
Abstract
This study proposes a novel morphological building index
(MBI) for automatic building extraction from high-resolu-
tion remotely sensed imagery. The basic idea of MBI is to
build a relationship between the implicit characteristics of
buildings (e.g., brightness, size, and contrast) and the
properties of morphological operators (e.g., reconstruction,
granulometry, and directionality). Buildings are extracted
by performing a threshold on the MBI feature image.
Subsequently, the shape features, such as area and length-
width ratio, are used to refine the binary building map. In
order to validate the proposed algorithm, a comparative
study was performed between MBI, a recently developed
texture-derived built-up presence index (PanTex), and the
widely used object-based approach. Experiments were
conducted on a multispectral GeoEye-1 image, covering a
study area of 5.5 km by 5.3 km in Hongshan district of
Wuhan, central China. In experiments, MBI achieved
satisfactory results and outperformed other algorithms in
terms of both accuracies and visual inspection. The effects
of parameters of MBI were also analyzed in detail, includ-
ing directions, sizes and the binaryzation threshold.

Introduction
The precise location and identification of building features
is one of the key information sources for urban planning,
population estimation, landscape analysis, and environ-
ment surveying. Nowadays, the commercial high-resolu-
tion satellite images with multispectral channels became
available, which provides more potential for automatic and
accurate building detection. However, although the high-
resolution data contain rich information in the spatial
domain, it is generally agreed that the increase of spatial
resolution does not necessarily signify the increase of
interpretation accuracy. This phenomenon can be attrib-
uted to the high intra-class variance and low inter-class
variance for the spectral statistics of high-resolution
images, leading to the reduction of separability between
spectrally similar classes in the spectral feature space.
Therefore, recent advances in the high-resolution image
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processing focus on the spatial and structural feature
extraction, e.g., pixel shape index (Huang et al., 2007),
differential morphological profiles (Pesaresi and Benedikts-
son, 2001), wavelet-based textures (Bian, 2003), and gray-
level co-occurrence matrix (GLCM) textures (Pacifici et al.,
2009). The spatial information can be used to complement
the spectral feature space and enhance the separability of
classes with similar spectral responses. However, most of
the aforementioned algorithms refer to the supervised
machine learning. As a result, a large number of training
samples are needed to precisely model the feature distri-
bution of a class of interest.

In recent years, some sophisticated algorithms for
building extraction have been presented. Lee et al. (2003)
used ECHO and ISODATA classifiers to provide an approxi-
mate location of buildings, and a fine extraction was then
carried out through a squaring approach based on the
Hough transformation. Jin and Davis (2005) presented an
automated building extraction strategy that simultaneously
exploited structural, contextual, and spectral information.
The final building extraction was done by integrating the
results of the three different information sources. Lu et al.
(2006) integrated the stereo image pairs, segmentation of
classified image, and the level-set based shape model in a
Dempster-Shafer algorithm for automatic building detec-
tion. Gamba et al. (2007) used neural networks and
Markov random field for classification of boundary and
non-boundary pixels, respectively, and the final result was
obtained based on a decision fusion.

At the same time, the object-based analysis (OBA)
approach has received much attention for building extrac-
tion from high-resolution data. Tian and Chen (2007)
studied the optimization of multiscale segmentation for
building recognition. Huang and Zhang (2008) proposed an
adaptive mean-shift segmentation procedure for discrimi-
nation of urban structures with similar spectral attributes
(e.g., buildings, roads, trails). However, some researches
revealed that the major limitation of OBA was the inaccu-
rate spatial relation between objects and segments
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(Lhomme et al., 2009), i.e., the segmentation results can
not accurately describe the position, shape and context of
objects. Moreover, the inaccurate segmentation (e.g., over-
or under-segmentation) directly leads to inaccurate
description of shape features. It should be admitted that it
is still a difficult task to adaptively generate the optimal
segmentation results for the OBA.

In this context, the objective of this research is to
construct a feature index that can be directly applied
to the building detection without any training or
segmentation process. This kind of building index is
simple, stable, and accurate for supporting massive
processing on the high volume of current high-resolution
satellite data. Several studies working towards the build-
ing index have been reported. Pesaresi et al. (2008)
proposed a procedure for the calculation of a texture-
derived built-up presence index, namely PanTex, based
on a fuzzy composition of anisotropic co-occurrence
measures. The basic idea of the PanTex is based on the
fact that buildings cast a shadow that is producing high
local contrast. Therefore, the PanTex was calculated using
the Contrast measure of the GLCM for all the considered
directions and displacements. Lhomme et al. (2009)
proposed a semi-automatic building identification
approach by a so-called “Discrimination by Ratio of
Variance” (DRV). The definition of DRV is due to the
evidence that there are high and low variances in the
edge and body of buildings, respectively.

By summarizing the characteristics of both
PanTex and DRV, it can be found that the construction
of a building index is based on a low spectral variation
corresponding to the building body and a high spectral
variation corresponding to the building periphery.
Based on the previous researches, in this study, we
propose a novel morphological building index (MBI)
for automatic building extraction by considering the
following characteristics.

• Contrast and Brightness: The relatively high reflectance of
roofs and the spatially adjacent shadows lead to a high local
contrast, therefore, the brightness is used as the initial input
for building detection, where bright means brighter than the
surrounding features.

• Size: Sizes for most of urban buildings are within a scale
range.

• Directionality: Buildings are more isotropic than roads.
• Shape: Shape features (e.g., rectangularity, length-

width ratio) can be used as constrained conditions
of buildings.

The proposed MBI considers the above characteristics of
buildings by integrating the multiscale and multidirectional
morphological operators, which is detailed in the next
section. Subsequently, the PanTex and the object-based
approach used in the comparative study are briefly
described. The experimental section presents the validation
of MBI algorithm and analysis of its parameters. The final
section contains concluding remarks and prospects for
future work.

Morphological Building Index (MBI)
Mathematical morphology is an effective tool for extracting
image components that are useful in the representation and
description of region features. Opening and closing are two
commonly used operators, used to remove bright (opening)
or dark (closing) details. Morphological operators are
applied to an image with a set of a known shape, called a

structural element (SE). The processing results depend on
the interaction between SE and the size of structures or
features in the image. Details of the mathematical morphol-
ogy can be found in Soille (2003). Some key properties of
the morphological transformation that are applied to the
building extraction in this study are summarized as
follows.

• Reconstruction: The reconstruction filter is an important
class of morphological filters that have been proven to be
very useful for image processing since they do not
introduce discontinuities, and therefore, preserve the
shapes observed in input images (Pesaresi and Benedikts-
son, 2001).

• Granulometry: It describes the sizes and scales of objects in
an image. Granulometrices have been introduced in remote
sensing image classification of urban areas (Pesaresi and
Benediktsson, 2001; Benediktsson et al., 2003). The
multiscale morphological features, such as morphological
profiles (MPs) and differential morphological profiles
(DMPs), are built based on the operators with increasing
size of SE. (Pesaresi and Benediktsson, 2001).

• Directionality: Most of the existing morphological
approaches referred to the disk-shaped SE (Pesaresi and
Benediktsson, 2001; Benediktsson et al., 2005; Chanussot
et al., 2006; Huang and Zhang, 2009). However, the disk SE
does not consider the directional information, which is
essential for discrimination between spectrally similar
objects such as buildings and roads since buildings are
isotropic but roads are relatively anisotropic.

In this paper, the MBI is defined by describing the character-
istics of buildings (e.g., brightness, size, contrast, direction-
ality, and shape) based on the aforementioned morphologi-
cal transformation. Calculation of MBI is detailed as the
following steps:

Step 1: Calculation of Brightness
The maximum of multispectral bands for each pixel is
restored as the brightness value

(1)

where Mk(x) indicates the spectral value of pixel x at band
k, and b(x) represents its brightness. K is the total number
of multispectral bands. The maximums of multispectral
bands correspond to the features with high reflectance
(candidate buildings), moreover, this step also reduces the
number of spectral bands that are processed in the subse-
quent steps.

Step 2: Top-hat by Reconstruction
Top-hat is defined as the difference between an original
image and its morphological opening. The opening of the
brightness image b with a structural element s is defined
based on two basic morphological operators (erosion � and
dilation d):

(2)

where s is the size of the structural element, and its unit is
the number of pixels. The top-hat (TH) transformation is
then defined as

(3)

It should be noted that not all structures from the original
image will be recovered when opening and top-hat filters
are applied (Benediktsson et al., 2005). Consequently, a
reconstruction filter is used since this family of filters has

THs(b) � b � gs
 (b).

gs(b) � ds(�s
 (b)),

b(x) �  max
1 … k … K

 (Mk (x))
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proven to have a better shape preservation than classical
morphological filters (Pesaresi and Benediktsson, 2001;
Benediktsson et al., 2005). Accordingly, in this study, the
top-hat transformation is performed in a reconstruction
manner (Soille, 2003):

(4)

where THR and �RE are top-hat by reconstruction and
opening by reconstruction (OBR), respectively. It should be
noted that the top-hat in this study refers in particular to
the white top-hat transformation, which is chosen for
building extraction because it is able to detect bright
structures that have a size equal or less than a given scale
parameter (length of SE) and remove other dark structures.
The THR values reflect the difference of brightness between
structures and their neighborhoods within the region of
the structural element. Therefore, information regarding
the contrast of the structures is contained in the THR
features.

Step 3: Directional THR
In Equation 4, the commonly used disk-shaped SE is
isotropic and does not contain directional information.
Therefore, we propose to use linear SE (Soille and Talbot,
2001) for calculation of MBI since it is effective in extracting
multidirectional and anisotropic features. The multidirec-
tional information of THR is integrated using an average
operator:

(5)

where dir represents the directionality of structural element.
In Equation 5, the building candidates give larger feature
values than other land-cover classes because buildings are
relatively isotropic and have high top-hat values in all the
directions.

Step 4: Granulometry by Top-hat
The multiscale THR is considered in this study because
buildings in high-resolution images show complex spatial
patterns with different sizes, shape, heights, and areas.
The multiscale THR is built on the differential morphologi-
cal profiles (Pesaresi and Benediktsson, 2001):

(6)

where �s is the interval of the granulometry.

Step 5: Morphological Building Index (MBI)
In the above steps, the following characteristics of struc-
tures are addressed: brightness (Step 1), contrast (Step 2),
directionality (Step 3), and size (Step 4). Therefore, MBI is
defined based on these implicit features of buildings that
are contained in the THRDMP histogram:

(7)

The calculation of MBI is based on the observation that
building structures have larger values in the THRDMP
histogram, and hence a larger value of MBI means higher
possibility to be a building structure.

MBI � mean
s

(THRDMP).

THRDMP � ETHRDMP
smin

, Á THRDMP
s

, Á  THRDMP
smax

F

THRDMP
s � �THR

s � ¢s
(b) � THR

s
(b) �

smin
… s … smaxL

THRs
 (b) � mean

dir
   (THRs.dir

 (b))

THRs
 (b) � b � gRE

s
 (b)

Step 6: Postprocessing of MBI
The initial result of the building map is obtained by simply
setting a threshold:

IF MBI(x) � t, THEN map1(x) � 1;
ELSE map1(x) � 0,

where MBI(x) and map1(x) indicate the value of MBI and the
initial label for pixel x, respectively. In order to refine the
building map, the vegetation index and the shape attributes
are then used to suppress noise from the initial result:

Rule 1: IF map1(x) � 0; THEN map(x) � 0,
Rule 2: IF map1(x) � 1 AND (NDVI(x) � t1) 

OR ratio(x) � t2 OR area(x) 	 t3)
THEN map(x) � 0,

where NDVI(x) is the normalized difference vegetation
index of pixel x, and map(x) denotes the final building
map after the postprocessing. The shape attributes length-
width ratio and area are computed based on the connected
component analysis (Gonzalez and Woods, 2002) of the
binary building map. The area is the number of pixels in
an object, and the ratio is measured by comparing the
maximum and minimum lengths of an object. The objec-
tive of the postprocessing is to reduce the commission
errors by simultaneously removing the bright vegetation
(NDVI(x) � t1), narrow and elongated roads (ratio(x) � t2),
and small noises (area(x) 	 t3).

A sample test is presented here in order to demon-
strate the processing steps of the proposed procedure
(from Figure 1 to Figure 4). Figure 1a shows the brightness
feature of the sample image, and Figure 1b is the ground
truth map of buildings. Figure 2 presents the graphical
examples of multidirectional and multiscale features used
to calculate the MBI. The histograms of the top-hat DMP for
the three land-cover classes are compared in Figure 3,
where the DMP histograms are computed based on 6,148,
5,440, and 945 samples for buildings, backgrounds, and
roads, respectively. These samples are manually chosen
from the test image. For instance, 6,148 pixels of buildings
are generated from the ground truth map (Figure 1b), and
each pixel has a DMP histogram with 20-dimensional
morphological channels (4 directions 
 5 scales). The DMP
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Figure 1. A test sample of GeoEye-1 image in the study
area: (a) the brightness image, and (b) the ground truth
map of buildings.
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Figure 2. The multidirectional and multiscale morphological profiles of the THR transformation.

of buildings is then calculated by averaging the feature
values of all the building samples for each channel. In
Figure 3, SE(2,45) represents s � 2 and dir � 45 degrees.
It can be seen that the three classes show strikingly
different characteristics. Due to the isotropy of buildings,
16 out of the 20-dimensional morphological channels have
feature values larger than 5. With respect to the roads,
their DMP values are much smaller than buildings, and
only three channels have a large value (greater than 5).
Furthermore, due to the directionality of roads, most of
their large values are with dir � 135 degrees (e.g.,
SE(12,135), SE(17,135), and SE(22,135)), corresponding to
the actual direction of roads in the test image.

Figure 4 presents the graphical results of the auto-
matic building extraction. Figure 4a shows the MBI
feature image. Figure 4b and 4c are the building maps
without and with the post-processing, respectively. It can
be seen that the postprocessing is able to remove small
noise in the background and narrow structures in the
roads. In order to show the superiority of the anisotropic
structural element (linear) over the isotropic one (disk),
Figure 4d presents the building map resulted from the
disk SE. It can be found that the disk structure is not
effective for discrimination between buildings and roads
since the multidirectional information is not taken into
account.
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addition, a multilevel object-based approach based on the
well-known eCognition® platform is also implemented in the
comparative study.

PanTex Index
PanTex is a fuzzy rule-based composition of anisotropic
textural co-occurrence measures by the gray-level co-
occurrence matrix (GLCM). The basic idea of the PanTex is
to capture a basic structural characteristic of buildings,
namely the fact that buildings cast a shadow and hence
produce high local contrast. Therefore, the contrast
measure of GLCM is used to represent the structural
characteristics of built-up areas. PanTex is then calculated
by integration of different directions and displacements of
the contrast. Although the spatial resolution of 5 m was
considered sufficient for discrimination of built-up areas
using the PanTex (Pesaresi et al., 2008), in this study, the
index is calculated from the multispectral GeoEye-1
dataset with 2 m spatial resolution. Moreover, in experi-
ments, different window sizes of the PanTex are discussed
so as to adapt the index to the considered dataset. In
addition, the same post-processing algorithm is used for
the PanTex.

Object-based Approach
The basic idea of the object-based analysis is to group
the spatially adjacent pixels into spectrally homogeneous
objects, and then conduct classification on objects as
the minimum processing units. The reason why the
object-based approach has been widely employed for high-
resolution image processing lies in that it is able to
generate multi-features, such as spectral, textural, shape
and contextual information, in different scales for each
segment. In this study, the object-based building
extraction is implemented on the commercial software
eCognition®. Considering the complexity of the spatial
patterns of buildings, two segmentation levels are gener-
ated by defining two scale parameters in the segmentation
process (18 and 35). The scale parameter controls the size
of segments, i.e., a small scale parameter will give rise to a
small object size on average, while a large value will lead
to a large object size on average. The procedure of
multilevel object-based building extraction in this study
is presented in Table 1.

All the four multispectral bands of GeoEye-1 image are
used as the input for segmentation. Based on the boundaries
of segments, several shape attributes are exploited for
building extraction:

1. Length-width ratio is used to remove long and narrow
objects (roads).

2. Shape index calculated by aims to describe the 

elongation of the objects. Road objects have larger perimeters
and relatively small areas, hence they show larger shape

perimeter

4 # 1area
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Figure 3. The multiscale and multidirectional histograms of
the top-hat DMP for buildings, backgrounds, and the roads.

Figure 4. A sample test case for the procedure of auto-
matic building extraction: (a) the MBI feature image, (b) and
(c) the MBI-based results for automatic building extraction
without and with the post-processing, respectively, and (d)
the map resulted from an isotropic (disk) SE.

Comparisons
In order to evaluate the effectiveness of MBI, a recently
developed procedure for the calculation of a texture-derived
built-up presence index (Pesaresi et al., 2008), namely
PanTex, is carried out for comparison in this study. In

TABLE 1. THE MULTILEVEL OBJECT-BASED BUILDING EXTRACTION APPROACH BASED
ON THE ECOGNITION® PLATFORM

Scale Object of Interest Decision Rule

35 Bare Soil 140�brightness�180; NDVI�0.04;
area�2990; 1.1�length/width�4.5; 
shape index�2.5

Roads length/width�3.8; area�1200; NDVI�0.01
18 Vegetation NDVI�0.054

Buildings brightness�136; rectangular fit �0.64;
shape index�2.6; 1.16�length/width�5.8
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index. Buildings with similar areas as roads should
have smaller perimeters and hence show smaller
shape index.

3. The rectangular fit is defined based on the creation of a
rectangle with the same area as the considered object. It is
measured by comparing the number of pixels inside the
rectangle and the total number of pixels for the considered
object. Buildings are potential to have large values of
rectangular fit due to their rectangularity.

At the large scale (scale parameter � 35), some large
objects such as bare soil and roads are detected and then
removed from the image. At the small scale (scale parame-
ter � 18), the vegetation is removed and the shape attrib-
utes are used to identify buildings. All the parameters are
chosen manually according to the characteristics of the
images.

Dataset and Study Area
The GeoEye-1 image used in this study was acquired on 22
December 2009, with four multispectral bands of 2.0 m
spatial resolution. The study site covers Hongshan District of
Wuhan in central China. As shown in the Figure 5, the study
area is located besides the famous East Lake forming a
special urban-lake landscape. The area measures approxi-
mately 5.5 km by 5.3 km and encompasses several land-
cover types including forest, grassland, bare soil, buildings,
roads, lakes. The satellite image shown in Figure 5 is the
brightness image of the multispectral GeoEye-1 data. Four
sub-regions with detailed field surveying are chosen for
validation and comparison of different building extraction
algorithms:

• Region A, Hongshan Square: a subway is currently under
construction.

• Region B, Lake landscape: the fruit lake and the east lake
are seated, respectively, at the left and right side of the
bridge in the image.
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Figure 5. The study area of Hongshan district of Wuhan in central China. The image is the brightness
feature of multispectral GeoEye-1 data. The sub-regions (a), (b), (c), and (d) are the validation areas with
detailed ground surveying.

TABLE 2. NUMBERS OF THE GROUND TRUTH SAMPLES FOR THE FOUR VALIDATION
AREAS

No. of Samples

Validation Areas Buildings Backgrounds

A Hongshan Square 11,198 11,051
B Lake landscape 14,332 14,068
C T-bridge 15,650 15,301
D Wuhan University 12,428 14,690

• Region C, T-bridge: this region is characterized by the heavy
traffic and the dense residential area.

• Region D, Wuhan University: it shows a regular pattern of
buildings with rich green space.

Based on the field surveying, over one hundred thou-
sand samples of ground truth were selected for assessment
of the algorithms. The numbers of the ground truth samples
are listed in Table 2, where the backgrounds indicate the
non-building areas.

Experiments
The experimental section includes two subsections: at first the
proposed MBI algorithm was assessed based on the selected
four validation areas, and at the same time a comparative
study was conducted between the MBI, PanTex, and the object-
based approach; second, the sensitivity of the MBI parameters,
such as length and direction of the linear SE, setup of thresh-
olds, was analyzed. Four statistical measures were used to
evaluate the results of building extraction (Congalton and
Green, 2009). Omission error (OE) and commission error (CE)
denote the fractions of samples that are wrongly identified as
backgrounds and that are wrongly classified as buildings,
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respectively. Overall accuracy (OA) and Kappa coefficient for
the building-background classification are computed based on
the confusion matrix (Congalton, 1991).

Validation of MBI
The parameters of MBI were listed as follows.

1. Directionality: In Step 3, Equation 5, eight directions were
considered (D � 8 stands for the total number of the
directions), and the values of dir range from 22.5 to 180
degrees with an interval of 22.5.

2. Size of SE: In Step 4, Equation 6, the sizes of the linear SE were
set to (2 	 s 	22, �s � 5) according to the spatial resolution of
the image and the sizes of buildings in the study area.

3. Threshold: In Step 6, the threshold for the initial binaryza-
tion of MBI was set to t � 2. Its influence was further
discussed in the sensitivity analysis.

4. Postprocessing: In Step 6, the parameters of shape
attributes were defined as t1 � 180 (after a 0 to 255
normalization of NDVI), t2 � 9.6, and t3 � 30. These
parameters were tuned within a small area and then
extended to the whole study area. They were kept
constant in this study.

The binaryzation threshold of PanTex was set to 40
based on a careful tuning on the test images. The same post-
processing algorithm was also performed on the PanTex for
a fair comparison. In addition, different sizes of the analysis
window for PanTex were discussed.

The accuracies of building detection for different
algorithms are shown in Table 3, where (a), (b), (c), and (d)
represent the four validation regions, respectively. The first
comment to the table is that the proposed MBI can give
substantially more accurate results than the PanTex and the
object-based approach. Compared with PanTex (13 
 13),
the improvements of OA achieved by MBI are 20.9 percent,
23.6 percent, 7.5 percent, and 27.4 percent for the four
areas, respectively, while the improvements of OA are,
respectively, 22.8 percent, 17.1 percent, 16.7 percent, and
9.4 percent, compared with the eCognition®-based
approach. The improvements of Kappa coefficient are also
significant. Moreover, MBI gives the lowest omission and
commission errors.

The influence for the postprocessing of MBI is also
analyzed in Table 3. Results show that the post-processing
can reduce the commission errors effectively by removing
bright vegetation and small noise. Commission errors
decrease by 3.8 percent, 4.2 percent, 5.4 percent, and 9.2
percent for the four validation areas, respectively. On the
other hand, comparable even lower omission errors are
achieved (Table 3b and 3c) when the postprocessing is
performed. Therefore, it can be stated that the post-process-
ing is effective in refining the initial result of MBI. In
addition, Table 3 provides the information about the
window sizes of PanTex. It is found that although the
PanTex with a larger window size gives better accuracies for
OA and Kappa, it leads to higher commission errors at the
same time.

The extracted building maps of the four validation areas
are shown in Figure 6 for a visual inspection. Rows 1 and 2
are the brightness and the MBI feature images, respectively.
Row 3 indicates the manually delineated ground truth maps.
Rows 4, 5, and 6 show the results of MBI, eCognition® and
PanTex (13
13), respectively. The comments to the figure
are summarized as follows.

1. The results provided by the object-based approach are
acceptable, however, the shape attributes extracted based
on the boundaries of objects are not fully effective for
discrimination between bare soil, roads, and buildings due
to the inaccurate segmentation (e.g., over- and under-

segmentation). The inaccuracy of segmentation leads to the
fact that it is difficult to choose suitable thresholds for
identification of a building object. For instance, in the area
of T-bridge, the bright bare soils in the center of the region
were wrongly identified as buildings, at the same time
some buildings had been filtered out when roads and other
noise were removed.

2. Although PanTex is able to predict the presence of build-
ings, it fails to accurately locate their boundaries because the
pre-defined window size may not favor all the building
structures with different scales.

3. In general, the proposed MBI algorithm provides the most
accurate results according to the ground truth. Roads and
buildings are effectively separated due to the anisotropy of
MBI, and buildings with different sizes are considered using
the multiscale profiles.
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TABLE 3. STATISTICAL ACCURACIES OF BUILDING EXTRACTION FOR MBI, PANTEX,
AND OBJECT-BASED APPROACH (POST- � POSTPROCESSING)

(A) VALIDATION REGION � HONGSHAN SQUARE

Accuracies

Method OE (%) CE (%) OA (%) Kappa

MBI Without post- 10.9 6.2 91.5 0.830
With post- 11.4 2.4 93.1 0.862

PanTex 11 by 11 52.8 15.8 68.9 0.380
(With post-) 13 by 13 41.6 18.8 72.2 0.446
eCognition® NA 40.1 23.8 70.3 0.407

(B) VALIDATION REGION � LAKE LANDSCAPE

Accuracies

Method OE (%) CE (%) OA (%) Kappa

MBI Without post- 7.3 6.3 93.1 0.862
With post- 6.9 2.1 95.5 0.910

PanTex 11 by 11 43.7 18.2 71.5 0.432
(With post-) 13 by 13 41.4 19.4 71.9 0.440
eCognition® NA 38.8 6.0 78.4 0.569

(C) VALIDATION REGION � T-BRIDGE

Accuracies

Method OE (%) CE (%) OA (%) Kappa

MBI Without post- 8.1 7.4 92.1 0.843
With post- 7.6 2.0 95.1 0.903

PanTex 11 by 11 29.9 4.6 83.1 0.663
(With post-) 13 by 13 18.4 6.7 87.6 0.753

17 by 17 13.5 7.1 89.0 0.780
eCognition® NA 37.6 7.4 78.4 0.569

(D) VALIDATION REGION � WUHAN UNIVERSITY

Accuracies

Method OE (%) CE (%) OA (%) Kappa

MBI Without post- 17.2 15.6 85.0 0.699
With post- 18.2 6.4 89.0 0.777

PanTex 9 by 9 79.1 30.5 59.5 0.138
(With post-) 11 by 11 71.5 31.4 61.1 0.180

13 by 13 67.5 33.0 61.6 0.196
eCognition® NA 34.0 13.6 79.6 0.581
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In order to give a comprehensive conclusion, in Plate 1
some images are taken as examples to show the drawbacks
of MBI. Plate 1 – Case A shows a commission error, where an
object of bare soil (in the playground) is wrongly identified
as a building since they have similar brightness, structure
and shape attributes. Plate 1– Case B is an omission error
showing that a building is partially identified due to the
heterogeneity of the roof. Plate 1 – Case C is also an omis-
sion error, where dark and shadowed roofs are partially

recognized since the calculation of MBI depends on the
locally bright structures. However, it should be kept in mind
that it is not easy to automatically extract buildings from a
complicated urban landscape in a high-resolution image,
especially without any supervised machine learning.
Therefore, MBI can be considered potential for accurate
estimation of presence of buildings from large amount of
high-resolution images. The results of the whole study area
are shown in Figure 7.

Figure 6. Results of building detection for the four validation areas (white = backgrounds
and black = buildings). Rows 1, 2, and 3 represent brightness, MBI, and the manually
delineated ground truth maps, respectively. Rows 4, 5, and 6 represent the building
maps extracted by MBI, eCognition® and PanTex (13 
 13), respectively.
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Directionality of MBI
Directionality is a key parameter of MBI since multidirec-
tional structural element (SE) is able to represent the
anisotropy of objects and discriminate roads and buildings.
In order to verify the effectiveness of the multidirectional SE,
the isotropic disk-shaped SE was used for a comparison.
The sizes of the disk SE were set to the same values as the
linear one: (2 	 s 	 22, �s � 5). Results are reported in
Table 4, from which we can obtain two interesting observa-
tions about the directionality of MBI.

1. The results of the linear SE are much higher than those of
the disk one. Due to the consideration of anisotropy, the
linear SE is able to separate roads (narrow and elongated)
and buildings (rectangular). An example has been shown in

Figure 4. Most of the road structures are removed by the
linear SE (Figure 4c), but are retained in the result of the
disk SE (Figure 4d).

2. There is not significant difference between the
four-directional (D � 4) and the eight-directional 
(D � 8) SE. This phenomenon signifies that the
four-directional MBI is adequate for estimation of
presence of buildings; moreover, it is able to reduce the
computational cost and hence will benefit to process large
amount of images.

Sizes of the Structural Element
This objective of this subsection is to analyze the effect of
the sizes of SE, and give comments on how to select them.
To this aim, different sizes of SE are used for calculation
of MBI, and results are compared in Figure 8. The vertical
axis represents the overall accuracy, and the horizontal
one stands for the maximum size of SE (smax in Equation
6). For instance, “smax � 27” means that the structural
elements of s � (2, 7, 12, 17, 22, 27) are used for con-
struction of morphological profiles. From the figure, it can
be seen that the horizontal axis is divided into three
sections:

1. 7 	 smax 	 17, where accuracies increase substantially.
2. 22 	 smax 	 32, where accuracies are stably high.
3. smax � 37, where accuracies decrease slowly.

According to the properties of the THR transformation
defined in Equation 4, the selection of lengths of SE
depends on the sizes of buildings in the image. The
building sizes in the study area range from 6 m (e.g.,
informal settlements) to 60 m (e.g., large apartments),
equivalent to 3 and 30 pixels (smax � 3 and smax � 30),
respectively. Therefore, high accuracies are obtained with
22 	 smax 	 32 due to the correspondence to the actual
sizes of buildings. Actually, from Figure 8, it can be
observed that the overall accuracies are relatively robust to
the sizes of SE, since the results are still acceptable when
the size is very large.

Threshold of MBI
Figure 9 presents the effect of the threshold of MBI (t in the
postprocessing). The validation area of T-bridge is used for
this discussion. OE and CE are omission and commission
errors, respectively. Overall accuracy (OA) and Kappa
coefficient indicate the accuracies of buildings-backgrounds
classification. Figure 9 shows that the most accurate results
are obtained with t � 1.5, 2, and 3. Subsequently, accuracies
decrease gradually when the values of t become larger. A
large value of t signifies that more building candidates are
removed in the initial binaryzation, resulting in a large
omission error and small commission error. The figure also
shows the proportion of building pixels to the whole test
image. It should be noted that the ratio of building pixels to
the whole image is 13.8 percent in the ground truth refer-
ence (50,189 building pixels in a 564 
 645 test image),
which is approximately equivalent to the case of t � 4
(51,115 building pixels). Therefore, the reasonable range of t
should be smaller than 4 (t 	 4) in order to avoid the
omission errors. In addition, it can be seen that t � 0.1 gives
satisfactory results (OA � 93.2 percent and Kappa � 0.864),
which shows that although all the structures with nonzero
MBI values are detected as buildings, a high detection
accuracy can be still achieved.

Conclusions
In this paper, a novel morphological building index (MBI) is
proposed for automatic building extraction from
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Plate 1. Three sample images used to show the
uncertainties of MBI. The buildings extracted by MBI are
overlaid on the brightness images. The extracted build-
ings are highlighted in orange.
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high-resolution remotely sensed imagery. A multispectral
GeoEye-1 image, covering a study area of 5.5 km by 5.3 km,
in the Hongshan district of Wuhan (central China) was used
in experiments. The contribution of this study lies in the
following items:

1. The MBI is modeled by relating the implicit characteristics of
buildings such as brightness, size, contrast, directionality
and shape, to the properties of morphological transformation
such as reconstruction, granulometry, and directionality.

2. A comparative study was made between the MBI, the PanTex
(a recently proposed built-up index), and the object-based
approach. Results verified that the MBI gave better results
than other algorithms in terms of both statistical accuracies
and visual inspection.

3. The experiments were conducted on the multispectral
GeoEye-1 imagery. To our knowledge, few studies have
been reported for information extraction from the GeoEye-1
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Figure 7. Building maps of the whole study area with results of: (a) MBI, (b) object-based approach, and
(c) PanTex.

TABLE 4. COMPARISON OF THE LINEAR SE (ANISOTROPIC) AND THE DISK ONE
(ISOTROPIC); D IS THE NUMBER OF DIRECTIONS OF THE LINEAR SE

Area Structural Accuracies
Element

OE (%) CE (%) OA (%) Kappa

Hongshan Linear (D � 4) 11.8 2.2 93.0 0.860
Square Linear (D � 8) 11.4 2.4 93.1 0.862

disk 7.5 13.2 89.0 0.781
Lake Linear (D � 4) 6.3 1.9 95.8 0.917
landscape Linear (D � 8) 6.9 2.1 95.5 0.910

disk 4.0 34.8 72.0 0.439
T-bridge Linear (D � 4) 8.3 2.8 94.4 0.888

Linear (D � 8) 7.6 2.0 95.1 0.903
disk 6.0 23.6 82.2 0.643

Wuhan Linear (D � 4) 19.0 7.7 88.1 0.759
University Linear (D � 8) 18.2 6.4 89.0 0.777

disk 7.4 35.8 72.9 0.472
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imagery. Therefore, it is worthwhile evaluating the
effectiveness of building extraction from this new data type.

The parameters of MBI were also analyzed in the
experiments and conclusions were summarized as follows:

1. Directionality of MBI: Results verified that the anisotropic
SE (linear) was able to separate roads and buildings and
outperformed the isotropic SE (disk). It was also revealed
that the number of directions for the linear SE (D � 4 and
D � 8) did not affect the accuracies significantly.

2. Sizes of the SE: The experiment showed that high accuracies
were obtained when the sizes of SE were consistent with the
actual sizes of buildings in the image.

3. Binaryzation threshold of MBI: This parameter controls the
balance of commission and omission errors. According to
our analysis, a small value is suggested for the threshold t in
order to avoid a high omission error.

In this paper, the drawbacks of MBI were discussed in
Plate 1. The basic assumption of MBI, i.e., a building is a
bright structure due to the high reflectance of roofs and has
high contrast due to the adjacent shadows, is not always
true, especially in a complicated urban landscape. However,
it should be noted that it is not an easy task to automatically
extract buildings from high-resolution images without any
supervised learning. Therefore, it can be stated that MBI is
effective for indication of buildings and will benefit to
process large amount of images.

Future research includes its further validation using
different high-resolution images. Moreover, MBI is potential

Figure 8. Relationship between the overall accuracies
and the sizes of SE in the four validation areas.

Figure 9. Relationship between the threshold of MBI and
the results of building extraction.

to estimate sizes and directions of buildings based on the
morphological profiles. The application of MBI to urban
monitoring and landscape analysis is also planned.

Acknowledgments
This work was supported by the National Science
Foundation of China under Grant No. 40930532, the
Fundamental Research Funds for the Central Universities
under Grant No. 3101016, and the LIESMARS Special
Research Funding.

References
Benediktsson, J.A., M. Pesaresi, and K. Arnason, 2003. Classifica-

tion and feature extraction for remote sensing images from
urban areas based on morphological transformations, IEEE
Transactions on Geoscience and Remote Sensing,
41(9):1940–1949.

Benediktsson, J.A., J.A. Palmason, and J. R. Sveinsson, 2005.
Classification of hyperspectral data from urban areas based on
extended morphological profiles, IEEE Transactions on
Geoscience and Remote Sensing, 43(3):480–491.

Bian, L., 2003. Retrieving urban objects using a wavelet transform
approach, Photogrammetric Engineering & Remote Sensing,
69(2):133–141.

Chanussot, J., J.A. Benediktsson, and M. Fauvel, 2006. Classification
of remote sensing images from urban areas using a fuzzy
possibilistic model, IEEE Geoscience and Remote Sensing
Letters, 3(1):40–44.

Congalton, R.G., 1991. A review of assessing the accuracy of
classifications of remotely sensed data, Remote Sensing of
Environment, 37(1):35–46.

Congalton, R.G., and K. Green, 2009. Assessing the Accuracy of
Remotely Sensed Data: Principles and Practices, Second
edition, CRC Press, Boca Raton, Florida 208 p.

Gamba, P., F. Dell’Acqua, G. Lisini, and G. Trianni, 2007. Improved
VHR urban mapping exploiting object boundaries, IEEE
Transactions on Geoscience and Remote Sensing,
45(8):2676–2682.

Gonzalez, R.C., and R.E. Woods, 2002. Digital Image Processing,
Second edition, Prentice Hall, Upper Saddle River, New Jersey,
793 p.

Huang, X., L. Zhang, and P. Li, 2007. Classification and extraction
of spatial features in urban areas using high-resolution multi-
spectral imagery, IEEE Geoscience and Remote Sensing Letters,
4(2):260–264.

Huang, X., and L. Zhang, 2008. An adaptive mean-shift analysis
approach for object extraction and classification from urban
hyperspectral imagery, IEEE Transactions on Geoscience and
Remote Sensing, 46(12):4173–4185.

Huang, X., and L. Zhang, 2009. A comparative study of spatial
approaches for urban mapping using hyperspectral ROSIS
images over Pavia City, northern Italy, International Journal of
Remote Sensing, 30(12):3205–3221.

Jin, X., and C.H. Davis, 2005. Automated building extraction from
high-resolution satellite imagery in urban areas using structural,
contextual, and spectral information, EURASIP Journal on
Applied Signal Processing, 14:2196–2206.

Lee, D.S., J. Shan, and J.S. Bethel, 2003. Class-guided building
extraction from Ikonos imagery, Photogrammetric Engineering &
Remote Sensing, 69(2):143–150.

Lhomme, S., D.C. He, C. Weber, and D. Morin, 2009. A new
approach to building identification from very-high-spatial
resolution images, International Journal of Remote Sensing,
30(5):1341–1354.

Lu, Y.H., J.C. Trinder, and K. Kubik, 2006. Automatic building
detection using the Dempster-Shafer algorithm, Photogrammet-
ric Engineering & Remote Sensing, 72(4):395–403.

Pacifici, F., M. Chini, and W.J. Emery, 2009. A neural
network approach using multi-scale textural metrics from

721-732_10-049.qxd  6/22/11  10:15 AM  Page 731



very high-resolution panchromatic imagery for urban
land-use classification, Remote Sensing of Environment,
113(6):1276–1292.

Pesaresi, M., and J.A. Benediktsson, 2001. A new approach for the
morphological segmentation of high resolution satellite imagery,
IEEE Transactions on Geoscience and Remote Sensing,
39(2):309–320.

Pesaresi, M., A. Gerhardinger, and F. Kayitakire, 2008. A robust built-
up area presence index by anisotropic rotation-invariant textural
measure, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 1(3):180–192.

Soille, P., 2003. Morphological Image Analysis: Principles and
Applications, Springer-Verlag Berlin, Germany, 391 p.

Soille, P., and H. Talbot, 2001. Directional morphological filtering,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(11):1313–1329.

Tian, J., and D.M. Chen, 2007. Optimization in multi-scale segmen-
tation of high-resolution satellite images for artificial feature
recognition, International Journal of Remote Sensing,
28(20):4625–4644.

(Received 11 June 2010; accepted 20 January 2011; final version 01
February 2011)

732 J u l y  2011 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

721-732_10-049.qxd  6/22/11  10:15 AM  Page 732


