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The three-dimensional wavelet transform (3D-WT) processes a multispectral
remotely sensed image as a cube and hence it is able to simultaneously represent
variation information in joint spectral–spatial feature space. The urban complexity
index (UCI) built on the 3D-WT is defined by comparing the amount of spectral
and spatial variation, since natural features have relatively smaller spatial changes
than spectral changes but urban areas show more variation in the spatial domain.
The calculation of the UCI is subject to the selection of window sizes; therefore,
in this study, a multiscale UCI (M-UCI) is proposed by integrating the UCI fea-
tures in different moving windows and decomposition levels. The performance of
the M-UCI was evaluated on two WorldView-2 data sets over urban and suburban
areas, respectively. Experimental results showed that the M-UCI was effective in
integrating multiscale information contained in different windows and gave higher
accuracies than the single-scale UCI. In experiments, the proposed M-UCI was
compared with a pixel shape index (PSI), which is a texture measure extracted
from the spatial domain alone. It was revealed that the PSI was more effective
for the classification of urban areas than natural landscapes, whereas the M-UCI
was applicable for both urban and natural areas since it represented the joint
spectral–spatial domains.

1. Introduction

High spatial resolution remotely sensed imagery is able to provide rich and detailed
ground information, and this kind of data source has received more and more atten-
tion for applications such as environment assessment, territorial planning, land cover
and land use mapping at the regional level. Although the high-resolution images show
huge application potential to Earth observation, their feature extraction and classifi-
cation methods are quite different from low or median spatial resolution images. The
traditional classification methods are related to the pixel-wise processing and spectral
analysis (Landgrebe 2003). However, in recent years it has been largely agreed that
the spectral information alone is not adequate for the classification of high-resolution
images. Therefore, researchers proposed to extract spatial features for complement-
ing the spectral feature space and discriminating spectrally similar classes, such as
the co-occurrence matrix (Puissant et al. 2005), pixel shape index (PSI) (Huang et al.
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2007a), morphological profiles (Pesaresi and Benediktsson 2001) and segmentation-
based classification (Huang and Zhang 2008). It should be noted that the existing
textural and structural features are related to the spatial domain alone, but few
algorithms refer to feature extraction from the joint spectral–spatial domains.

The three-dimensional wavelet transform (3D-WT) is of interest in this study since
it is able to describe the dependency of joint spectral–spatial domains. The 3D-WT
is implemented in separable fashion by performing a 1D wavelet transform (1D-WT)
separately in the spatial-row, spatial-column and spectral directions. The 3D-WT has
been applied to video compression (Lewis and Knowles 1990, Levy and Wilson 1999)
and texture analysis of biomedical images (Pinnamaneni et al. 2001, Saladi et al. 2001).
However, most applications of the 3D-WT to remote sensing refer to image compres-
sion (Fowler and Rucker 2007, Hou and Liu 2008). Very recently, Yoo et al. (2009)
proposed an urban complexity index (UCI) based on energy parameters of 3D wavelet
coefficients for the discrimination of urban and natural areas. The basic idea of a UCI
is that natural features (e.g. water, forest, grass and soil) have relatively smaller spa-
tial changes than spectral changes, while urban areas (e.g. buildings, roads) have more
variations in spatial domain than spectral domain. The UCI was originally imple-
mented using a moving window with a fixed size, and hence its application is subject
to selection of window sizes. Consequently, in this study a multiscale UCI (M-UCI) is
proposed by integrating the 3D wavelet coefficients in different windows and decom-
position levels. Moreover, the M-UCI is evaluated on the 8-channel WorldView-2
images that show rich information in both spectral and spatial domains. Based on
the WorldView-2 experiments, we focus on the following research questions.

• Does the M-UCI give better results than the single-scale UCI by integrating the
multiscale information in different windows and decomposition levels?

• Does the spectral–spatial joint feature index outperform the feature index that is
extracted from the spatial domain alone (e.g. PSI; Huang et al. 2007a)?

• What is the effect of different mother wavelets on the performance of the UCI
and M-UCI?

• Does the UCI improve the classification of 8-channel WorldView-2 images?

2. Methodology

2.1 3D wavelet transform

The WT is an effective tool for signal analysis at various scales and shifts. A WT can
be constituted by a series of scaling functions ϕ(x) and wavelet functions ψ(x):

ϕ(x) = 2
j
2 ϕ

(
2jx − k

)
, (1)

ψ(x) = 2
j
2ψ

(
2jx − k

)
, (2)

where j and k represent the scaling and translation parameters, respectively. In prac-
tice, the scaling functions are considered as low-pass filters, whereas wavelet functions
are viewed as high-pass filters. Similarly to the construction of the 2D discrete WT
(Mallat 1989), the 3D-WT can be constructed by a tensor product as follows:
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I(x,y,z) = (
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, (3)

where ⊕ denotes the space direct sum, and L and H represent the low- and high-pass
filters along the x, y and z axes, respectively. In practice, x and y directions denote
the spatial coordinates of an image, and z is the spectral axis. Equation (3) shows that
one-level 3D-WT decomposition of an image cube generates eight subbands: LLL,
LLH, LHL, LHH, HLL, HLH, HHL and HHH. For example, LLH represents the
subband with low-frequency information in the spatial-row and spatial-column direc-
tions and high-frequency information in the spectral direction. In the implementation,
the eight subbands involve the following eight wavelets, which are constructed through
the tensor product of a 1D scaling function ϕ(x) and a 1D wavelet function ψ(x):

�LLL(x, y, z) = ϕ(x)ϕ(y)ϕ(z), �LLH(x, y, z) = ϕ(x)ϕ(y)ψ(z),

�LHL(x, y, z) = ϕ(x)ψ(y)ϕ(z), �LHH(x, y, z) = ϕ(x)ψ(y)ψ(z),

�HLL(x, y, z) = ψ(x)ϕ(y)ϕ(z), �HLH(x, y, z) = ψ(x)ϕ(y)ψ(z),

�HHL(x, y, z) = ψ(x)ψ(y)ϕ(z), �HHH(x, y, z) = ψ(x)ψ(y)ψ(z). (4)

A single-level decomposition of 3D-WT is demonstrated in figure 1, where the
downward arrows stand for the down-sampling of the signals. It can be seen that the
wavelets are implemented in the spatial-row, spatial-column and spectral directions,
and hence 3D-WT provides an effective approach for joint spectral–spatial feature
extraction.

2.2 Multiscale urban complexity index

Due to the ability of the 3D-WT for representation of the variation information in
both spectral and spatial domains, Yoo et al. (2009) proposed a UCI based on the
energy parameters of the 3D wavelet coefficients. The basic idea of the UCI is that
in remotely sensed imagery, (1) natural features such as water, trees, grass and bare
soil have relatively smaller spatial changes than spectral changes, while (2) the urban
features including buildings and roads refer to more variability in row and column
directions than the spectral direction. The eight subbands resulting from the 3D-WT
can be separated into three categories:

• approximation – LLL;
• representations of spectral variation (∗∗H)– LLH, LHH, HLH, HHH; and
• representations of spatial variation (∗∗L)– LHL, HLL, HHL;

where the ∗∗H subbands denote the spectral variation since the high-pass filter is used
in the spectral direction, and the ∗∗L subbands stand for the spatial variation as they
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Figure 1. One-level decomposition of the 3D-WT for multispectral imagery (H(x) means high-
frequency filtering in the x-direction and the down arrows mean the down-sampling of signals).

represent horizontal and vertical information in the spatial domain and low-frequency
information in the spectral domain. Consequently, the UCI is defined as the sum of
all H components (∗∗H) divided by the sum of all L components (∗∗L):

UCI = E(HLL) + E(LHL) + E(HHL)
E(LLH) + E(LHH) + E(HLH)

, (5)

where the function E(·) denotes the energy or L2-norm of the subband f :

E(f ) =
∑

i

∑
j

∑
m

(f (i, j, m))2. (6)

In equation (6), i, j and m stand for the coordinates of x, y and z directions in a
subband f (HLL, etc.), respectively.

The UCI is calculated based on a moving window that is centralized by each pixel
in an image cube; therefore, the selection of window sizes becomes a key problem
when the UCI is applied to feature extraction and classification for remotely sensed
imagery. Furthermore, it should be noted that equations (3) and (5) only consider one-
level wavelet decomposition; however, in fact, the multilevel wavelet coefficients can be
obtained by iteratively decomposing the low-frequency LLL subband. Consequently,
the scale of the UCI is affected by two aspects: window size w and decomposition
level l. Based on the above analysis, we propose a M-UCI by averaging the feature
values at different windows and levels:

M-UCI = 1
N

∑
w, l

UCI(w, l) = 1
N

∑
w, l

{
E(HLL) + E(LHL) + E(HHL)
E(LLH) + E(LHH) + E(HLH)

}
w, l

, (7)
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where N is the number of scales considered in the M-UCI, and UCI(w, l) denotes the
UCI feature obtained by window size w and decomposition l. The calculation steps
of the M-UCI are demonstrated in figure 2. The termination of the decomposition is
determined by comparing the current decomposition level l and the maximum level
lmax, which is defined as

lmax = min(log2 w, log2 b), (8)

where w is the size of the moving window and b denotes the number of available bands.
For instance, a 4 × 4 local window (w = 4) in a WorldView-2 image (b = 8), resulting in
a 4 × 4 × 8 3D structure, has at most a two-level 3D wavelet decomposition (lmax = 2),
since the subband at level 2 is equivalent to a 1 × 1 × 2 3D structure that cannot be
decomposed any more.

Image cube

Selection of window
sizes (w)

End of
decomposition?

3D wavelet transform

Yes

Calculation of
UCI (w, l)

All the
windows?

No

No

Yes

M-UCI = ΣUCI (w, l)

Figure 2. Processing flow of the M-UCI.
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A graphical example of the M-UCI is shown in figure 3, from which we can obtain
the following observations.

(1) UCI is effective for the indication of urban structures such as buildings and
roads, which have larger brightness value than natural landscapes such as trees,
grass, water and soil in the UCI feature images.

(a) (b)

(c) (d)

(e)

Figure 3. A graphical example of the M-UCI for the WorldView-2 image covering a suburban
region in Hainan Island, in the south of China: (a) UCI (w = 4, l = 1); (b) UCI (w = 8, l = 1);
(c) UCI (w = 16, l = 1); (d) UCI (w = 32, l = 1); and (e) M-UCI.
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(2) As the window size increases, although the UCI feature values in the hardcore
of the urban regions become more steady and insensitive to local variation,
the values in the boundaries become more uncertain because a larger moving
window is able to blur the end edges of local image structures.

(3) It can be clearly seen that the M-UCI feature image integrates the UCI infor-
mation extracted from different window sizes and at the same time alleviates
the negative effects resulting from large windows. Furthermore, previous work
has shown that there was not the so-called optimal window in such a com-
plex urban landscape, especially for the high-resolution images (Huang et al.
2007b). Therefore, from this point of view, the M-UCI is more reasonable than
the single-scale version.

3. Experiments and analysis

3.1 Data sets and experimental set-up

In order to validate the effectiveness of the proposed M-UCI, experiments are con-
ducted on the WorldView-2 images. The WorldView-2 satellite, launched on 8 October
2009, is able to provide eight multispectral bands with 2 m spatial resolution. It is the
first high-resolution satellite to provide eight narrowly focused multispectral chan-
nels ranging from blue to near-infrared. In addition to the standard colours, four
new bands (coastal, yellow, red edge and near-infrared 2) are included. The spectral
information of WorldView-2 is summarized in table 1.

WorldView-2 images are very suitable for the 3D-WT, since they provide rich infor-
mation in both spectral and spatial domains and the eight multispectral bands support
multilevel decomposition of the 3D-WT in the spectral direction. Two WorldView-2
data sets are used in experiments. The first test image (figure 4(a)) covers a suburban
region in Hainan Island, in the south of China, and the second test image (figure 4(c))
shows a typical urban area in Hangzhou City, in the east of China. The experiments
are conducted on two images that present, respectively, the natural and urban land-
scapes because it is possible to evaluate the ability of the UCI for feature extraction in
joint spectral–spatial domains. To this aim, in experiments, the UCI is compared with
our previous algorithm, the PSI (Huang et al. 2007a), which represents the feature in
the spatial domain alone. The test samples for the two data sets are shown in figure
4(b) and (d), respectively, and the numbers of training and test samples are listed in
table 2.

Table 1. Spectral information of WorldView-2 imagery.

Spectral bands Wavelength (nm)

Conventional spectral channels Panchromatic 450 – 800
Red 630 – 690
Green 510 – 580
Blue 450 – 510
NIR1 770 – 895

New spectral channels Yellow 585 – 625
Coastal 400 – 450
Red edge 705 – 745
NIR2 860 – 1040
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(b)(a)

(d)(c)

Figure 4. (a) and (b) are test image 1 (Hainan Province) and test samples, respectively; (c) and
(d) are test image 2 (Hangzhou City) and its test samples, respectively. The legend is shown in
table 2.

Table 2. Numbers of the training and test samples for the two test data sets.

Test image 1 (Hainan) Test image 2 (Hangzhou)

Land cover classes Training Test Training Test

Roads 56 4 459 48 8 800
Buildings 59 11 148 55 17 890
Water 53 11 209 52 5 680
Shadow 52 1 427 49 7 075
Trees 52 14 086 55 1 047
Grass 51 7 417 58 3 359
Soil 55 17 541 42 2 651
Total 378 67 287 359 46 502

Four window sizes, w = 4, 8, 16 and 32, are used in both test data sets, consid-
ering that the chosen local windows correspond to the characteristics of the land
cover classes and the spatial resolution. According to equation (8), the maximum of
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decomposition levels are lmax = 2, 3, 3 and 3 for the four window sizes, respectively.
In experiments, the generated UCI feature images concatenated with the eight spec-
tral bands are fed into a support vector machine (SVM) for classification. The SVM
is used due to its swift learning pace and adaptability to the hybrid spectral–spatial
feature space.

3.2 Validation of the M-UCI

The classification accuracies of the single-scale UCI and M-UCI are reported in table
3 for the Hainan and Hangzhou data sets, respectively. The overall accuracy (OA)
extracted from the confusion matrix is used for accuracy comparison. From the exper-
imental results of the two test images, we can obtain the following comments.

(1) The M-UCI outperformed all the single-scale operators, which shows that
the proposed M-UCI is effective in integrating the information contained in
different moving windows.

(2) The addition of the UCI images significantly improved the accuracy of spectral
classification with only multispectral bands as input features.

(3) In most cases, the first decomposition level (l = 1) gave the highest classification
accuracies because the first level contains the majority of the energy of wavelet
coefficients. Consequently, in this study, the M-UCI was calculated based on
level 1, that is, l was set to 1 in equation (7).

The class-specific accuracies of the UCI with different window sizes are shown in
table 4 in order to analyse the effects of window sizes in detail. The F-measure of the
producer’s and user’s accuracies (Shah et al. 2010) based on the confusion matrix was
used to describe the class-specific accuracies:

A(c) = 2P(c)U(c)
P(c) + U(c)

, (9)

Table 3. Comparison between single-scale and M-UCI for the two data sets.

Overall accuracy (%)

Window sizes Level 1 Level 2 Level 3

WorldView-2 Hainan image (suburban)
w = 4 89.3 84.6 NA
w = 8 92.0 85.1 84.5
w = 16 92.6 91.9 83.3
w = 32 91.5 92.1 78.7

Spectral only 84.7
M-UCI 93.6
WorldView-2 Hangzhou image (urban)

w = 4 81.8 78.4 NA
w = 8 92.4 90.0 92.2
w = 16 92.4 91.1 90.9
w = 32 86.3 86.0 88.9

Spectral only 77.6
M-UCI 93.6

Note: NA, not available.
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Table 4. Class-specific accuracies (%) of M-UCI for the two data sets.

Features

Classes Spectral w = 4 w = 8 w = 16 w = 32 M-UCI

WorldView-2 Hainan image (suburban)
Roads 71.3 70.1 73.1 76.1 73.8 74.2
Buildings 62.8 75.8 83.3 86.2 78.8 86.2
Water 99.2 99.5 97.4 96.1 99.3 99.0
Shadow 85.5 82.8 70.7 65.4 83.9 78.1
Trees 97.3 97.3 97.6 97.5 97.6 97.4
Grass 96.8 96.8 97.3 97.1 97.2 96.9
Soil 78.6 88.1 94.4 96.2 93.0 96.4
Ave 84.5 87.2 87.7 87.8 89.1 89.7

WorldView-2 Hangzhou image (urban)
Roads 87.2 87.6 88.7 90.0 77.3 88.0
Buildings 71.0 77.9 93.3 94.4 89.9 94.4
Water 95.8 95.9 96.7 90.7 86.9 97.3
Shadow 95.8 95.8 96.6 93.0 95.3 97.2
Trees 90.5 88.6 90.1 89.5 77.3 90.8
Grass 89.9 89.5 93.0 96.9 93.1 95.0
Soil 23.5 40.2 81.2 85.0 68.0 88.9
Ave 79.1 82.2 91.4 91.3 84.0 93.1

where P(c) and U(c) are the producer’s and user’s accuracies of class c, respectively
and A(c) represents all the accuracies in table 4.

By analysing the results of the WorldView-2 Hainan data set shown in table 4, it
can be seen that the spectral-only classification gave satisfactory accuracies for natural
landscapes such as water, shadow, trees and grass, but relatively poor accuracies for
man-made structures such as roads and buildings. Moreover, the accuracy of the class
of soil was not high since the spectral information alone is not adequate for discrim-
ination between soil, buildings and roads due to their very similar spectral response.
On the other hand, when the UCI images were integrated in the feature space, the
accuracies of urban structures were significantly enhanced. By comparing the perfor-
mance of UCI in different scales, it can be found that it is difficult to determine the
optimal window since the window sizes of 8 and 16 did not give satisfactory results
to shadow, and the window size of 32 was not accurate for buildings and soil. In
this context, the performance of the M-UCI showed that the multiscale feature fusion
was an effective approach for information combination in different windows, since the
M-UCI gave satisfactory results to most of classes and achieved the highest average
accuracy (Ave).

By looking at the results of the Hangzhou test image in table 4, a similar conclusion
was drawn. The spectral classification gave poor accuracies to buildings and soil,
and the exploitation of UCI features enhanced the spectral classification significantly
as the UCI was able to distinguish the spectrally similar urban structures. The
class-specific accuracies revealed that classifications of buildings and soil for window
size 4, soil for window size 8, water and shadow for window size 16, and roads, water,
trees and soil for window size 32 were not accurate. Once again, the M-UCI achieved
the highest average accuracy (93.1%), and the M-UCI gave higher accuracies for all
the information classes compared to the spectral-only classification.
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3.3 Comparison with PSI

In order to evaluate the ability of the M-UCI for spectral–spatial feature extraction, it
was compared with our previous algorithm (Huang et al. 2007a), the PSI, which is an
urban feature index extracted from the spatial domain alone. Classification maps of
the Hainan and Hangzhou data sets are presented in figures 5 and 6, respectively, for
visual inspection. The accuracies of spectral classification, the PSI and the M-UCI are
compared in table 5. In the suburban data set, where the image scene is dominated by
natural landscapes, the addition of the PSI in the feature space resulted in a slight accu-
racy decrease compared to the spectral classification, but exploitation of the M-UCI
improved the OA by 10.4%. In the urban data set, where the image scene is domi-
nated by complex urban structures, both the PSI and M-UCI improved the spectral
classification significantly, and the improvements were 11.6% and 16%, respectively.
By comparing the different performances of the PSI and M-UCI in different image

(b)(a)

(c)

Roads

Buildings

Water

Shadow

Trees

Grass

Soil

Figure 5. Classification maps of the WorldView-2 Hainan data set: (a) spectral classification,
(b) PSI and (c) M-UCI.
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(b)(a)

(c)

Roads
Buildings
Water
Shadow
Trees
Grass
Soil

Figure 6. Classification maps of the WorldView-2 Hangzhou data set: (a) spectral classifica-
tion, (b) PSI and (c) M-UCI.

Table 5. Comparison of spectral classification, the PSI and the M-UCI for the two
WorldView-2 data sets.

Hainan data set (Suburban) Hangzhou data set (Urban)

Classes Spectral PSI M-UCI Spectral PSI M-UCI

Roads 71.3 45.8 74.2 87.2 86.0 88.0
Buildings 62.8 68.3 86.2 71.0 91.6 94.4
Water 99.2 97.5 99.0 95.8 88.9 97.3
Shadow 85.5 69.6 78.1 95.8 88.9 97.2
Trees 97.3 95.7 97.4 90.5 91.5 90.8
Grass 96.8 94.3 96.9 89.9 94.4 95.0
Soil 78.6 80.4 96.4 23.5 74.2 88.9
OA 84.7 83.2 93.6 77.6 89.2 93.6

scenes, it can be revealed that the PSI is more applicable in urban areas than natural
areas because it highlights the spatial variation that is more sensitive to urban struc-
tures. On the other hand, it can be seen that the M-UCI is applicable for both urban
and natural areas since it is able to represent the spectral and spatial features at the
same time.
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Figure 7. The positive and negative increments of class-specific accuracies for the PSI and
M-UCI compared to the spectral classification for (a) Hainan data set (suburban) and (b)
Hangzhou data set (urban).

The positive and negative increments of class-specific accuracies for the PSI and
M-UCI compared to the spectral classification are demonstrated in figure 7. It can be
observed that the M-UCI is able to enhance the classification for most of the infor-
mation classes including both urban and natural landscapes, whereas the PSI is more
useful in urban areas and not very accurate for grass, trees, water and shadow.

3.4 Discussion of wavelet basis

The 3D-WT performs wavelet decomposition separately in the spatial and spectral
directions; therefore, different wavelet basis functions can be used in different direc-
tions. In the above experiments, the Haar basis function was applied to both spectral
and spatial domains since it was carried out in the original UCI algorithm (Yoo et al.
2009) and it proved to be efficient for high-resolution images (Myint et al. 2004). In
this study, the effects of wavelet basis functions are discussed by implementing differ-
ent wavelets on spectral and spatial directions. To this aim, the wavelet basis of the
fourth-order Daubechies (db4) is considered in the comparative study since Haar is
actually the first-order Daubechies wavelet (db1). Experimental results are compared
in table 6, from which we can obtain some information about the selection of the
wavelet basis for the UCI:
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Table 6. Comparison of different wavelet basis functions (db1 and db4) for
the M-UCI.

Wavelet basis function

Spectral Spatial Spectral Spatial Spectral Spatial
db1 db1 db1 db4 db4 db1

UCI (w = 4) 89.3 85.8 84.9
UCI (w = 8) 92.0 84.8 91.3
UCI (w = 16) 92.6 93.3 92.6
UCI (w = 32) 91.5 91.4 91.3
M-UCI 93.6 94.3 93.1

(1) In the spatial direction: when increasing the number of vanishing moments
from db1 to db4 in the spatial direction, the accuracies of the UCI with
large window sizes (w = 16, 32) increased, but accuracies of small window
sizes (w = 4, 8) decreased. This phenomenon showed that the selection of
wavelet basis in the spatial domain was related to the window size. The wavelet
basis with a large number of vanishing moments was more suitable for large
windows, and vice versa.

(2) In the spectral domain: employment of the db4 wavelet basis in the spectral
direction resulted in slightly lower accuracies. This observation signified that
the Haar or db1 function was appropriate for an 8-channel WorldView-2 image
because the number of bands is not large enough to decompose the image in
band direction by a function with a large value of vanishing moments.

4. Conclusion

The traditional UCI was implemented on a moving window with a fixed size.
Therefore, the multiscale extension of the UCI is investigated in this study. The main
advantage of the UCI compared to other spatial or textural measures lies in that it
is able to simultaneously represent the spectral and spatial information by processing
a multispectral image as a cube. The basic idea of the M-UCI is based on the fact
that there is no single window size that would adequately characterize the complex
and multiscale textural conditions present in high-resolution remotely sensed images
(Puissant et al. 2005, Huang et al. 2007b). Specifically, the M-UCI is achieved by inte-
grating the wavelet coefficients in different window sizes and decomposition levels.
The proposed M-UCI was evaluated on the 8-channel WorldView-2 images that were
of interest in this study because they provided rich information in both spectral and
spatial domains and their 8 channels supported multilevel 3D wavelet decomposition.

Based on our experiments, the research questions proposed in the introduction can
be answered as follows.

(1) The M-UCI gave better results than the single-scale UCI because the former
was more suitable for the multiscale characteristics of high-resolution imagery.
In addition, it was found that one-level decomposition of the 3D-WT was
accurate enough for the construction of the UCI and M-UCI since the first
decomposition level contained the majority of energy of wavelet coefficients.
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This conclusion was supported by the two experiments, where the UCI gener-
ated on the second or third decomposition levels only gave marginal accuracy
increments compared to the spectral classification.

(2) Based on the comparative experiments between the M-UCI and PSI, it was
revealed that the traditional spatial index (e.g. PSI) was effective for the classi-
fication of urban structures but not for natural landscapes, whereas the M-UCI
was applicable for both urban and natural areas because it was able to describe
the joint spectral–spatial domains.

(3) By substituting the Haar or db1 basis function with the db4, which has larger
number of vanishing moments, separately in spectral and spatial directions, it
was revealed that in the spatial domain, the wavelet basis function should be
selected according to its number of vanishing moments and the window size
of the UCI. On the other hand, in the spectral direction, it was found that the
Haar or db1 basis function was fine enough for the construction of the UCI
from an 8-band WorldView-2 image.

(4) The experiments conducted on two WorldView-2 data sets over urban and nat-
ural areas showed that, although the WorldView-2 images provided additional
four spectral bands than the traditional 4-channel high-resolution imagery, the
M-UCI significantly enhanced the OA by 8.9% and 16.0% for Hainan (natu-
ral) and Hangzhou (urban) images, respectively. This phenomenon reveals that,
although recently more spectral bands have become available for high spatial
resolution imagery by courtesy of development of imaging techniques, spatial
information is needed for accurate interpretation of high-resolution imagery.
Furthermore, the joint spectral–spatial feature extraction approach such as
the M-UCI points out an important research orientation for classification of
multi-/hyperspectral imagery with high spatial resolution.
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