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In this article, we propose a novel method of object-oriented change detection
for high-resolution remote-sensing imagery. The method consists of three main
parts: image segmentation, object adjusting and change detection. We use the
Fractal Net Evolution Approach to segment the multi-temporal images. Then we
adjust the object maps. By merging the objects in relatively large areas, the object
-adjusting algorithm aims to obtain a set of objects with different sizes, which coin-
cide better with the real ground objects than the single-scale results. In the third
part, the Kolmogorov–Smirnov two-sample test detects each pair of objects in the
multi-temporal object maps with multi-scale. The calculated value of the D-statistic
is compared to the threshold of a user-defined significance level. Through these
three processes, we can make full use of the spatial and spectral features in high-
resolution images to detect changes. According to our experiments in two study
areas employing QuickBird imagery, the overall errors of our method decreased
by more than 1000 pixels compared with the conventional object-oriented change
vector analysis. The proposed method can also avoid the errors resulting from
classification in the method of post-classification comparison.

1. Introduction

Change is defined as ‘the result of something becoming different’. Both natural and
artificial changes can take place. Natural changes usually occur periodically, such as
the phenological change of deciduous plants. However, artificial changes are often
irreversible. These result from human activities. Change detection is ‘the process of
identifying differences in the state of an object or phenomenon by observing it at dif-
ferent times’ (Singh 1989). Detection of natural changes can help us to know about
the growth situation of vegetation, whereas anthropogenic change detection is impor-
tant for natural-resources management and urban-development monitoring (Olson
et al. 2004). Change-detection analysis is one of the most important applications
in remote-sensing image processing. The most popular methods are change vector
analysis (CVA) and post-classification comparison.

However, with the development of high spatial resolution remote-sensing satel-
lites, the amount of image information has increased dramatically. This information
presents the details of ground objects in the visual field. Until now, change detection
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5720 Y. Tang et al.

using high-resolution imagery has not been carried out as well as it has been for
low- and middle-resolution imagery. The improved spatial resolution has not brought
about superior detection capability, as the autocorrelation is no longer easy to approx-
imate by a pulse function in high-resolution imagery. With high spatial resolution, the
pixels are not spatially independent, resulting in the conventional change-detection
techniques becoming ineffective (Bovolo 2009).

There have been some techniques that conform to the increase in spatial resolution.
Some of them have achieved the incorporation of various image features besides the
spectral feature. Huang et al. (2007) proposed a method of spatial feature extraction
for the classification of high-resolution multispectral imagery. It is an extension of the
pixel shape index (PSI) (Zhang et al. 2006). In addition, use can be made of morpho-
logical texture features (Huang et al. 2009). However, this was primarily aimed at the
classification of high-resolution imagery rather than change detection.

Besides the extraction of various features, the images can be processed in other ways.
The object-oriented technique is one of the most typical methods. It has been proved
to be suitable for high-resolution imagery. The principle of the object-oriented tech-
nique is the processing of a set of pixels as a unit, which is called an object. These pixels
of the same object are adjacent in space and spectrally similar to each other. Thus one
can process them as a homogeneous entity. In this way, full use can be made of the
various kinds of information contained in the images, such as spatial and spectral
information. In addition, processing an object as a unit can remove redundant details
resulting from the increase in spatial resolution. These characteristics all perfectly meet
the needs of processing high-resolution imagery. In other words, the object-oriented
technique can reduce the local spectral variation and suppress the salt-pepper effect
in high-resolution imagery. The first commercial software for object-oriented image
analysis was eCognition (Definiens, Munchen, Germany). Bruzzone and Prieto (2000)
applied it to change detection in 2000, which effectively improved the change-detection
result of high-resolution imagery. But it was only utilized at a single scale, which could
not conform to the various sizes of ground objects in reality. Walter (2003) introduced
the object-oriented technique to post-classification comparison. It still did not settle
the problem of single scale. In addition, the object-oriented post-classification compar-
ison brought about attached errors that resulted from the classification. Bovolo (2009)
applied an object-oriented technique with multi-scale to CVA. It resolved the short-
comings of single scale and classification error, but it did not dispose of the limitations
of CVA. The dominant limitation of CVA is its too heavy reliance on the spectral fea-
tures. It only considers the spectral values of pixels to construct the change vectors. In
particular, the pixel values used in this method to build the change vectors were the
mean values of pixels in every object. These deviate greatly from the real ones, which
could result in considerable errors.

This article introduces a novel method of object-oriented change detection using
high-resolution imagery. As multi-temporal images are taken with time differences of
several years and in different seasonal and lighting conditions, registration and radio-
metric correction must be performed as pre-processes. In addition, according to the
objectives of detecting the anthropogenic changes in the observed field, the mask-
ing of vegetation and shadow is necessary. Moreover, median filtering is necessary
to remove the redundant details in the high-resolution images. After the segmenta-
tion of multi-temporal images using the Fractal Net Evolution Approach (FNEA)
(Baatz and Schape 2000), adjustments are made to the object maps. If some objects
express different parts of the same ground object, these are merged to be an object

D
ow

nl
oa

de
d 

by
 [

T
he

 U
ni

ve
rs

ity
 o

f 
T

ex
as

 a
t E

l P
as

o]
 a

t 0
6:

58
 2

9 
D

ec
em

be
r 

20
14

 



Object-oriented change detection 5721
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Figure 1. Process flow.

whose scale would become larger. By this means, multi-scale segmentation results are
acquired. Then every pair of objects in the multi-temporal images are tested with the
Kolmogorov–Smirnov (K–S) test, which is a non-parametric statistical test. It can be
used to determine if two sets of samples differ significantly (Siegel and Castellan 1988).
During this process, the maximum absolute difference of statistical probabilities for
each pair of objects is calculated, considering the spectral value of every pixel in the
initial images. In this way, full use can be made of the useful spectral information in
the initial images. Compared to the pixel-based CVA (Johnson and Kasischke 1998)
and the object-oriented CVA (Bovolo 2009), the proposed method can make full use of
information in the multi-temporal images while effectively avoiding the errors brought
from the spectral mean values of every object. The processing flow of the proposed
method is shown in figure 1.

2. Methodology

2.1 Segmentation using the Fractal Net Evolution Approach

In the proposed method, the FNEA is employed to segment the high-resolution
images. It adopts the individual pixel value and its neighbourhood to compute the
colour criterion (hcolour) and the shape or spatial criterion (hshape). According to these,
the image can be segmented into an object map by the heterogeneity (Sf) of every pair
of neighbouring objects. This heterogeneity is a weighed sum of the colour criterion
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5722 Y. Tang et al.

and the shape or spatial criterion (equation (1)). Each of the objects in the resulting
map includes the relatively homogeneous pixels neighbouring each other:

Sf = ωcolourhcolour + (1 − ωcolour)hshape, (1)

where 0 ≤ ωcolour ≤ 1 is the user-defined weight of spectrum. It is relative to the
weight of shape. If the spectral feature is to be emphasized, the value of ωcolour

should be larger. Conversely, when the spatial feature is more important, the value of
(1 − ωcolour), which is the weight of shape or space, should be larger.

In equation (1), the colour criterion (hcolour) is a weighted mean of the change in
standard deviation of the kth band of the image:

hcolour =
m∑

k=1

ωk[nmgσ
mg
k − (nob1σ

ob1
k + nob2σ

ob2
k )], (2)

where ωk is the weight of the kth band, nmg is the number of pixels in the object after
merging, σ

mg
k is the standard deviation of spectral values in the object after merging,

nob1 and nob2 are the numbers of pixels in the objects before merging, and σ ob1
k and σ ob2

k
are the standard deviations of spectral values in the objects before merging.

On the other hand, the shape or spatial criterion (hshape) is a weighted sum of two
parts, which are compactness and smoothness:

hshape = ωcpthcpt + (1 − ωcpt)hsmooth, (3)

where 0 ≤ ωcpt ≤ 1 is the user-defined weight of compactness. This equation estimates
the value of the shape criterion through every merge by calculating the weighted sum
of the compactness and smoothness criteria. Equations (4) and (5) show the formulae
for the compactness and smoothness criteria separately:

hcpt = nmg
lmg√
nmg

−
(

nob1
lob1√
nob1

+ nob2
lob2√
nob2

)
, (4)

hsmooth = nmg
lmg

bmg
−

(
nob1

lob1

bob1
+ nob2

lob2

bob2

)
, (5)

where lmg is the pixel perimeter length of the object after merging; lob1 and lob2 are the
pixel perimeter lengths of the objects before merging; bmg is the pixel perimeter length
of the minimum enclosing rectangle of the object after merging; and bob1 and bob2 are
the pixel perimeter lengths of the minimum enclosing rectangle of the objects before
merging.

At the beginning of segmentation, every pixel was regarded as an individual object.
After calculating the heterogeneity (Sf) of every pair of neighbouring objects, these are
compared to the user-defined value of scale, which can be regarded as the threshold of
heterogeneity. If the value of Sf is lower than the scale, this pair of objects is merged;
otherwise, they are preserved as two individual objects. These procedures are repeated
until no pair of objects remains that could be merged. Then the object map can finally
be obtained. From the above, the selection of scale, the weights of spectrum and com-
pactness are critical to the segmentation result, especially to the scale, as they decide
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Object-oriented change detection 5723

the size of objects in the object map. In most current research, the scale selection is
still an empirical process.

2.2 The Kolmogorov–Smirnov test

The K–S test was proposed by Smirnov (1948). It is a goodness-of-fit test for any
statistical distribution and is a form of minimum distance estimation. It is used as a
non-parametric test of equality of one-dimensional probability distributions to com-
pare a sample with a reference probability distribution (K–S one-sample test) or to
compare two samples (K–S two-sample test) (Wikipedia 2009). In our method, we
want to detect the changes between any pair of multi-temporal images. Therefore, the
K–S two-sample test will be introduced in the following text.

If two sets of pixels in the pair of multi-temporal images are signed as L1 and L2,
their cumulative frequencies can be obtained by the following equations:

S1(X ) = K1

n1
, (6)

S2(X ) = K2

n2
, (7)

where n1 and n2 are the total number of pixels in L1 and L2, X is a certain spectral
value, K1 and K2 are the numbers of pixels with spectral values less than X in L1 and
L2.

By adjusting the value of X , the maximum absolute difference between the two
cumulative frequencies can be calculated, which is called the D-statistic:

D1,2 = max |S1(X ) − S2 (X )| . (8)

In order to judge whether the two sets of samples are different, a level of significance is
chosen according to the experimental requirement. This can determine the threshold
value of difference. When n1 = n2 and they are both <25, there are three levels that
could be chosen: 0.10, 0.05 and 0.01 (Pearson and Hartley 1972). When either n1 or n2

is >25, there are different formulae for the threshold in each of six significance levels:
0.10, 0.05, 0.025, 0.01, 0.005 and 0.001 (Smirnov 1948). With different values of n1

and n2, there are various thresholds for a certain level. If the D-statistic (D1,2) is less
than the threshold, it can be concluded that there is no difference between the two sets
of samples.

2.3 Object-oriented change detection based on the Kolmogorov–Smirnov test

In the proposed method, the K–S two-sample test is applied to object-oriented change
detection. The changes detected are the anthropogenic changes.

After pre-processing of registration, radiometric correction, masking of vegetation
and shadow and median filtering, the FNEA is used to segment the pair of multi-
temporal images simultaneously with the same parameters. These parameters include
the value of scale, the weight of spectrum and compactness. In this way, it can be
ensured that the two sets of objects in the pair of segmented images have the same
numbers, and each pair of objects also have the same pixels.
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5724 Y. Tang et al.

The next step adjusts the object maps. By investigating every object in the object
maps, the objects constituting a same ground object are merged. In this way, a pair
of segmentation results can be obtained with multi-scale objects. In other words, the
sizes of objects in each of the segmented maps are levelled. The large ground objects
are segmented into objects with a large size, while the small ground objects correspond
to small-sized objects.

Changes are then detected by applying the K–S two-sample test to the multi-scale
object maps. The processing unit in this step is every pair of objects in the pair of
multi-temporal images. As there are two same sets of pixels in each pair of objects,
equations (6) and (7) can be modified as follows:

S1(X ) = K1

n
, (9)

S2(X ) = K2

n
. (10)

where n is the number of pixels in each of the pair of objects.
After calculating the two cumulative probabilities shown in equations (9) and (10),

the value of the D-statistic is computed by equation (8). By choosing an appropriate
significance level, it is possible to judge whether the D-statistic is less than the thresh-
old corresponding to the level. If it is not less than the threshold, the conclusion is that
the region covered by this pair of objects has changed. These procedures are repeated
object by object until every pair of objects has been detected. Then the binary change
map is obtained.

According to the binary change map so obtained, the change direction maps can
be formed as follows. The changed areas are separated into two parts. The first part
contains the changed areas with increasing spectral reflectivity, while the other part
contains the changed areas with decreasing spectral reflectivity. As the spectral reflec-
tivity of every kind of ground object concentrates in a certain range of the spectral
band, the class of ground objects can be deduced according to the band with the
largest change.

3. Experiment

3.1 Study area

In the experiment, a pair of multi-temporal high-resolution images acquired by the
QuickBird satellite in 2002 and 2005, was employed. They cover approximately the
same area of Wuhan in central China. In order to preserve the spectral information
as much as possible, the multispectral images were used in the experiments. Each has
four spectral bands: the red band (0.45–0.52 µm), the green band (0.52–0.60 µm), the
blue band (0.63–0.69 µm) and the near infrared band (0.76–0.90 µm).

Two study areas (site 1 and site 2) in this pair of multi-temporal high-resolution
images were selected, and the experiments were performed separately. Site 1 was
around the campus of Wuhan University (figure 2(a) and (b)), and site 2 was the
northern part of Wuchang (figure 2(c) and (d)) in Wuhan City. Each study area
covered an area of 400 pixels × 400 pixels, with a spatial resolution of 2.4 m. The
ground objects of site 1 were roofs, vegetation (grass and trees), water (swimming pools
and ponds), bare land, rubber ground (playgrounds), roads and shadows. Compared
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Object-oriented change detection 5725

(a) (b) 

(c) (d) 

0 120 240 360 480

metres

Figure 2. Study area of (a) site 1 in 2002, (b) site 1 in 2005, (c) site 2 in 2002 and (d) site 2 in
2005.

to site 1, site 2 is short of the water category. The changes to be detected are the
anthropogenic changes that can reflect city development, such as the appearance or
disappearance of man-made green areas and the construction or reconstruction of
buildings.

A good pre-processing can remove some valueless difference information in the
multi-temporal images and improve the result of change detection. In the experiment,
the 2002 image was taken as the reference one and the 2005 image was processed based
on it. First, registration was performed using the software of Envi 4.6 (ITT, New York,
USA). Eight ground-control points (GCPs) were used separately in site 1 and site 2,
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5726 Y. Tang et al.

both employing the polynomial method with one degree and using the resampling
method of near neighbour. As they were recorded on different dates of the year and
also at different times of the day, the two images were acquired in considerably differ-
ent illumination conditions. Therefore, a relative radiometric correction to the image
of 2005 was performed on the basis of the one of 2002. By selecting eight fake invari-
able points (PIFs) separately on each site, a linear regression was carried out on every
spectral band. The aim was to detect the anthropogenic changes reflecting the develop-
ment of this area; therefore, the changes resulting from vegetation growth and shadow
covering would affect this work. Therefore, the areas covered by vegetation or shadow
were masked in both images for each study site. Lastly, a median filter was applied to
each image to reduce the redundant details.

3.2 Experiment of site 1

3.2.1 Statistical evaluation. In order to evaluate the proposed method soundly, the
analysis of the experimental results of site 1 contains several perspectives as follows.

In the segmentation procedure, different spatial scales would result in different
object maps; consequently, the results of change detection would vary. Before evaluat-
ing the statistical results with various scales, it is worth noting that the results must be
analysed with small scales separately from the ones with large scales. That is because
when the number of pixels in a certain object is <25, the threshold of a certain
significance level is different from when >25. As detected by different thresholds, the
results with various scales cannot be compared. Therefore, using scales ranging from
6 to 22 to choose the optimal one, in the experiments of site 1, our results were divided
into two parts: the results with scales less than eight and the results with scales larger
than eight.

The result of change detection can be evaluated by the numbers of false alarms and
missed alarms (table 1), and their sum, which is called the overall error (figure 3). It
can be seen that the numbers of overall errors ranged from 9800 to 11 500 pixels, while
the ranges of false alarms and missed alarms were relatively larger. Combining table 1
with figure 3, the following can be deduced:

1. In the results with scales not larger than eight, every object has a different
number of pixels, some of which are larger than 25, while others are not. Their
thresholds at a specific significance level are different. Thereby, it is hard to
summarize any rule for this part of the results.

2. In the results with relatively small scales larger than eight, the size of objects
was small. There were a large number of missed alarms, which primarily
occurred in the relatively similar parts of the large changed area. This was
because that changed area contained many objects, some of whose variations
were less than others. Thereby, it was possible to detect these objects with rela-
tively smaller variations as unchanged objects, which would cause some missed
alarms. On the other hand, the number of false alarms in this condition would
be less.

3. In addition, in the results with relatively large scales (larger than eight), the size
of objects was large. There were a large number of false alarms caused by the
changed objects covering the edge of changed areas. These objects likely con-
tained some unchanged areas near the changed ones. Nevertheless, the missed
alarms would be less in that situation.
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Figure 3. The overall errors of our method in site 1.

Table 1. The false alarms and missed alarms of our method in site 1.

Scale Significance level False alarms Missed alarms

6 0.01 6375 5120
8 0.01 5107 5669
10 0.01 4174 6999
12 0.01 5615 4201
14 0.01 5748 5069
16 0.01 6165 3689
18 0.01 6529 3331
20 0.01 6857 3677
22 0.01 8184 2942

Additionally, there were also other kinds of false alarms due to illumination differ-
ence or shadow covering. On the basis of the above, an appropriate scale could result
in reasonable object maps and a reduction of the number of false alarms and missed
alarms to as few as possible. According to the results in figure 3, it can be concluded
that the optimal scale of our experiment for site 1 was about 12.

With a certain scale, different significance levels mean different thresholds during
change detection based on the K–S test. These thresholds could determine whether
there are changes in the area covered by the object. Choosing the optimal level is also
an empirical process. The optimal level varies with different scales (table 2). In site 1,
the optimal level of significance with the scale 12 was at the level of 0.01. However,
when the scale was 16, the optimal level would change to the 0.005 level.

To demonstrate the validity of object adjusting in our experiments, the results with
multi-scale were compared to the results with a single scale. The difference between
their overall errors is shown in figure 4. It was found that there was a dramatic
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5728 Y. Tang et al.

Table 2. The optimal significance level varies with different
scales in site 1.

Scale Significance level Overall error

12 0.001 9877
12 0.005 10 943
12 0.01 9816
12 0.025 9956
12 0.05 9948
12 0.1 10 202
16 0.001 10 145
16 0.005 9719
16 0.01 9854
16 0.025 10 538
16 0.05 9880
16 0.1 10 422

O
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ra
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20000

16000

18000

12000

14000

8000

10000

2000

4000

6000
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Scale

ObjAdjKS
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4 6 8 10 12 14 16 18 20 22 24

Figure 4. The overall errors of our method with and without object adjusting in site 1.

improvement by adding the object-adjusting step. In other words, the change detec-
tion error of the proposed method was obviously less than the error without object
adjusting.

To confirm the effectiveness of object-oriented techniques in the processing of high-
resolution remote-sensing imagery, the results were compared to the pixel-based CVA
(Johnson and Kasischke 1998) with an empirical optimal threshold of nine. With the
overall errors numbering 12 295 pixels, the pixel-based CVA was more than 2450 pixels
greater than our method. In addition, in order to prove the superiority of the proposed
method in relative object-oriented change-detection research, the overall errors of our
method were compared to the object-oriented CVA (Bovolo 2009) (figure 5). Table 3
shows their differences of false alarms and missed alarms. It can be seen that, with any
scale in the selected range, the overall error of our method was less than the ones of
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Figure 5. The overall errors of our method and the object-oriented CVA in site 1.

Table 3. The false alarms and missed alarms of our method and object-oriented CVA in site 1.

Scale
ObjCVA -false

alarms
ObjAdjKS-false

alarms
ObjCVA -missed

alarms
ObjAdjKS-missed

alarms

6 7999 6375 7596 5120
8 7693 5107 7687 5669
10 7661 4174 7412 6999
12 6870 5615 7398 4201
14 6811 5748 7608 5069
16 6619 6165 8058 3689
18 6283 6529 8066 3331
20 6222 6857 8271 3677
22 6115 8184 8438 2942

the object-oriented CVA for over 3000 pixels in the experiments of site 1. In this anal-
ysis, the significance level of 0.01 was chosen for the proposed method. The empirical
optimal threshold of the object-oriented CVA was two.

3.2.2 Visual inspection. According to our experiments with site 1, the optimal result
had scale 12 and level 0.01. The binary change map is shown in figure 6(a), in which
objects in white present the regions that have changed, and objects in black indicate
the unchanged areas. The change direction maps are shown in figures 6(b) and (c).
Due to the bands’ range of the multispectral QuickBird images, in the change direc-
tion maps of site 1, the areas with grey levels of 255 and 195 mainly represent the
changes in man-made buildings, such as roofs and roads. The grey level of 135 pri-
marily means changed areas of bare land or rubber ground, while the value of 65
shows the changed regions covered by vegetation. It is worth noting that in these
changed regions covered by vegetation, the changes represent ones from other kinds
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(a) (d) 

(b) (e) 

(c) (f) 

0 120 240 360 480
metres

Figure 6. Comparison of the results of our method and the pixel-based CVA in site 1. (a)
Binary change map of our method, (b) the first band of change direction map of our method,
(c) the second band of change direction map of our method, (d) binary change map of the
pixel-based CVA, (e) the first band of change direction map of the pixel-based CVA and (f ) the
second band of change direction map of the pixel-based CVA.
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to vegetation and also the changes from vegetation to other kinds, but not the changes
reflecting vegetation growth. Figure 6(d)–(f ) shows the best results of the pixel-based
CVA. The salt-pepper effect was serious in the result of pixel-based CVA, while the
local spectral variation was effectively depressed by the proposed method. This proved
the superiority of the object-oriented techniques in the processing of high-resolution
remote-sensing imagery. Additionally, it is useful to compare the optimal result of the
proposed method with the best results of the object-oriented CVA with a scale of 12
and a threshold of two (figure 7(d)–(f )). The integrity of the proposed method in the
large areas is obviously better than the object-oriented CVA.

When compared, it was seen that the binary change map of the proposed method
was approximately the same as the reference one (figure 8). However, there were some
inevitable errors. The false alarms were mainly due to the relatively larger objects on
the edges of the changed areas rather than the real ones. On the other hand, the missed
alarms result primarily from the relatively small objects in the changed areas. As the
size of objects was less than the area that really changed, some of these pairs of objects
were more similar than other pairs. Therefore, it was likely that these similar objects
were detected as unchanged.

3.3 Experiment on site 2

3.3.1 Statistical evaluation. Similarly to the site 1, we analysed our experimental
results of site 2 by the following perspectives.

In the segmentation procedure, the results with small scales were analysed separately
from the ones with large scales. Using scales ranging from 4 to 26 to choose the optimal
one, in our experiments of site 2, our results were divided into two parts: the results
with scales not larger than eight and the results with scales larger than eight. The
results of false alarms and missed alarms are shown in table 4, while the overall errors
are shown in figure 9. It is seen that the numbers of overall errors for site 2 ranged
from 5000 to 6450 pixels. Combining table 4 with figure 9, the following conclusions
can be reached:

1. In the results with scales not larger than eight, it is hard to summarize any rule.
2. In the results with relatively small scales larger than eight, there were a large

number of missed alarms, which primarily occurred in the relatively similar
parts in the large changed area. The false alarms were fewer.

3. In the results with relatively large scales larger than eight, there were a large
number of false alarms caused by the changed objects covering the edge of
changed areas, while the probability of missing changed area would be less.

There were also other kinds of false alarms due to the illumination differences or
shadow covering. Overall, an appropriate scale could restrict the numbers of false
alarms and missed alarms to as few as possible, as well as the number of overall errors.
According to the results in figure 9, it was concluded that the optimal scale of our
experiment for site 2 was about ten.

Similarly, with a certain scale, different significance levels mean different thresh-
olds during change detection based on the K–S test. Choosing the optimal level is an
empirical process and varies with different scales. According to our experiments, the
optimal level of significance for site 2 with the scale ten was the level of 0.01.
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(a) (d) 

(b) (e) 

(c) (f) 

0 120 240 360 480

metres

Figure 7. Comparison of the results of our method and the object-oriented CVA in site 1.
(a) Binary change map of our method, (b) the first band of change direction map of our method,
(c) the second band of change direction map of our method, (d) binary change map of the
object-oriented CVA, (e) the first band of change direction map of the object-oriented CVA and
(f ) the second band of change direction map of the object-oriented CVA.
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metres

Figure 8. Reference map of changed area in site 1.

Table 4. The false alarms and missed alarms of our method in site 2.

Scale
ObjCVA-false

alarms
ObjAdjKS-false

alarms
ObjCVA-missed

alarms
ObjAdjKS-missed

alarms

4 5091 4482 2319 1954
6 5071 2188 2501 4197
8 4974 1238 2402 4440
10 4902 1518 2411 3510
12 4830 1857 2351 3353
14 4978 2457 2608 3258
16 4916 2678 2557 3018
18 4612 2759 2812 2724
20 4599 2655 2708 2657
22 4430 2862 2978 2397
24 4285 2957 3402 2153
26 4247 3197 3336 2325

To demonstrate the improvement of object adjusting in our experiments on site 2,
the results with multi-scale were compared to the results with a single scale. The dif-
ference between their overall errors is shown in figure 10. It was found that there
was a dramatic improvement by adding the object-adjusting step. In other words, the
change detection error of our method was obviously less than the error without object
adjusting.

To confirm the dominance of object-oriented techniques in the processing of high-
resolution remote-sensing imagery, our results were also compared to the pixel-based
CVA (Johnson and Kasischke 1998) with an empirical optimal threshold of one.
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Figure 9. The overall errors of our method in site 2.
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Figure 10. The overall errors of our method with and without object adjusting in site 2.

With the overall error of 21 859 pixels, the pixel-based CVA increased its number by
more than 16 800 pixels from our method. It was dramatically larger than in site 1.
Additionally, the overall errors of our method were compared to the object-oriented
CVA (Bovolo 2009) (figure 11). Table 5 shows the differences of false alarms and
missed alarms. It is seen that, with any scale in the selected range for site 2, the overall
errors of our method were more than the ones of object-oriented CVA by more than
1000 pixels. In this analysis, the significance level of 0.01 was chosen for the proposed
method. The empirical optimal threshold of the object-oriented CVA was one.
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Figure 11. The overall errors of our method and the object-oriented CVA in site 2.

Table 5. The false alarms and missed alarms of our method and
object-oriented CVA in site 2.

Scale Significance level False alarms Missed alarms

4 0.01 4482 1954
6 0.01 2188 4197
8 0.01 1238 4440
10 0.01 1518 3510
12 0.01 1857 3353
14 0.01 2457 3258
16 0.01 2678 3018
18 0.01 2759 2724
20 0.01 2655 2657
22 0.01 2862 2397
24 0.01 2957 2153
26 0.001 3197 2325

3.3.2 Visual inspection. The best result for site 2 with a scale of 10 and level 0.01 is
shown in figure 12(a). The change-direction maps are shown in figure 12(b) and (c).
Similar to site 1, the areas with grey levels of 255 and 195 in the change direction maps
mainly represent the changes of man-made buildings; the grey level of 135 primarily
means changed areas of bare land or rubber ground; the one of 65 shows the change
in areas of vegetation. The changes detected in vegetation are again the changes from
other kinds to vegetation or from vegetation to other kinds, but not the changes reflect-
ing vegetation growth. Figure 12(d)–(f ) shows the best results of the pixel-based CVA.
The salt-pepper effect was again serious in the result of pixel-based CVA, while the
local spectral variation was effectively depressed by the proposed method. It proved
the superiority of the object-oriented techniques in the processing of high-resolution
remote-sensing imagery. In addition, the optimal result of the proposed method can
be visually compared with the best results of the object-oriented CVA with a scale of
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(a) (d) 

(b) (e) 

(c) (f) 
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Figure 12. Comparison of the results of our method and the pixel-based CVA in site 2. (a)
Binary change map of our method, (b) the first band of change direction map of our method,
(c) the second band of change direction map of our method, (d) binary change map of the
pixel-based CVA, (e) the first band of change direction map of the pixel-based CVA and (f ) the
second band of change direction map of the pixel-based CVA.
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(a) (d) 

(b) (e) 

(c) (f) 
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Figure 13. Comparison of the results of our method and the object-oriented CVA in Site 2.
(a) Binary change map of our method, (b) the first band of change direction map of our method,
(c) the second band of change direction map of our method, (d) binary change map of the
object-oriented CVA, (e) the first band of change direction map of the object-oriented CVA and
(f ) the second band of change direction map of the object-oriented CVA.
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Figure 14. Reference map of changed area in site 2.

12 and a threshold of one (figure 13(d)–(f )). The integrity of the proposed method in
large areas is obviously better than the object-oriented CVA.

Comparing the binary change map of our method to the reference one (figure 14),
the proposed method could be proved to be reasonable. Nevertheless, there were some
inevitable errors. The false alarms are primarily due to the relatively large objects on
the edges of changed areas. The false alarms are also due to the illumination variance
and shadow covering. On the other hand, the missed alarms primarily result from the
relatively small objects in the change areas.

4. Discussion and conclusion

In this article, a new object-oriented method of change detection is proposed for high-
resolution multispectral images. In the proposed method, after the segmentation of
FNEA with a single scale, some small objects representing a same ground object were
merged. During change detection with multi-scale object maps, each pair of objects
were detected individually with the K–S test, according to the initial values of pixels
in each object in this pair. Therefore, to detect the changed areas, full use could be
made of spectral information in the initial images, while ignoring the redundant details
included in the objects. By detecting object to object, it additionally considered the
spatial features in the images.

The advantage of the object-oriented technique in processing high-resolution
remote-sensing imagery is that changes in every object are detected instead of every
pixel. It is effective in reducing the local spectral invariance and avoids the salt-pepper
effect. On the other hand, being different from the object-oriented CVA, the proposed
method uses the statistical probability of initial spectral values of pixels in every object,
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Object-oriented change detection 5739

instead of the mean values. This can avoid the information loss when just calculating
the mean value. In our experimental results in the study areas, the overall errors of the
proposed method were reduced by over 1000 pixels compared to the object-oriented
CVA, which presents the superiority of our method.

The proposed method has proved to be an improvement on the current methods.
However, it still has some shortcomings. It is affected by the robustness of the segmen-
tation algorithm and the confusion method of multi-scale objects. In future, attempts
will be made to consider other features together with the spectral information, such as
texture and elevation.
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