China, and Osaka, Japan, respectively.
Ziter et al. (2019) adopted a bicycle-mounted measurement system
and observed that the canopy cooled the temperature greatest
when its cover exceeded 40% in Madison, U.S. Alavipanah et al.
(2015) obtained an optimal Veg fraction of 70e80% in Munich,
Germany, for mitigating the LST and Xu et al. (2013) suggested that
the impervious surface of Xiamen, China should not exceed 70% of
the urban area. However, it should be noted that urban areas are
often regarded as a mixture of various landscapes. In the same
region, LST is not only affected by a single landscape of Veg or AS,
but by their complicated interactions (Trlica et al., 2017). From this
perspective turning point is proposed integrating these two land
cover categories so as to meet the needs and wants of those who
formulate the policies. More importantly, limited by the data
availability, current researches focus largely on the analysis of in-
dividual cities, which is not conducive to establishing a general
Fig. 1. A conceptual diagram showing the impact of Veg (green) and AS (blue) on LST
under different proportions of AS. In this graph, when the proportion of AS is low, the
cooling effect of Veg is stronger than the warming effect of AS, and Veg is the dominant
variable; when the proportion of AS is higher than the turning point, the situation is
reversed.
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pattern of the competitive effects of Veg and AS on LST. Out of the
same reason, low- and medium-resolution remote sensing imag-
eries are prevailing data sources for most of these researches. Based
on these coarse-resolution classification datasets, the optimal
combination of Veg and AS required for cooling the urban LST can
be overestimated as some small and scattered landscape patches
are ignored.

Therefore, to solve these issues exist in previous studies, this
study firstly selected 35 typical cities in China as the study area
based on the consideration that the variations in the hydrothermal
environment and the development levels between cities may lead
to discrepancies in the nature of Veg and AS (Zhou et al., 2017a,b).
Secondly, this study produced classificationmaps of the 35 cities on
the basis of Ziyuan-3 (ZY-3) high-resolution remote sensing images
(with a 2.1-m resolution) to depict the precise distribution char-
acteristics of urban AS and Veg, which is rare in the existing re-
searches. Another highlight in this study is that we investigated the
joint effect of AS and Veg on LST from the perspective of compe-
tition and obtained the turning point in a quantitative way.

Overall, we aimed to: 1) assess the joint effects of Veg (trees or
grassland) and AS on LST by quantitatively exploring the proportion
of Veg or AS that can have a dominant effect on LST; and 2)
investigate the 35 major cities of China to reveal the general pat-
terns of such joint effects and their variations in different climate
zones and development levels.

2. Study area

China is the third largest country in the world in terms of land
area (~9.6 million km2), extending from 73�330 E to 135�050 E and
3�510 N to 53�330 N. This vast territory provides space for the
growth of Veg, and the various climate types are beneficial for
maintaining the diversity of plant species. According to Olson’s
biome designation (Olson et al., 2001), China spans three climate
zones, as shown in Fig. 2(A): 1) the tropical climate zone (mainly
evergreen broad-leaved forest and mangroves); 2) the temperate
climate zone (mainly deciduous broad-leaved forest and mixed
forest); and 3) the arid/semi-arid climate zone (mainly coniferous
forest and grassland). Urbanization, as a typical case of human ac-
tivity induced land-cover change, has been prevalent in the cities of
China for decades. The growth or change (to AS) of vegetation is
heavily affected by the intensity of urbanization and varies signif-
icantly across geographical regions. Considering the complicated
and diverse urban landscapes, China is an ideal study area for
exploring the relationship between urban vegetation (Veg), artifi-
cial surfaces (AS), and LST (hereinafter referred to as the “Veg-AS-
LST relationship”).

The 35 major cities of China were selected for the study,
including 22 provincial capitals, four municipalities, one special
economic zone, and eight other major cities. All these cities have
witnessed the rapid urbanization process in China and the subse-
quent changes in the urban landscape and thermal environment. To
further investigate the difference of the Veg-AS-LST relationship,
we categorized the 35 cities into super first-tier, first-tier, second-
tier, and third-tier city, based on the city ranking list (China
Business Network Co., Ltd, 2019).

3. Data and methods

3.1. High-resolution land cover mapping

The Ziyuan-3 (ZY-3) satellite, which was launched in January
2012, is China’s first high-resolution stereo mapping satellite. Its
panchromatic (PAN) and multi-spectral (MS) cameras provide one
PAN band (2.1-m spatial resolution) and four MS bands (5.8-m



Fig. 2. (A): Locations of the 35 major cities in China, with the base map indicating the three climate zones of China. In addition, the circles with different sizes represent the cities at
different development levels. (B)e(E): High resolution land cover mapping results of four representative cities: Beijing; Wuhan; Guangzhou; and Zhengzhou. The first column
shows the high-resolution land cover maps, the second column shows the LST distribution maps, and the third column displays the details of the local areas delineated by the black
frame in the first column.
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resolution) (Huang et al., 2018; Huang and Wang, 2019). A total of
61 cloud-free ZY-3 images covering all 35 cities were acquired for
the growing season (April to October) around 2015 to ensure
consistent vegetation conditions. The processing flow is summa-
rized as follows: Firstly, the MS images were registered to the PAN
nadir image with a root-mean-square error (RMSE) of less than one
pixel; then, Gram-Schmidt pan-sharpening was applied to fuse the
MS images with the PAN nadir images, to improve their spatial
resolution; finally, a series of ancillary datasets, including A-map,
Map World, and Open Street Map (OSM), were used to help extract
the land cover from the sharpened MS images after spatial
registration.

Map World was the main source of water information, and it
was also used as a supplement to A-map and OSM to obtain
buildings and roads. After acquiring these three land-cover cate-
gories, they were used as a mask layer to the ZY-3 image. Then,
using the random forest classifier, the rest of the image was clas-
sified into four other land-cover categories: grassland, tree, bare
soil, and other impervious surface area (OISA, e.g., squares, open
areas, pavements). In this research, we defined the land category of
AS by merging the buildings, roads, and OISA. The overall accuracy
based on 41,571 spatially independent validation samples was 88%,
with the producer’s accuracy and user’s accuracy for all the land-
cover classes exceeding 85%, implying a reliable mapping result.
Please refer to Huang et al. (2020) for details of the mapping and
accuracy assessment. In addition, to further understand the
composition and spatial distribution of the land-cover types in
these 35 cities, we calculated their total proportion and aggregation
index for the subsequent analysis.
3

3.2. Urban area extraction

The urban area for each city was extracted by referring to the
definition in Zhou et al. (2015). In detail, we first generated a
building intensity (BI) map from the land-cover map of each city
using a 1 � 1 km moving window. Subsequently, the BI map was
divided into high- and low-intensity built-up patches with a
threshold of 50%. The high-intensity built-up patches were then
aggregated to obtain a compact urban area. The urban areas of the
35 cities range from 221.6 km2 (Xiamen) to 3518.21 km2 (Beijing).
The final mapping results of four representative metropolises of
China (Beijing, Wuhan, Guangzhou, and Zhengzhou) are shown in
Fig. 2(B).

3.3. LST retrieval

To produce the LST distribution maps of the 35 cities, all of the
Landsat 8 Surface Reflectance Tier 1 product (L8_SR) with cloud
coverage less than 70% available between June and August during
2013e2018were obtained from the United States Geological Survey
(USGS). Detailed information about the images acquired for each
city is presented in Table A.1. The L8_SR product is the atmo-
spherically corrected surface reflectance from the Landsat 8 Oper-
ational Land Imager (OLI) with a spatial resolution of 30 m and
thermal Infrared Sensor (TIRS) sensors with a resampled spatial
resolution of 30 m. In addition, this product is made up of five
visible and near-infrared (VNIR) bands and two short-wave infrared
(SWIR) bands that have been processed to orthorectified surface
reflectance, and two thermal infrared (TIR) bands that have been
processed to orthorectified brightness temperature (USGS, 2013).
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The cloud and cloud shadows in the images were filtered out ac-
cording to the quality assessment (QA) band, and based on the
Landsat Data Users Handbook Version 5.0 (NASA, 2019), the LST
could then be retrieved through calculating a set of parameters:

LST¼ TB
1þ ðl� TB=rÞln ε

(1)

where TB is the orthorectified brightness temperature (Kelvin, K),
obtained from the pixel values of L8_SR Band10 (the scale factor is
0.1); and l is the wavelength of the radiation emission. The center

wavelength (10.8 mm) of L8_SR Band10 was used. r ¼ ðh�cÞ
d

¼
1:438� 10�2mK, inwhich h is Planck’s constant (6.626� 10�34 J s),
cis the speed of light (2.998� 108 m s�1), and d is the Boltzmann
constant (1.381� 10�23 J K�1) (Peng et al., 2018). ε is the surface
emissivity, whose values were determined by the normalized dif-
ference vegetation index (NDVI) (Defries and Townshend, 2007;
Valor and Caselles, 1996).

In this research, the final LST distribution map for each city
(Fig. 2(B)) was obtained by averaging all the LST distribution maps
available during the selected period, for the following reasons: 1)
the LST retrieved from a single-date image may be greatly affected
by meteorological conditions (e.g., precipitation, wind speed, wind
direction); and 2) the de-clouding processing for a single image
often results in some missing LST values.
3.4. Investigation of the Veg-AS-LST relationship

A series of grid samples of 360 � 360 mwere established within
each city, and the composition of the trees, grassland, and AS was
then acquired for each grid cell. The grid size, i.e., 360� 360 m, was
determined referring to Myint et al. (2010), achieving a trade-off
between preservation of land-cover details and analysis of their
Fig. 3. An example of the grouping results for the grid cell samples from Beijing. (A): All the
to Group No. 10. (C): A graphical explanation of the groups, intervals, and grid cell samples
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effects on LST. By superimposing the grid layer upon the high-
resolution land-cover and LST distribution maps, we could calcu-
late the proportion of each land-cover type and the averaged LST
for each grid cell sample. Please note that we focused our analysis
on the so-called “pure grid cells”, i.e., the ones containing only
trees, grassland, and AS, to avoid the effects of other land-cover
categories. The chosen grid samples were divided into 10 groups
according to proportion gradients of AS, i.e., 0e10% (Group No. 1),
10%e20% (Group No. 2), … …, and 90e100% (Group No. 10),
respectively. Fig. 3(A) illustrates the grouping results for the grid
cell samples from Beijing as an example. Here, from the first group
to the tenth group, we randomly selected a grid cell sample in each
group to display the composition of the land cover, as shown in
Fig. 3(B). We then further divided each group into 100 intervals
with an increment of 0.1% AS. Since the number of grid cell samples
in each interval may be different, we only took one of the grid
samples, whose proportion of AS was themedian of all the samples,
as a representative of each interval (Fig. 3(C)). This ensured that the
number of grid cell samples in each group was equal (i.e., the
number of intervals, 100), which confirmed the inter-group
comparability of the subsequent regression results.

A regression model was then established for each group, based
on the grid cell samples in it. The proportions of Veg (tree or
grassland) and AS were set as the independent variables, and the
averaged LST was set as the dependent variable. For each model,
the variablewith themaximum regression coefficient was regarded
as the dominant variable affecting LST. Since the grids only included
trees, grassland, and AS, multicollinearity existed when the three
independent variables were input into the regression model
simultaneously. To alleviate the multicollinearity, the hierarchical
regression model (HRM) (Lankau and Scandura, 2002) was adopted
to separately analyze the tree-AS-LST relationship and the
grassland-AS-LST relationship by controlling the third independent
grid cell samples. (B): Random grid cell samples respectively selected from Group No. 1
.



Fig. 4. Boxplots of the total proportions and aggregation index of AS, trees, and grassland, as well as the LST of cities in three climate zones ((A)e(C)) and four development levels
((D)e(F)). The horizontal lines (boxes and whiskers) from top to bottom in each boxplot are the maximum value, the 1st quartile (Q1), the median, the 3rd quartile (Q3), and the
minimum value, respectively.
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variable. HRM is a bi-layer linear regression model (Stephen and
Anthony, 2002), whose first layer is composed of control variables
and a dependent variable, and the second layer is built by adding
independent variables using an “enter” method, as shown below:

LSTi ¼aiVegi þ biASi þ εi (2)

where ai is the coefficient of Veg (tree or grassland), bi is the co-
efficient of AS, and εi is the intercept of Group No. i (i¼ 1, 2,……, 10).
Here, the regression coefficient measures the influence intensity of
Veg and AS on LST. On the basis of the conceptual diagram in Fig. 1,
when the proportion of AS is low (for example, in Group No. 1-No.
N), if a1 >b1;……;aN >bN , Veg is regarded as the dominant variable.
Otherwise, when the proportion of AS is high (for example, in
Group No. (Nþ1)-No. 10), if aNþ1 <bNþ1; ……; a10 <b10, AS is
considered as the dominant variable. On this condition, 10*N% is
the turning point of AS for this city.
4. Results

4.1. Characteristics of the AS, Veg, and LST in the 35 major cities of
China

As presented in Table A.2, the total proportions (Prop_Total) and
aggregation index (AI) values of AS, trees, and grassland in 35major
cities of China, as well as the LST values, were calculated at the city
scale, and the results were further grouped by climate zones and
development levels (Fig. 4). Among these cities, the Prop_Total of
AS, trees, and grassland vary from 33.05% (Chengdu, CD) to 58.01%
5

(Tangshan, TS), 4.14% (TS) to 31.92% (Shenyang, SY), and 4.35%
(Taiyuan, TY) to 36.67% (Hefei, HF), respectively, and the AI varies
from 93.00% (Chongqing, CQ) to 97.26% (Suzhou, SuZ), 81.41% (TY)
to 95.78% (SuZ), and 78.75% (Kunming, KM) to 93.69% (Haikou, HK),
respectively. The LST across the cities ranges from 27.16 ± 5.09 �C
(KM) to 36.35 ± 2.38 �C (HK).

Fig. 4(A) shows that the Prop_Total of AS and trees in the tropical
cities are 45.81% ± 4.26% and 21.20% ± 5.55%, respectively, which is
higher than the temperate (45.52% ± 4.97% and 14.32% ± 6.48%) and
arid/semi-arid (39.35% ± 4.72% and 16.08% ± 5.53%) cities, while the
Prop_Total of grassland in the arid/semi-arid cities is
21.54% ± 2.45%, which is higher than that in the tropical
(12.90% ± 3.69%) and temperate (19.12% ± 7.51%) cities. Similar
results can be observed in the AI (Fig. 4(B)). The AS and trees in the
tropical cities (95.22 ± 0.80 and 89.92 ± 1.02) are the most aggre-
gated, followed by the temperate (95.17 ± 1.20 and 89.76 ± 3.35)
and arid/semi-arid (94.59 ± 1.09 and 88.56 ± 4.70) cities. In
contrast, the grassland is more intensively distributed in the arid/
semi-arid (89.98 ± 1.22) cities than in the temperate
(87.50 ± 3.58) and tropical (85.71 ± 4.90) cities. In addition, the
mean LST in the tropical cities is, respectively, 1.05 �C and 2.86 �C
higher than in the temperate and arid/semi-arid cities (Fig. 4(C)).
The results indicate that, due to the warm and humid background
climate, the tropical cities correspond to more massive and
concentrated AS and trees compared to the cities with arid/semi-
arid climates in China.

Fig. 4(D) shows that the Prop_Total of AS and trees are obviously
higher in the cities at higher development levels. Moreover, it is
worth noting that, in the super first-tier cities, the AI of AS is
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relatively low (Fig. 4(E)), whereas that of trees and grassland is
high, which indicates that targeted vegetation planting has been
implemented in these areas, to avoid overly dense urban con-
struction. However, the mean LST of the developed cities is still
higher than that of the other cities (Fig. 4(F)). This can be mainly
attributed to the crowded population and various anthropogenic
activities that lead to high heat emissions, such as industrial pro-
duction, domestic discharge, and commercial trade (Jia and Zhao,
2019).

The proportion of Veg (trees/grassland) and the corresponding
LST along the proportion gradients of AS inside the 35 major cities
are shown in Fig. 5. It can be observed that, with the increase of the
proportion of AS, the proportion of trees and grassland in most
cities shows a non-linear decrease, while in some cities (e.g., CC,
HH, and SJZ) a linear decline can be seen. However, for some
southeast coastal cities, e.g., GZ, HK, HZ, NJ, SZ, SuZ, WX, and YT, the
curve for grassland shows a slight rise in some areas that are
covered by 10e30% AS, which may be the result of urban planning
and management. On the other hand, the LST of most cities (except
Fig. 5. The proportion of trees and grassland and the averaged LST in each grid cell sampl
represent the value of the grid cell sample in each interval, and the squares represent the av
CD (Chengdu), CQ (Chongqing), DL (Dalian), FZ (Fuzhou), GZ (Guangzhou), HB (Harbin), HF
(Nanjing), NN (Nanning), QD (Qingdao), SH (Shanghai), SJZ (Shijiazhuang), SuZ (Suzhou), SY
(Wuhan), WX (Wuxi), XA (Xi’an), XM (Xiamen), XN (Xining), YC (Yinchuan), YT (Yantai), ZZ
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HZ, TJ, UQ, XN) shows a linear positive relationship with the pro-
portion of AS.
4.2. Joint effects of Veg and AS on LST

Fig. 6(A) and (B) display the overall HRM results for the 35 cities.
With the increment in the AS proportion, the impact of trees and
grassland on LST gradually weakens, and the impact of AS is slowly
enhanced, which is consistent with the findings of previous
research (Estoque et al., 2017; Ziter et al., 2019). It is clear that AS
and Veg exhibit a competitive effect on LST: when the proportion of
AS is low, the impact of Veg on LST is stronger than that of AS; and
as the proportion of AS increases to a certain threshold (i.e., the
turning point), AS replace Veg as the land-cover class having the
dominant effect on LST. Results verify the assumption proposed in
this study. For trees, the turning point appears at 70% AS (Fig. 6(C),
R2 ¼ 0.43, p < 0.05). With respect to grassland, the turning point
appears at 60% AS (Fig. 6(D), R2 ¼ 0.38, p < 0.05).
e along the proportion gradients of AS within urban areas of the 35 cities. The circles
erage values of the samples in each group. BJ (Beijing), CC (Changchun), CS (Changsha),
(Hefei), HH (Hohhot), HK (Haikou), HZ (Hangzhou), KM (Kunming), NC (Nanchang), NJ
(Shenyang), SZ (Shenzhen), TJ (Tianjin), TS (Tangshan), TY (Taiyuan), UQ (Urumqi), WH
(Zhengzhou).



Fig. 6. Overall results for the 35 cities and the dominant variable in each group. (A)e(B): The HRM results for trees (or grassland) and AS. (C)e(D): The relative intensity of the
influence of trees (or grassland) and AS on LST. The hollow circle represents the regression coefficient for each single city, and the solid triangles represent the mean of the
regression coefficients for all the cities. Group Nos. 1 to 10 represent the proportion of AS between 0 and 10%, 10e20%, 20e30%, 30e40%, 40e50%, 50e60%, 60e70%, 70e80%,
80e90%, and 90e100%, respectively. In the bar chart above the figure, the red, dark green, and blue indicate that tree, grassland, and AS is the dominant variable in this group,
respectively.
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4.3. Turning points for cities in different climate zones and
development levels

The trends of the HRM coefficients along the proportion gradi-
ents of AS in three climate zones (Fig. 7) and four development
levels (Fig. 8) are similar to the overall results for the 35 cities
(Fig. 6). Although there are fluctuations in the results for the arid/
semi-arid cities and the third-tier cities, which may be related to
their limited number, the competition phenomenon and turning
points still exist.

For cities located in arid/semi-arid, temperate, and tropical re-
gions, the turning points of AS for trees are 90% (Fig. 7(A), R2¼ 0.28,
p < 0.05), 60% (Fig. 7(B), R2 ¼ 0.56, p < 0.05), and 60% (Fig. 7(C),
R2 ¼ 0.45, p < 0.05), respectively, and the turning points of AS for
grassland are 90% (Fig. 7(D), R2 ¼ 0.19, p < 0.05), 50% (Fig. 7(E),
R2 ¼ 0.49, p < 0.05), and 50% (Fig. 7(F), R2 ¼ 0.46, p < 0.05),
respectively. With respect to the different city ranks, i.e., the super
first-tier, first-tier, second-tier, and third-tier cities, the turning
points of AS for trees are 60% (Fig. 8(A), R2 ¼ 0.36, p < 0.05), 70%
(Fig. 8(B), R2 ¼ 0.47, p < 0.05), 70% (Fig. 8(C), R2 ¼ 0.49, p < 0.05),
and 70% (Fig. 8(D), R2 ¼ 0.40, p < 0.05), respectively, and for
grassland, the turning points of AS are 50% (Fig. 8(E), R2 ¼ 0.31,
p < 0.05), 50% (Fig. 8(F), R2 ¼ 0.41, p < 0.05), 60% (Fig. 8(G),
R2 ¼ 0.43, p < 0.05), and 70% (Fig. 8(H), R2 ¼ 0.37, p < 0.05),
respectively.
7

5. Discussion

5.1. Significance and implications of the turning point

It has beenwidely reported that Veg plays a cooling role in cities,
by evaporating, storing carbon dioxide (CO2), and providing shade
(Oke, 1989). In contrast, areas covered by AS generally exhibit
higher LST than other areas because the impervious urban mate-
rials used in AS do not retainwater for evaporation and absorb heat
rapidly when exposed to solar radiation (Yuan and Bauer, 2007).
During the process of urbanization, AS gradually replace Veg as the
most prevalent land cover in urban areas due to the construction of
infrastructure and deforestation (Qiao et al., 2013), which changes
the surface albedo, alters the efficiency of heat absorption and
dissipation and elevates CO2 emissions, leading to UHI (Bowler
et al., 2010).

To offset the heat emissions, China has made great efforts in
greening cities (Zhao et al., 2016). How to achieve a trade-off and
compromise between the need of AS construction for urban
development and the urgency of Veg planting for climate adaption
is paid close attention by those decision-makers. It is on the basis of
both land allocation and temperature regulation that this study
assumes and obtains the turning point between AS and Veg for
their competitive effect on LST. Compared with the thresholds
obtained in previous studies, the turning point can reflect how the



Fig. 7. The HRM results for cities in the arid/semi-arid climate zone ((A), (D)), temperate climate zone ((B), (E)), and tropical climate zone ((C), (F)), respectively. (A)e(C): tree-AS-LST
relationship; (D)e(F): grassland-AS-LST relationship.

Fig. 8. The HRM results for the super first-tier cities ((A), (E)), first-tier cities ((B), (F)), second-tier cities ((C), (G)), and third-tier cities ((D), (H)), respectively. (A)e(D): tree-AS-LST
relationship; (E)e(H): grassland-AS-LST relationship.
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urban LST responds to the different relative proportions of Veg to
AS, rather than a single land cover category, so as to better manifest
the dynamic thermal changes under the complex interaction be-
tween land covers.

The existence of the turning point with regard to the proportion
of AS has important implications for urban management. For
instance, it could be regarded as the “warning level” for the pro-
portion of AS within urban areas. According to the results of this
study, in areas covered by AS exceeding 60% or 70%, some targeted
measures such as optimizing the spatial pattern of the AS may be
needed to compensate for the lack of vegetation cooling capacity. It
is true that the increase of AS is inevitable during socio-economic
development, but the in-depth understanding of the joint effect
of land covers on LST will sound the alarm for intensive construc-
tion, and knowledge of the turning point will facilitate to prevent
the further rise of summer daytime LST.

Our findings on turning point further reveal that the work to-
wards urban climate adaptation in different regions needs to be
elaborately designed in combination with their climatic and
developmental peculiarity. For cities with mild and humid climate,
improving vegetation (especially trees) coverage is preferred as a
primary means of cooling, while for cities at higher development
level, it is a more effectual and practicable strategy to consume the
abundant anthropogenic heat emissions by using permeable
pavement materials (Li et al., 2014), increasing the vegetation
connectivity (Maimaitiyiming et al., 2014) and their vertical
coverage (e.g., green wall and green facades) (Koc et al., 2018), and
scattering the distribution of high-rise buildings (Huang andWang,
2019), given their limited planting space.

Moreover, it can be noticed that the turning point is different for
trees (70%) and grassland (60%), which signifies that, in the
competition with AS, the cooling effect of urban trees is stronger
than that of urban grassland in the summer daytime. Myint et al.
(2015) observed a similar phenomenon in Las Vegas and Phoenix
in the southwestern U.S. Compared with grassland, the surface
roughness (Miranda et al., 1997), rooting depth (Jackson et al.,
1997), and leaf area index (LAI) of trees are usually higher, so
their cooling capability is stronger under the same climatic envi-
ronment. Several studies have shown that the transition of taller
woody vegetation (e.g., trees) to grassland increases air tempera-
ture and LST in tropical regions (Lee et al., 2011), whereas when the
transition is from grassland to trees, continuous cooling is observed
throughout the season (Abera et al., 2019). Therefore, for the sake of
maximizing the cooling efficiency of vegetation in summer day-
time, prioritizing tree planting in planning urban green landscapes
will be a better choice.

5.2. Influencing factors of the turning point

Land cover conversions change the biophysical properties (e.g.,
CO2, albedo, etc.) of land surface in urban areas. These surface
properties correspond to albedo-related radiative forcing and car-
bon sequestration potential, which are the primary factors affecting
the LST. In the study of St�efanon et al. (2012), the effects of albedo
and CO2 on LST were found to be obviously different in each cli-
matic zone. Similar phenomenon was also verified along the ur-
banization intensity gradients (Trlica et al., 2017). Therefore, this
studymainly discusses the influencing factors of turning point from
the aspects of background climate and urban development level.

Background climate of a city determines its local land use pat-
terns and major vegetation types. It can be observed that the
turning points for cities in colder and drier regions (arid/semi-arid
climate zones) are higher than those in hotter and wetter regions
(temperate and tropical climate zones), for both trees and grass-
land. Higher turning points implies that less Veg is needed to offset
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the AS-induced heat. On the one hand, the heat mitigation ability of
urban Veg in arid regions is higher. This can be explained in two
respects. Firstly, in summer, plants in the arid zone, especially
shallow-rooted grassland, are more resistant to a prolonged
drought environment (St�efanon et al., 2012; Wu et al., 2019). In
contrast, the Veg in temperate and tropical cities suffers more
losses induced by drought and high temperatures, which weakens
its cooling efficiency. Secondly, the high illumination and low hu-
midity in arid climate zones provide favorable conditions for the
evapotranspiration of Veg (Yu et al., 2018). On the other hand,
compared to tropical cities near the equator, the AS in arid cities
receives shorter duration and lower intensity of solar radiation, so it
has lower heating potential in summer daytime. Moreover, in
China, the arid/semi-arid climate zones are exclusively located in
sparsely populated areas, so the anthropogenic heat emissions in
these regions are relatively less.

The level of urban development is directly related to the land
use pattern and the carbon emissions. As reported in the literature,
high-density urban areas tended to have lower albedo, higher AS
coverage, less Veg fraction, and higher LST (Trlica et al., 2017; Yue
et al., 2019). In turn, as urban develops, the deterioration of the
thermal environment further increases the energy consumption
(e.g., air conditioners, refrigerators, etc.) in summer (Hirano and
Fujita, 2012). Such a vicious cycle contributes to the higher heat
emissions per unit area in developed cities than in less-developed
ones. Our findings consolidate this phenomenon from the turning
point perspective: the higher the development level of a city, the
lower the turning point, which means even a relatively low AS
coverage is capable of elevating the LST significantly in developed
cities compared to less-developed ones. In the case of super first-
tier cities, for example, when the proportion of AS exceeds 60% or
50%, the warming effect is stronger than the cooling effect of trees
or grassland.

5.3. Importance of the high-resolution remote sensing data

Based on satellite-derived data of various spatial resolutions,
ranging from sub-meter to 1 km, the effect of Veg or AS on LST has
been widely investigated. The Advanced Very High Resolution
Radiometer (AVHRR) and the Moderate Resolution Imaging Spec-
troradiometer (MODIS) are the major data sources for global, na-
tional, and regional analysis (e.g., Peng et al. (2014) and Wu et al.
(2019)). Medium-resolution remote sensing data (e.g., Landsat,
Advanced Spaceborne Thermal Emission and Reflection Radiom-
eter (ASTER)) are employed more often in the case studies of single
cities or urban agglomerations (e.g., Cao et al. (2010)). In addition,
through calculating the NDVI from the bands of Landsat 5 Thematic
Mapper (TM) or Landsat 7 Enhanced Thematic Mapper Plus (ETMþ)
images, a number of studies (Dousset and Gourmelon, 2003; Weng,
2009; Estoque et al., 2017) have established a negative linear or
non-linear LST-Veg relationship in different cities, including Los
Angeles (USA), Paris (France), Indianapolis (USA), Twin Cities (USA),
Pearl River Delta (China), Bangkok (Thailand), Jakarta (Indonesia),
and Manila (Philippines).

A common problem with the widely used low- and medium-
resolution remote sensing imagery is that they are too coarse to
accurately capture detailed information about land cover within
cities, leading to an insufficient understanding and even misun-
derstanding of their ecological function (Nelson et al., 2009; Pickett,
2010). A study by Li et al. (2013) showed that, although the corre-
lation between LST and green space coverage is consistently
negative across resolutions (i.e., QuickBird, 2.44 m; SPOT, 10 m; and
Landsat TM, 30 m), the green spaces seemingly show a stronger
cooling effect at finer spatial resolutions. Moreover, subject to the
limited spatial resolution, utilizing the NDVI or a generalized
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concept of “green spaces” as a whole to describe urban Veg cannot
reveal the difference between vegetation species, with regard to
their effect on LST. This stresses the requirement for a finer-scale
analysis with high-resolution RS data. Compared to those coarse-
grained studies, our results divide the urban Veg into trees and
grasslands to investigate their respective cooling capability, and
finely depicts their distribution along the proportion gradient of AS,
which is of essence for us to understand the spatial coherence
between thermal environment and detailed urban land covers.

5.4. Limitations and uncertainties

Some limitations remain in this study. Although we have chosen
pure samples in the experiments, other land-cover types adjacent
to Veg and AS can also impact LST, to some extent, as heat flows in
the space and radiates into the surroundings, leading to a few
abnormal results. For example, the suburbs of the cities of TJ and
XM are adjacent to a large area of bare soil and water (Fig. A1),
respectively, which may be the main cause of the positive co-
efficients of the trees in TJ and the negative coefficients of the AS in
XM in the first and second groups (Fig. A2, Fig. A3). Considering that
the establishment of HRM requires enough number of grid samples,
so those samples close to water and bare soil are not completely
eliminated. Nonetheless, at the city scale, the open water fraction
does not appear to show strong influence on the overall conclusion
of this study.

Besides, given the lack of vegetation height information, this
study did not quantitatively discuss the joint effect of AS and Veg on
LST in the vertical space. Relevant research will be strengthened as
the data continues to improve in future.

6. Conclusions

Vegetation (Veg) and artificial surfaces (AS) are the predomi-
nant land-cover types in urban areas. Although they have been
manifested to be crucial for regulating the urban microclimate and
controlling the thermal cycling between the land surface and the
lower atmosphere in numerous literature, to date, the research on
Veg-AS-LST relationship fails to answer two questions. First, how
does AS and Veg with different composition interact to affect LST?
Second, how does this effect vary in different geographic locations?
Accordingly, this study attempted to address these issues through
satellite observation and the statistical modeling.

Our results reveal that: 1) The Veg composition (the proportions
of trees and grassland) and its spatial distribution along the pro-
portion gradient of AS shows significant regional differences, which
are related to the background climate and urban planning. 2) The
Veg-induced cooling and the AS-induced warming show competi-
tive effect on LST, and their proportion determines which one is
dominant. 3) The general results for the 35 major cities of China
indicated that when the proportion of AS reaches the turning point
of 70% (60%), respectively, its warming effect on LST is stronger than
the cooling effect of trees (grassland). It was also found that, inmost
cities, trees are a stronger cooling source than grassland. 4) The
turning points for cities at higher development levels are lower,
which suggests that even a low AS coverage (~50e60%) in these
areas can lead to an increase in LST. 5) Compared to cities in
temperate and tropical climate zones, urban Veg in the arid/semi-
arid zone exhibits a better performance in heat mitigation (i.e., a
higher turning point).

These findings fill the gaps in understanding the joint effects of
Veg and AS on LST from the perspective of their competitive rela-
tionship, and further move forward in quantitatively estimating the
turning points for all 35 major cities of China. This systematic and
reliable research based on high-resolution LULC data across
10
multiple cities is not only instrumental to summarizing the general
pattern of such joint effect in most regions, but better reflects their
trends in different climatic zones and their relationship with urban
development levels. In the context of global urban warming, the
turning points we have obtained are of practical significance for
guiding urban landscape planning and promoting the construction
of healthy urbanization.
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