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On Combining Multiple Features for Hyperspectral
Remote Sensing Image Classification

Lefei Zhang, Student Member, IEEE, Liangpei Zhang, Senior Member, IEEE,
Dacheng Tao, Member, IEEE, and Xin Huang

Abstract—In hyperspectral remote sensing image classification,
multiple features, e.g., spectral, texture, and shape features, are
employed to represent pixels from different perspectives. It has
been widely acknowledged that properly combining multiple fea-
tures always results in good classification performance. In this
paper, we introduce the patch alignment framework to linearly
combine multiple features in the optimal way and obtain a unified
low-dimensional representation of these multiple features for sub-
sequent classification. Each feature has its particular contribution
to the unified representation determined by simultaneously opti-
mizing the weights in the objective function. This scheme considers
the specific statistical properties of each feature to achieve a
physically meaningful unified low-dimensional representation of
multiple features. Experiments on the classification of the hyper-
spectral digital imagery collection experiment and reflective optics
system imaging spectrometer hyperspectral data sets suggest that
this scheme is effective.

Index Terms—Classification, dimensional reduction, hyperspec-
tral, multiple features.

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI), airborne or space-
borne, can acquire data for ground objects, with a larger

spectral range and a much higher spectral resolution [1]. In
hyperspectral remote sensing image analysis, it is common to
perform feature extraction [2]–[9] before classification. It is
also important to employ multiple features of different types to
represent a pixel’s information, e.g., spectral, texture, and shape
features. To well characterize a pixel, for effective and accurate
classification, it is essential to find a way to encode these spatial
and spectral features into a low-dimensional vector. Jimenez
et al. [10] presented a method of unsupervised enhancement of
pixels’ homogeneity in a local neighborhood by integrating the
spectral and spatial information, producing results that are more
meaningful to the human analyst. Stathakis et al. [11] explored
a genetic algorithm that is used to select a near-optimal subset
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of input dimensions using a feedforward multilayer perceptron.
Bruzzone et al. [12] presented a novel approach to feature
selection for the classification, which aims at selecting a subset
of the original set of features that exhibits, at the same time,
high capability to discriminate between the considered classes
and high invariance in the spatial domain of the investigated
scene. Jimenez et al. [13] also presented an analysis and a
comparison of different linear unsupervised feature extraction
methods applied to high-dimensional data and their impact on
classification. Another much simpler approach was suggested
in [14], where the authors proposed a set of best-bases feature
extraction techniques that intelligently combine subsets of ad-
jacent bands into a smaller number of features; this approach
is highly effective for classification of hyperspectral data. In
addition, Rellier et al. [15] performed a joint texture analysis
in both discrete spaces by a probabilistic vector texture model
using a Gauss–Markov random field (MRF) with parameters to
allow the characterization of different hyperspectral textures.

In this paper, the proposed multiple feature combining
(MFC) is based on manifold learning [16], [17] and a patch
alignment framework [18]. The manifold-learning-based di-
mensional reduction algorithms seek a low-dimensional repre-
sentation, which preserves certain local geometric properties
of the original feature, e.g., locally linear embedding (LLE)
[19] finds an optimal linear reconstruction in a small neigh-
borhood, local tangent space alignment (LTSA) computes a
local-geometry-preserving representation of the original data
[20], [21], isometric feature mapping (ISOMAP) [22] tries to
preserve the geodesic distances, and Laplacian eigenmaps (LE)
[23] preserve proximity relationships by manipulation of an
undirected weighted graph. In remote sensing, Ma et al. [24]
investigated an approach to combine local manifold learning
and the k-nearest neighbor classifier for hyperspectral remote
sensing image classification. However, the existing methods
assume that samples are distributed in only one feature space,
and thus, they could not deal with directly combining multi-
ple features. To overcome this point, we focus on encoding
different features that have particular statistical properties into
a low-dimensional vector by an MFC framework, which can
achieve a physically meaningful combination. Experiments on
hyperspectral remote sensing image classification demonstrate
the effectiveness of the proposed approach.

The remainder of this paper is organized as follows. In
Section II, we provide the proposed MFC framework in detail,
including the extraction and combination of multiple features.
Then, the experiments on two publicly available hyperspectral
data sets are reported in Section III, followed by the conclusion.
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Fig. 1. Flowchart of the proposed MFC framework.

II. MFC FRAMEWORK

The proposed MFC framework can be divided into two main
components, as shown in Fig. 1. In the first step, three kinds
of features of HSI are introduced. Then, the MFC algorithm,
which finds the particular contribution of each feature to the
unified representation, is employed to obtain the final low-
dimensional representation.

A. Multiple Feature Extraction

In this framework, three kinds of features are introduced to
the MFC. Each feature is represented as a single vector v ∈ RL.

1) Spectral Feature: The spectral feature of a pixel is ob-
tained by arranging its digital number (DN) in all of the l bands

vSpectral = [v1, v2, . . . , vl]
T ∈ Rl (1)

in which vk denotes the DN in band k.
2) Texture Feature: Various methods have been reported to

extract the texture feature from the image region. A gray-
level co-occurrence matrix [25] starts from a pixel in a given
position and then provides a measure of the probability of
occurrence of two gray levels separated by a given distance in
a given direction. A new model for extracting spectral/spatial
information, based on 3-D Gabor filters, which captures the
specific orientation, scale, and wavelength-dependent proper-
ties of hyperspectral image data, could provide an efficient
means of texture feature representation [26], [27]. Consider that
the conventional 2-D Gabor wavelet has already been proved
superior for representing the texture features in the natural
scene and aerial photographs [28]–[31]. In this paper, we per-
formed a 2-D Gabor wavelet on a top principal component (PC)
image, which is given by implementing the PC [32] transfor-
mation of hyperspectral images, to extract the texture feature
of HSI.

A Gabor wavelet is a filter whose impulse response is de-
fined by an elliptical Gaussian envelope and a complex plane

wave. The generalized 2-D Gabor function can be defined
as [33]

Gs,d(x, y) = G�κ(x) =
‖�κ‖
δ2

· e−
‖�κ‖2·‖x‖2

2δ2 ·
[
ei·�κ·x − e−

δ2

2

]
(2)

where x = (x, y) is the spatial domain variable and the fre-
quency vector �κ = (π/2fs) · ei·(πd/8), in which f = 2, s =
0, 1, . . . , 4, and d = 0, 1, . . . , 11, determines the 5 scales and
12 directions of the Gabor function. The number of oscillations
under the Gaussian envelope is determined by δ = 2π. The
Gabor texture feature image in a specific scale and direction
is the magnitude part of convolving the image I(x, y) with the
Gabor function of corresponding parameters s and d

Fs,d(x, y) = Gs,d(x, y) ∗ I(x, y). (3)

The texture feature of a pixel (x, y) is obtained by

vTexture = [F1,1(x, y), . . . , Fs,d(x, y)]
T ∈ Rsd. (4)

3) Shape Feature: Several effective shape features have
been proposed, e.g., [34] and [35] proposed an effective
length–width extraction algorithm to extract the length and
width of spectrally similar connected groups of pixels, and
[36]–[38] presented a series of morphological profiles (MPs)
and differential MPs (DMPs), which have been proven to be
effective in extracting multiscale structural information from
HSIs. In this paper, based on our previous work, the pixel shape
index method (PSI) [39] is adopted to describe the shape feature
in a local area surrounding a certain pixel.

Pixel shape feature extraction of a specific pixel consists of
the following two steps.

Step 1) Extension of direction lines: We define the pixel
homogeneity of the ith direction by

PHi = ‖vc − vs‖2 (5)



ZHANG et al.: MFC FOR HYPERSPECTRAL REMOTE SENSING IMAGE CLASSIFICATION 881

where vc and vs are the spectral features of the
central and surrounding pixels, respectively. The ith
direction line is extended from the central pixel if the
following statements are true: 1) PHi is less than
T1, and 2) the total number of pixels in this direction
is less than T2. The values T1 and T2 can be deter-
mined through experiments because they are related
to the shape and spatial arrangement of objects in
the image. T1 is the threshold for homogeneity and
pertains to the spectral variability in a local area. T2

is related to the average size of a shape area.
Step 2) Length of direction line: The PSI in the ith direction

is calculated by the length of the direction line di.
Then, the shape feature is achieved by

vShape = [d1, d2, . . . , dp]
T ∈ Rp (6)

in which p is the total number of all directions.

B. MFC

In this framework, the proposed MFC algorithm finds a
low-dimensional representation Y = [y1, y2, . . . , yN ] ∈ Rd×N

of features {V(i) = [v(i)1, v(i)2, · · · , v(i)N ] ∈ RLi×N}mi=1, in
which m is the number of features (m = 3; e.g., spectral,
texture, and shape features) and N is the number of samples.
First, we introduce the traditional single feature-based dimen-
sional reduction, which can be unified to a patch alignment
framework. Then, we theoretically show that multiple features
can be integrated into a uniformed objective function by si-
multaneously optimizing the combining weights. Finally, we
further extend the MFC to its linear version by linear regression
to solve the out-of-sample problem in HSI classification.

1) Single Feature-Based Dimensional Reduction: Based on
our previous work [18], [40], [41], representative single
feature manifold-learning-based dimensional reduction algo-
rithms, e.g., LLE, LTSA, ISOMAP, and LE, can be unified to
a patch alignment framework. Here, we consider the method
proposed in [23]. Given N samples vi ∈ RL(i = 1, . . . , N)
in an arbitrary feature, supposing that the target dimensional
reduction vectors are yi ∈ Rd(i = 1, . . . , N), the weighted ma-
trix which measured the similarity between the ith and jth
samples is defined by

W (i, j) = exp
(
−‖vi − vj‖2/t

)
(7)

if vi and vj are k-nearest neighbors, and W (i, j) = 0 otherwise,
where t is a radius parameter. Patch alignment first builds N
patches for all samples, and then, part optimization is per-
formed to obtain the optimal low-dimensional representations
for each patch. Afterward, all low-dimensional representations
from different patches are unified by a global coordinate align-
ment to get the objective function

argmin
Y

f = tr(YMY T)

s.t. Y Y T = I (8)

where M ∈ RN×N is the alignment matrix of input samples,
which could be computed by

M = D −W (9)

where D is a diagonal matrix, with its (i, i) element equal to
the sum of the ith row of the weighted matrix

Dii =
N∑
j=1

W (i, j). (10)

2) Formulation of MFC: Part optimization and global coor-
dinate alignment (8) find a sufficiently smooth low-dimensional
combining Y by preserving the intrinsic structure of an arbi-
trary feature. However, because of the complementary prop-
erties of multiple features, different views definitely have
different contributions to the final low-dimensional combi-
nation [42], [43]. In order to thoroughly explore the com-
plementary properties of multiple view features, the most
straightforward way is to impose a nonnegative weight ω =
[ω1, ω2, . . . , ωm] with conditions that ωi > 0 and

∑m
i=1 ωi = 1

on (8). The larger ωi is, the more important is the role of the ith
feature in learning to obtain the low-dimensional combining.
By summing up all of the features, we have

argmin
Y

f =

m∑
i=1

ωitr
(
YM(i)Y

T
)

s.t. Y Y T = I (11)

in which M(i) ∈ RN×N is the alignment matrix of the ith fea-
ture. By introducing ω into the objective function, each feature
has its particular contribution to the unified representation Y .
However, the decision of ω is not considered in (11), which
means that we might have to determine ωi by cross-validation.
This is crucial for MFC since the discriminative abilities of
different features often vary significantly. In addition, the com-
plementary properties among the multiple features should also
be carefully considered. When m is larger than two, the time
taken for cross-validation increases dramatically, thus a more
efficient strategy is required to obtain ωi.

In this paper, we propose to regard ω as variables in (11) and
then optimize the objective function with respect to both Y and
ω simultaneously. By putting ω into variables in (11), we have

argmin
Y,ω

f =

m∑
i=1

ωitr
(
YM(i)Y

T
)

s.t. Y Y T = I ωi > 0

m∑
i=1

ωi = 1. (12)

However, from (12), we can see that the current objective
function f(Y, ω) is a linear programming (LP) with respect
to ω. Since the optimal solution of LP will be always at the
vertex of the linear feasible region, the solution of ω must
be ωi = 1, corresponding to the ith feature with minimum
tr(YM(i)Y

T), and ωj = 0 otherwise. This result means that
all of the discriminative information will be totally discarded,
except for the most discriminative one, e.g., the best feature.
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Therefore, this solution does not meet our goal of combining
multiple features to improve the classification performance. To
avoid this problem, we make a relaxation by set ωr

i instead
of ωi, with r > 1. Under this current objective function and
constraint condition, the optimization f(Y, ω) is no longer an
LP with respect to ω. Therefore, based on the adopted alter-
nating optimizations a) and b), which we will soon introduce,
the adopted trick actually makes each feature have a particular
weight for the final low-dimensional representation. If r is close
to one, the combination coefficients ωi will be very sparse,
and only those features corresponding to a smooth graph will
be selected. If r is increased to infinity, different features will
share the same weights for the subsequent graph combination.
The optimal choice of r should be based on the complementary
property of the features for data representation. If the avail-
able features are complementary to each other, a larger r is
preferred to guarantee that all features properly contribute to
the subsequent classification; otherwise, we can choose a small
r. In practice, we can use cross-validation or Bayesian model
selection to estimate an optimal r for MFC. According to the
aforementioned discussions, we can obtain the full formulation
of MFC by

argmin
Y,ω

f =

m∑
i=1

ωr
i tr

(
YM(i)Y

T
)

s.t. Y Y T = I ωi > 0

m∑
i=1

ωi = 1. (13)

The proposed optimization of MFC (13) is a nonlinearly
constrained nonconvex optimization problem, which cannot
find the global optimal solution to the best of the authors’
knowledge. In this paper, an alternating optimization is adopted
to acquire a local optimal solution by iteratively updating
Y and ω.

a) Fix ω to update Y . Optimization (13) is equivalent to

argmin
Y

tr(YMY T) s.t. Y Y T = I (14)

in which

M =

m∑
i=1

ωr
iM(i). (15)

Based on [44], (14) has a global optimal solution Y ,
given as the eigenvectors associated with the smallest d
eigenvalues of M , in which d is the predefined size of
low-dimensional combining Y .

b) Fix Y to update ω. The Lagrangian function for optimiza-
tion (13) is

L(ω, λ) =

m∑
i=1

ωr
i tr

(
YM(i)Y

T
)
− λ

(
m∑
i=1

ωi − 1

)
(16)

with multiplier λ. Then, we obtain the partial derivative
of L(ω, λ)

∂L/∂ωi =0 → rωr−1
i tr

(
YM(i)Y

T
)
− λ = 0

∂L/∂λ =0 →
m∑
i=1

ωi − 1 = 0. (17)

Then, we find the global optimal ω by the solution of (17)

ωi =

(
1/tr

(
YM(i)Y

T
))1/(r−1)

m∑
i=1

(
1/tr

(
YM(i)Y T

))1/(r−1)
. (18)

3) Linearization: The alternating optimization tries to train
an optimal subspace for original multiple features. It is worth
emphasizing that the feature mapping {V(i) ∈ RLi×N}mi=1 →
Y ∈ Rd×N from the multiple high-dimensional feature space
to the low-dimensional subspace can be nonlinear and implicit.
In remote sensing image classification applications, training a
low-dimensional subspace is a time-consuming work because
the size of the alignment matrix M scales with the number
of samples, i.e., the number of pixels in HSI. When N is
increased to 104, MFC requires that a long time is spent
on computing the alignment matrix M(i) for each feature, as
well as the eigenvalue decomposition step in (14). In such a
situation, the proposed MFC framework suffers from the out-
of-sample problem. In this paper, we adopt a linear approxi-
mation to deal with such an out-of-sample problem. A group
of explicit linear projection matrices {Ui}mi=1, trained by a
subset of samples ({X(i) ∈ RLi×n}mi=1, n � N), is applied to
approximately construct the low-dimensional representation

Y =
m∑
i=1

UT
i X(i). (19)

We expect the difference between Y and
∑m

i=1 U
T
i X(i) to

be minimized. Based on this subset of samples X = {X(i)}mi=1

and their corresponding low-dimensional representation Y ∈
Rd×n, an objective function is designed to obtain {Ui}mi=1, i.e.,

argmin
U

‖Y − UTX‖2 (20)

where U is formulated as U = [UT
1 , . . . , UT

m]T and X is for-
mulated as X = [XT

1 , . . . , X
T
m]T. The optimization problem in

(20) can be solved easily by using the linear regression method

U = (XTX)
−1
XTY. (21)

According to the aforementioned descriptions, we have the
following MFC algorithm:

Algorithm 1. The procedure of the MFC framework.

Input: A hyperspectral remote sensing image.

Method:
a) Extract multiple features V = {V(i) ∈ RLi×N}mi=1

from HSI by (1), (4), and (6).
b) Construct the feature matrix X = {X(i) ∈

RLi×n}mi=1 using a subset of samples.
c) Calculate an alignment matrix M(i) for each feature

by (9) based on X(i).
d) Initialize ω = [1/m, 1/m, . . . , 1/m].
e) Repeat

Compute Y by optimization (14);
Compute ω by equation (18);
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Until convergence.
f) Compute linear projection matrix U by (21).
g) Compute a low-dimensional feature representation of

HSI: VMFC = UTV .

Output: A low-dimensional MFC of the input HSI.

C. Computational Complexity of MFC

Based on the discussion in part B, the computational com-
plexity of the MFC algorithm contains three parts, as follows.
First, a patch alignment framework is introduced to compute
alignment matrices M(i) for each feature, and the computa-
tional complexity of which is O(n2). Then, the alternating
optimization is repeated: 1) fix ω to update Y , which is
an eigenvalue decomposition task on a n× n matrix with a
computational complexity of O(n3), and b) fix Y to update
ω, which has the computational complexity of O(n2). The
entire complexity of an alternating optimization is O(n3)× T ,
in which T is the iteration number that we will discuss in
the experimental part. Finally, linearization of MFC, which is
a linear regression issue, has a computational complexity of
O(n3). Therefore, the computational complexity of the pro-
posed approach is O(n3). In general, it is time consuming to use
the embedding for dimensionality reduction of hyperspectral
imagery. However, the adopted linearization of MFC is effec-
tive in achieving the accuracy of the manifold learning and, at
the same time, in reducing the computational cost.

III. EXPERIMENTS

A. Data Set Description

The experiments were conducted on images from two hy-
perspectral data sets. One is the hyperspectral digital imagery
collection experiment (HYDICE) airborne data over a Mall in
Washington DC. A total of 210 bands were collected in the
0.4–2.4-µm region of the visible and infrared spectra. The water
absorption bands were then deleted, resulting in 191 channels.
The whole data set contains 1280 scan lines, with 307 pixels
in each scan line. The spatial resolution of the Washington DC
data set is 2 m per pixel. Data set 1 used in our experiment is a
subset of the whole set, with a size of 280 × 307 pixels.

In the second experiment, analysis was performed on an
airborne image data set provided by the Data Fusion Techni-
cal Committee of the IEEE Geoscience and Remote Sensing
Society. This data set was acquired by the reflective optics
system imaging spectrometer (ROSIS-03) at the urban test area
of Pavia, Northern Italy. The whole data set size is 1400 ×
512 pixels, and the spatial resolution of the Pavia data set is
1.3 m per pixel. Some channels were removed due to noise, and
the remaining 102 spectral dimensions from 0.43 to 0.83 µm
were processed.

B. Complementary Properties Among Multiple Features

Data set 1 and the reference data are shown in Fig. 2(a)
and (b). The desired information classes are roof, road, trail,
grass, shadow, and tree. This data set is a challenging one

Fig. 2. (a) RGB composites of the DC data set (channels 65, 52, and 36 for
RGB) and (b) reference data.

to analyze mainly because roof, road, and trail are spectrally
similar in that they may be made of similar materials and there
is no single spectral response representative of roof [45]. In our
experiments, the shape feature was extracted based on the PSI
method in which p = 20, we also experimentally set T1 to a
sum of standard deviations in all bands, and T2 is fixed as ten.
Based on the feature extraction mentioned in Section II, we
have a spectral feature vector vspectral ∈ R191, texture feature
vector vtexture ∈ R60, and a shape feature vector vshape ∈ R20

for each pixel in HSI. Some of the feature images are shown in
Fig. 3.

We now investigate the complementary properties of the
aforementioned multiple features. Fig. 4 shows the spectral,
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Fig. 3. Multiple features of the DC data set. (First row) Spectral feature images in band 36, 52, and 65. (Second row) Gabor texture feature images, with d = 1
and s = 1, 3, and 5, respectively. (Third row) Shape feature images in d1, d8, and d16, respectively.

texture, and shape feature curves for five different pixels, which
are located at the center of each subimage. These pixels corre-
spond to different classes, e.g., ©1 –©3 for roof, ©4 for road, and
©5 for trail, respectively. Tables (a)–(c) present the correlation
coefficients of these pixels on a single feature. In Fig. 4, we
learned that, for example, ©2 and ©4 have a very similar spectral
feature curve and a high correlation coefficient, e.g., 0.99;
however, we might distinguish them because they have low
correlation coefficients on texture and shape features, e.g., 0.59
and 0.21, respectively. Although ©5 has a very similar spectral
feature curve to roofs ©1 and ©3 , e.g., correlation coefficients
of 0.98 and 0.99, the correlation coefficients of ©5 and ©1 for
the shape feature are 0.36, and the correlation coefficients of
©5 and ©3 for the texture feature are 0.15, which could be
useful to classify ©5 out of the class “roof.” Therefore, the
complementary properties of the multiple features on data set 1
provide the information to potentially improve the classification
performance. However, it could also be observed that ©2 and
©3 , which are in the same category (roof), have a not very high
spectral similarity (0.86); unfortunately, their texture and shape
similarities are low (0.08 and 0.02, respectively). As a result
of that, the texture and shape features might deteriorate the
classification of ©2 and ©3 . Therefore, it is an important and
challenging task to utilize multiple features for dimensionality
reduction, with the result being an improvement in the classifi-
cation performance.

C. Classification Result

The proposed MFC algorithm was employed to obtain the
low-dimensional feature representation of the aforementioned
multiple features. n = 8596 samples, which were uniformly
sampled from the whole data set, were used to construct the
feature matrix for MFC, and the value of radius parameter t
in weight matrix constructing was set by cross-validation. To
compare the effectiveness of the proposed MFC with the con-
ventional dimension reduction methods, we show the perfor-
mance of the supervised classification results of the following
methods: 1) best feature: the best performance of the single-
view feature (in this data set, it is the spectral feature); 2) all
features: the conventional multifeature concatenation method,
which arranges the feature vectors together; 3) PC: imple-
menting the PC transformation on all features concatenation;
4) MNF: executing the minimum noise fraction rotation [46] on
all features concatenation; using manifold-learning-based ap-
proaches 5) LLE, 6) LTSA, and 7) LE for all features concate-
nation; and 8) adopting the proposed MFC. The support vector
machine (SVM) classifier [47], which has been reported to be
effective in the classification of hyperdimensional feature sets
[48], was used to interpret the aforementioned processed feature
data. Ten independent classification experiments are conducted
in which the training samples were randomly selected from the
reference data. For each experiment, we use all reference data as
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Fig. 4. Complementary properties of multiple features for different pixels in the DC data set.

TABLE I
NUMBER OF ALL REFERENCE DATA AND TRAINING AND TEST

SAMPLES FOR THE DC DATA SET

test samples. The number of training and test samples is listed
in Table I.

Eight different feature-based classification results from a
certain group of training samples are compared in Fig. 5(a)–(h).

In Fig. 5, the proposed MFC-based classification achieved the
best results in both accuracy and visual interpretation. In these
maps, the most spectrally similar class pair (roof and road)
is focused on. It can be seen that roof exists in the roads
in all of the classification maps. This misclassification occurs
because roof and road have similar spectra. However, with the
help of additional information, e.g., texture and shape features,
Fig. 5(h) shows fewer misclassifications than the best feature
representation in Fig. 5(a), especially for roofs at the left upper
side and around the plaza at the lower right. Compared to
the classification results, considering all of the features shown
in Fig. 5(b)–(g), the proposed MFC yields satisfactory results
with few classification errors, while the conventional multiple
feature concatenation method in Fig. 5(b) and five kinds of
dimensional reduction approaches in Fig. 5(c)–(g) have many
false predictions in the spectrally similar class pairs, including
roof–road, road–shadow, and trail–roof.

In order to evaluate thoroughly the different feature repre-
sentations, the averaged classification accuracies of all classes
in ten independent experiments are compared in Table II. In
Table II, it is shown that the MFC approach outperforms
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Fig. 5. (a)–(h) Classification maps of the DC data set obtained using features of the following: best feature, all features, PC, MNF, LLE, LTSA, LE, and MFC,
respectively.

TABLE II
CLASS-SPECIFIC ACCURACIES IN PERCENTAGE FOR VARIOUS FEATURES

the best view feature representation, the multiple feature con-
catenation method, and five kinds of dimensional reduction
approaches on multiple features. The improvements observed in
Table II indicate that MFC obtained the top three classification

rates in all classes and achieved the highest overall accuracy
(OA) and kappa coefficient.

D. Parameter Analysis

1) Effect of Parameter r: In (13), we introduced a parameter
r to guarantee that each feature had a particular contribution
to the final combining in MFC. Fig. 6(a) and (b) shows the
performance variation of MFC with respect to r. The neighbor
size k and the low-dimensional feature size d in MFC are both
set to 30. Fig. 6(a) describes the relationship of r and ωi in each
feature. Features 1, 2, and 3 denote the spectral, texture, and
shape views, respectively. As discussed before, the ith feature,
with a larger ωi, plays the most important role in learning
to obtain the low-dimensional combination. It can therefore
be seen that the spectral feature is the most discriminating
feature for hyperspectral remote sensing image classification.
We can also learn from Fig. 6(a) that, if r is close to one,
we have ω1 close to one, which indicates that the spectral
feature corresponds to the most discriminating feature. Such a
best feature has a leading weight in low-dimensional feature
representation. With an increase in r, different weights will be
close to each other. When r is larger than 15, the weights stay
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Fig. 6. Relationship of (a) parameter r and weights in each feature and
(b) parameter r and OA.

at [0.357 0.323 0.320] and vary slowly with respect to r, while
different features play a particular role in the final combining.
It is worth emphasizing that, with r increased indefinitely to
infinity, ωi is equal to 1/m, determined by (18), which suggests
that different features would have the same weights in the
final combining. Therefore, the determination of parameter r
should be based on the complementary properties among all
features. The richer the complementary properties of the view
are, the larger r should be selected to guarantee that the weights
are closer; otherwise, r should be small. Fig. 6(b) shows the
relationship of r and OA of the classification result by SVM.
It is known that data set 1 has rich complementary properties
among all features. The r–OA curve reaches the best value
around r = 10. When r > 20, the r–OA curve decreases very
slowly and shows a stable tendency.

2) Effect of Parameter d: In MFC, the optimal solution Y
is given as the eigenvectors associated with the smallest d
eigenvalues of M . In order to investigate the effect of d on the
classification performance, we first give all of the eigenvalues
of M of data set 1 in Fig. 7(a) and highlight the 30 smallest
eigenvalues in Fig. 7(b), sorted in ascending order. In Fig. 7(a)
and (b), we can see that the eigenvalues increase slowly when
the index > 50. The corresponding curve against d and OA is
shown in Fig. 8.

Fig. 7. (a) All eigenvalues and (b) 30 smallest eigenvalues of M in the DC
data set, sorted in ascending order.

Fig. 8. Relationship of d and OA in the DC data set for six-dimensional
reduction approaches.

For a more detailed comparison of the following six-
dimensional reduction approaches (PC, MNF, LLE, LTSA,
LE, and MFC), the classifications are conducted using the
aforementioned algorithms with an increase in d. Fig. 8 shows
the OAs under the six algorithms. We set r = 10 in MFC
to take the rich complementary properties among all of the
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Fig. 9. Relationship of k and OA in MFC of the DC data set.

Fig. 10. Classification OA of complete manifold mapping and linearization
for MFC.

TABLE III
TIME TAKEN FOR COMPLETE MANIFOLD MAPPING AND

LINEARIZATION FOR MFC

features into account. As shown in Fig. 8, the MFC performs
better than the other five algorithms when d > 10 and achieves
the best performance in Fig. 8 at d = 30. Comparing LLE,
LTSA, and LE with PC and MNF, the manifold-learning-based
approaches also give some improvements over the traditional
methods. When d > 60, the performance of MFC decreased
since the eigenvalues in Fig. 7 are slowly increasing when
the index > 60, which means that the features in d > 60 are
highly noisy with little discriminating information. When d >
150, the classification OA of the six algorithms stabilizes at
some specific value. Based on the aforementioned analysis, the
optimal value of d for MFC is ought to be set experimentally
by considering the eigenvalues of M .

3) Effect of Parameter k: The neighbor size k is another
important parameter in the proposed MFC, which has a great
influence on the weighted matrix W and the part optimization

Fig. 11. (a) RGB composite of the Pavia city data set (channels 102, 56, and
31 for RGB) and (b) reference data.

TABLE IV
NUMBER OF ALL REFERENCE DATA AND TRAINING AND

TEST SAMPLES FOR THE PAVIA CITY DATA SET

(8). Fig. 9 shows the effects of k on the classification OA from
3 to 40 based on data set 1. This OA curve shows a slow change
when k > 15, and there is a peak at k = 30. The classification
performance decreases when k > 40. Considering that the total
number of samples that we selected to build the feature matrix is
n = 8596, this OA curve suggests a small optimal neighbor size
of k = 30 for MFC to represent the local geometry property.
With this suggestion, we do not need to traverse all possible
values of k to find the best one for MFC because the optimal
value is usually small to preserve the local geometry property.
When a large k is set, the proposed feature combining approach
performs poorly for classification because a global structure is
considered rather than the local geometry and the discriminative
information.
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Fig. 12. (a)–(h) Classification maps of the Pavia city data set. (a) Best feature. (b) All features. (c) PC. (d) MNF. (e) LLE. (f) LTSA. (g) LE. (h) MFC.

E. Complete Manifold Mapping Test

In the linearization step of MFC, in order to overcome the
out-of-sample problem, we proposed a group of explicit linear
projection matrices Ui to approximately represent the MFC
X → Y . Here, we compare the classification rates of com-
plete manifold mapping (without linearization) to our proposed
linearization for MFC. Because it requires a long time for
complete manifold mapping when the number of samples is
increased to 104, we have only used a subset of the DC data set
from location (99, 1) to (178, 80) for comparison. In this test,
5%, 10%, and 20% of the samples were randomly sampled from
the test data set and were used to train linear projection matrices
Ui. The corresponding classification rates and time taken are
compared in Fig. 10 and Table III.

In Fig. 10 and Table III, we can see that the approximate
representation of X → Y achieved an acceptable classification

rate when the number of samples for training is greater than
10%, i.e., n = 640 for this test. However, as shown in Table III,
the time taken for MFC increased exponentially with an in-
crease in n, as we theoretically analyzed previously. Therefore,
we do not need to use all of the samples to undertake complete
manifold mapping for MFC because only a small number of
random samples are enough to train a group of linear projection
matrices Ui by the proposed MFC linearization for an excellent
classification result.

F. Classification on the Pavia City Data Set

Fig. 11(a) shows an RGB composite of a ROSIS image from
the Pavia city data set. Six classes of interest are considered, i.e.,
roof, river, road, grass, shadow, and tree. The reference data are
given in Fig. 11(b) and Table IV.
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Fig. 13. (a)–(h) Classification maps of a local region at the bridge. (a) Best feature. (b) All features. (c) PC. (d) MNF. (e) LLE. (f) LTSA. (g) LE. (h) MFC.

Fig. 14. Classification accuracies of (a)–(f) all classes, (g) OA, and (h) kappa for eight different feature-based classification results.

The considered multiple features are the following:
vspectral ∈ R102, vtexture ∈ R60, and vshape ∈ R20. The total
number of samples in the data set is N = 1400× 512 pixels,
and n = 3584 samples were uniformly sampled from N and

were used in MFC. Based on the aforementioned analysis,
the neighbor size k is set to ten, and the weight parameter
r = 10. We experimentally set d = 6 in the Pavia city data set.
Eight different feature-based classification results are compared
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Fig. 15. Alternating optimization converges effectively. (a)–(c) Weights with respect to iteration number using r = 2, r = 10, and r = 20, respectively, for the
DC data set. (d)–(f) Weights with respect to iteration number using r = 2, r = 10, and r = 20, respectively, for the Pavia city data set.

in Fig. 12(a)–(h), respectively. The classification results are
similar to the aforementioned reports: the proposed MFC-based
classification achieved the best performance, especially at the
bridge over the river (distinguishing the pair of roof–shadow)
and along the river (distinguishing the pairs of grass–tree and
grass–road). For example, Fig. 13(a)–(h) shows the classifica-
tion of a local region 100 × 100 at the bridge over the river from
the subimage location (889, 14) to (988, 113).

The averaged classification accuracies of all classes, based
on ten independent groups of samples of six classes, are also
compared in Fig. 14. In Fig. 14, improvements can be observed,
and MFC obtains the top classification rate in five classes and
achieves the top OA and kappa coefficient.

G. Convergence of MFC

Fig. 15 shows that MFC converges efficiently by the alternat-
ing optimization. Usually, MFC achieves convergence in about
20 iterations with different r values in the DC data set and

converges at stable values in about ten iterations in the Pavia
city data set. The reason is that there are fewer samples being
selected to construct the feature matrix in the Pavia city data
set (we selected n = 8596 samples in the DC data set, while
n = 3584 samples were employed in the Pavia city data set).
We also found that fewer iterations are required when r is
smaller, and a greater number of iterations are required other-
wise. Considering that the r value is usually set at around ten,
about 15 iterations are enough for MFC to reach convergence.
Fig. 15(a)–(f) shows that MFC converges efficiently by the
proposed alternating optimization.

IV. CONCLUSION AND FURTHER WORK

In this paper, we have further explored the complemen-
tary properties of multiple features, e.g., spectral, texture, and
shape features, to improve the classification performance. In
the proposed MFC approach, we have first introduced the
patch alignment framework to construct the feature matrix for
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each single feature, and then, we have integrated the objective
functions of each single feature into a unified one by simul-
taneously optimizing the combining weights. Lastly, we have
further extended the MFC to its linear version to solve the out-
of-sample problem in HSI classification. Experiments on the
classification of HYDICE and ROSIS hyperspectral data sets
suggest that this scheme is effective for classification. Some of
the advantages of our work are as follows. First, MFC considers
the spectral, texture, and shape features of a pixel to achieve
a physically meaningful low-dimensional representation for
an effective and accurate classification. Second, the weights
for each feature are optimized in the objective function of
MFC simultaneously without using cross-validation. This step
suggests that the discriminative abilities of different features
and the complementary properties among the multiple features
have been fully considered in the proposed optimization of
MFC, thereby achieving the optimal classification performance.

However, the proposed manifold-learning-based MFC
framework can still be revised in some aspects. For instance,
how to set the value of radius parameter t in weight matrix
constructing (7) has not been considered in the current frame-
work yet, which is also a key aspect in graph-based methods
[49]. Therefore, our future work will focus on how to select
the optimal radius parameter for each feature, respectively, to
obtain the best low-dimensional representation for MFC.
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