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Abstract—In this paper, we propose a method for the dimension-
ality reduction (DR) of spectral–spatial features in hyperspectral
images (HSIs), under the umbrella of multilinear algebra, i.e., the
algebra of tensors. The proposed approach is a tensor extension
of conventional supervised manifold-learning-based DR. In par-
ticular, we define a tensor organization scheme for representing a
pixel’s spectral–spatial feature and develop tensor discriminative
locality alignment (TDLA) for removing redundant information
for subsequent classification. The optimal solution of TDLA is
obtained by alternately optimizing each mode of the input tensors.
The methods are tested on three public real HSI data sets collected
by hyperspectral digital imagery collection experiment, reflective
optics system imaging spectrometer, and airborne visible/infrared
imaging spectrometer. The classification results show significant
improvements in classification accuracies while using a small num-
ber of features.

Index Terms—Classification, feature extraction, hyperspectral
image (HSI), remote sensing, tensor.

I. INTRODUCTION

HYPERSPECTRAL imaging sensors, e.g., the hyperspec-
tral digital imagery collection experiment (HYDICE) [1],

can collect an image in which each pixel has contiguous bands
of spectra [2]. This data product from a hyperspectral sensor
is a “cube” data, which has two spatial dimensions (width
and height) and a spectral dimension. For hyperspectral image
(HSI) analysis and processing [3], previous researchers have
demonstrated that the redundancy from interband correlation is
very high and the data structure in the spectral dimension can
be reduced without a significant loss of the useful information
for subsequent utilizations [4]–[7]. Thus, there is a need for
dimensionality reduction (DR) technologies that can: 1) reduce
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the redundancy among features; 2) preserve the discriminative
information that is important for the subsequent classification;
and 3) decrease the computational cost.

In general, DR for HSI can be achieved in essentially two
ways: feature selection and feature extraction [8]. The problem
of feature selection is defined as how to select a subset from
the given candidate features, which performs optimally for
the particular classifiers [9], [10]. Some representative feature
selection techniques are the branch and bound method [11],
genetic algorithm [12], clonal selection algorithm [13], and
Fisher’s score [14]. In this paper, we focus on feature extrac-
tion [14]–[16], which aims to find a transformation from a
higher dimensional space to a lower dimensional subspace, with
most of the desired information content preserved [17]. The
most commonly used type of algorithm is principal component
analysis (PCA) [18], a linear transformation to find principal
components, in accordance with the maximum variance of a
data matrix. Another popular transformation in HSI processing
is maximum noise fraction [19], in which the transformed prin-
cipal components are ranked by SNR. In recent years, manifold-
learning-inspired feature-extraction methods have been widely
applied in image processing areas [20]–[22] and on HSI data
analysis in particular. Some studies have demonstrated the po-
tential value of manifold learning for applications such as fea-
ture extraction [23], [24], classification [25], [26], and anomaly
target detection [27], [28].

However, the aforementioned DR technologies only deal
with a set of first-order data as inputs, i.e., the vector repre-
sentation, which is commonly used to represent the spectral
feature of a certain pixel in HSI [29]–[32]. Although the
spectral feature vector contains a lot of information about
the spectral properties of the pixel, the spectral-vector-based
HSI analyses just process each pixel independently, without
considering the spatial relationship of neighboring pixels. To
overcome this point, some researchers have suggested using
spectral information as well as spatial information to achieve
further improvement in classification performance [33]–[37].
These studies have verified the enhanced performance obtained
when combining spectral and spatial features, but there is an
obvious shortcoming in that they still put the spectral–spatial
feature into first-order data for analysis and neglect the spectral
and spatial rearrangements of features. In fact, second-order
data, such as gray-level images in computer vision and pat-
tern recognition [38], third-order data, such as HSI in remote
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sensing [39]–[42], and high-order data, such as multifeature-
represented local patches in HSI [43], can be unified into a
tensor representation [44]. Under the umbrella of multilin-
ear algebra [45], various tensor subspace learning algorithms
have been developed [46]–[49], as pioneered by the work
on “TensorFaces” [50]. Recent studies have also constructed
some tensor-embedding frameworks for DR, which provide a
multilinear projection with high-order tensor data that respects
some kinds of local geometrical structure of the manifold
[51]–[54].

Inspired by the successful work of the aforementioned
tensor subspace learning algorithms and our previous patch
alignment framework [55], [56], in this paper, for the first
time, we propose a supervised manifold-learning algorithm,
under the umbrella of multilinear algebra, i.e., tensor dis-
criminative locality alignment (TDLA) for hyperspectral re-
mote sensing image spectral–spatial feature representation and
DR. The advantages of our method lie in the following three
aspects.

1) The spectral–spatial information of the pixel is preserved.
As pointed out by this paper, tensor representation pre-
serves as many as possible the original spatial constraints
of a certain pixel and its neighbors, which helps to better
represent the pixel’s spectral–spatial feature. Compared
to the vector-based feature representation, such structural
information in the tensor feature is a reasonable constraint
to reduce the number of unknown parameters used in
learning a feature DR model.

2) The discriminability of classes for classification is pre-
served. The neighboring samples of both the same classes
and different classes are considered in the proposed
TDLA optimization, so the discriminative information
can be maintained. Apart from this key point, the pro-
posed approach can also deal with the nonlinear nature of
the sample distribution by taking into account the locality
manifold of the samples, which can also help to achieve
a better classification performance than the conventional
linear DR methods.

3) A generalized DR framework for high-order data is pro-
vided. We propose a DR framework to accept high-order
data, such as a collection of third-order data cubes or
some high-order feature data inputs, as the inputs for DR.
It will be shown that the previous DR [55] is a special case
of our tensor method when the input data are first-order
vectors.

The rest of this paper is structured as follows. In the next
section, we give a brief introduction to tensor algebra. Sec-
tion III describes the proposed tensor representation for the HSI
spectral–spatial feature. In Section IV, we describe the TDLA
algorithm in detail. Finally, the experiments are reported in
Section V, followed by the conclusion in Section VI.

II. TENSOR ALGEBRA

Tensors [38], [44] are multidimensional arrays of numbers
that transform linearly under coordinate transformations, which
can be represented as X ∈ RL1×L2×···×LM with multilinear
algebra [45] defined on them. Here, M is the order of the

Fig. 1. Visual illustration of mode-d matricizing and d-mode vectors of a
third-order tensor.

tensor, the ith order of the tensor is of size Li, and each
order is also called the ith mode. An arbitrary element of
X is a scalar denoted by Xl1,l2,...,lM , where 1 � li � Li and
1 � i � M , and li denotes the location of this element in mode
i. Here, we briefly introduce the following relevant definitions
in multilinear algebra.

1) Mode-d matricizing (d-mode vectors): Defined as un-
folding an M -order tensor X ∈ RL1×L2×···×Ld×···×LM

to a matrix Matd(X) ∈ RLd×Ld in which Ld =∏M
i=1,i�=d Li, by keeping the index ld fixed and varying

the other indices. The column vectors of the resulting
matrix Matd(X) is a set of d-mode vectors of size Ld,
which can also be obtained by varying its index ld while
keeping all the other indices fixed. A visual illustration of
mode-d matricizing and d-mode vectors on a third-order
tensor (data cube) is shown in Fig. 1.

2) Mode-d product (dU): The mode-d product
X × dU of tensor X ∈ RL1×L2×···×Ld×···×LM

and matrix U ∈ RL′
d
×Ld is a tensor (X × dU) ∈

RL1×L2×···×Ld−1×L′
d
×Ld+1×···×LM defined by

(X×dU)l1,l2,...,ld−1,l′d,ld+1,...,lM
=

Ld∑
ld=1

(
Xl1,l2,...,ld,...,lMUl′

d
,ld

)
.

(1)

To simplify the notation in this paper, when the
M times of mode-d products are conducted on all
modes, i.e., X × 1U

T
1 × · · · × MUT

M , we denote this
procedure as X

∏M
i=1 ×iU

T
i . When the (M − 1) times

of mode-d products are conducted on all modes ex-
cept the kth mode, i.e., X × 1U

T
1 × · · · × k−1U

T
k−1 ×

k+1U
T
k+1 × · · · × MUT

M , we denote this procedure as

X
∏M

i�=k ×iU
T
i .

3) Tensor contraction: The contraction of tensors
X ∈ RL1×L2×···×LM×L′

1×L′
2×···×L′

M′ and Y ∈
RL1×L2×···×LM×L′′

1 ×L′′
2 ×···×L′′

M′′ is defined as

[X⊗Y ; (1 : M)(1 : M)]l1,l2,...,lM =

L1∑
l1=1

· · ·
LM∑

lM=1

(X)l1,l2,...,lM ,l′1,l
′
2,...,l

′
M′
(Y )l1,l2,...,lM ,l′′1 ,l

′′
2 ,...,l

′′
M′′

. (2)

The condition for the contraction is that tensors X and
Y are of the same size at the specific mode, which must
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Fig. 2. Structure of the hyperspectral data cube.

be clearly indicated, e.g., in (2); (1 : M) suggests that
the specific mode for contraction is from mode 1 to M ,
and this contraction reduces the tensor order by 2M . To
simplify the notation in this paper, when the contraction is
conducted on all indices except for the index k on the ten-
sors X,Y ∈ RL1×L2×···×LM , we denote this procedure as
[X ⊗ Y ; (k)(k)]. As a property of tensor contraction, we
have [56][

X ⊗ Y ; (k)(k)
]
= Matk(X) ·MatTk (Y ). (3)

In particular, the contraction of tensors X,Y ∈
RL1×L2×···×LM from mode 1 to M is scalar by definition
(2), which is also called the inner product of tensors X
and Y .

4) Frobenius norm: The Frobenius norm of a tensor X ∈
RL1×L2×···×LM is given by

‖X‖ =
√

[X ⊗X; (1 : M)(1 : M)]

=

√√√√ L1∑
l1=1

· · ·
LM∑

lM=1

X2
l1,...,lM

. (4)

5) Euclidean distance: The Euclidean distance between two
tensors X,Y ∈ RL1×L2×···×LM is given by

D(X,Y ) = ‖X − Y ‖. (5)

III. HSI SPECTRAL–SPATIAL TENSOR REPRESENTATION

Hyperspectral remote sensing images are composed of hun-
dreds of spatially coregistered gray images, each of which is
acquired in a particular spectral channel. Fig. 2 shows the
spectral–spatial structure of a typical HSI data cube. For each
pixel in the image, the spectral feature is obtained by scanning
the digital numbers in all bands into a vector; this spectral
feature is known as a spectral curve. For a routine pixel-based
classification technique, each pixel is processed independently
using such a spectral feature, without considering the spatial
constraints.

In this paper, by introducing a tensor for feature represen-
tation, several kinds of k nearest neighbor (k-NN) pixels are
adopted to represent the local spatial information of the centric
pixel, as shown in Fig. 3.

For an arbitrary pixel a, suppose its spectral vector is xa ∈
RL, where L is the number of bands in HSI. The proposed
tensor spectral–spatial feature representation for the analyzed
pixel a is constructed by

Xk
a = [xa, xa1, xa2, . . . , xak] ∈ RL×(k+1) (6)

Fig. 3. Several kinds of k-NN local spatial structures of an analyzed pixel.
(a) 4-NN. (b) 8-NN. (c) 12-NN. (d) 20-NN. (e) 24-NN.

Fig. 4. Vector and tensor representations for a local patch in a hyperspectral
data cube.

where xai (i = 1, 2, . . . , k) is the spectral vector of pixels in the
k-NNs. It is worth emphasizing that if the vector representation
is adopted, we have to rearrange such a local patch of pixel
a to a first-order vector. There are two main approaches for
such a rearrangement: band interleaved by pixel (BIP) and band
sequential (BSQ). Fig. 4 shows the detailed data organizational
structures of the vector and tensor representations. When we
compare the tensor representation to BIP and BSQ, we observe
that the detailed elements are identical; however, they have
entirely different organizational structures. In the BIP represen-
tation, the spatially connected constraint among local pixels is
lost, while in the BSQ representation, the spectrally connected
constraint among spectral channels of a certain pixel is lost.
However, the proposed tensor representation has two modes,
in order to keep the original spatial structure connected in one
mode and the spectral channels connected in the other mode,
which helps to better represent the pixel’s spectral–spatial
feature.

By preserving as many as possible the original
spectral–spatial constraints, tensor representation helps to
reduce the number of unknown parameters used in learning a
linear DR model. Here, we consider the tensor-based linear DR
algorithm

Y = X × 1U
T
1 × 2U

T
2 . (7)

Based on multilinear algebra, we have U1 ∈ RL1×d1 and
U2 ∈ RL2×d2 , in which L1 and L2 are the original tensor
sizes in spectral and spatial modes and d1 and d2 are the re-
duced feature sizes, respectively. Thus, there are ρ1 = L1d1 +
L2d2 independent unknown parameters in the tensor-based
DR model.

We now consider a vector-based linear DR algorithm

y = UTx. (8)
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Fig. 5. Flowchart of the proposed approach.

Based on Fig. 4, we have x ∈ RL1L2 , using either BIP or
BSQ. According to [38], we know that if U = U1 ⊗ U2 (here,
we use ⊗ to denote the Kronecker product), then y is equal
to the vectorization of Y , i.e., the vector-based DR algorithm
equals the tensor-based DR algorithm. However, the size of the
projection matrix should be U ∈ RL1L2×d1d2 , which indicates
that ρ2 = L1L2d1d2 unknown parameters are required in the
vector-based DR model. Obviously, we can see that ρ1 � ρ2.
Therefore, tensor representation helps reduce the number of
parameters needed in the DR model. In statistical learning,
we require a larger number of training samples to learn a
reasonable solution when the model has a larger number of
unknown parameters. So, tensor representation can learn a
better DR model using limited training samples, which helps
to improve the performance in the subsequent classification.

IV. TDLA ALGORITHM

The proposed TDLA algorithm for HSI spectral–spatial fea-
ture extraction is a pixel-based approach, which can be divided
into three main components, as shown in Fig. 5. In the first step,
each pixel in HSI is processed using the spectral–spatial tensor
representation proposed in Section III. Then, the TDLA algo-
rithm, which preserves the discriminability of classes for the
subsequent classification, is employed to obtain a multilinear
transformation from the original high-order tensor space to the

reduced feature space. Finally, the extracted feature represen-
tation in reduced feature space is achieved by the optimized
multilinear transformation for each pixel of HSI.

In this DR framework, the proposed TDLA algorithm finds a
multilinear transformation from the original high-order feature
space X ∈ RI1×I2×···×IM to the reduced feature space X∗ ∈
RP1×P2×···×PM

X∗ = X

M∏
i=1

×iU
T
i (9)

where Ui ∈ RIi×Pi (i = 1, 2, . . . ,M) and Pi � Ii are a set
of projection matrices in the multilinear transformation. It is
worth emphasizing that if Pi = 1, then the ith projection matrix
degenerates to a projection vector Ui ∈ RIi ; therefore, the
resulting output tensor X∗ reduces its order by one.

The input data of the TDLA algorithm is a set of training
samples Xi (i = 1, 2, . . . , N) and their class labels yi (yi ∈
[1, 2, . . . , C]), where N is the number of samples and C is the
number of classes. For each sample Xi, we divide the other
N − 1 samples Xj (i = 1, 2, . . . , i− 1, i+ 1, . . . , N) into two
groups by their class labels: the samples of the same class and
the samples of different classes. Then, we sort the two groups of
samples by the Euclidean distance D(Xi, Xj). The n1 nearest
samples of the group “same class” and n2 nearest samples of
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the group “different classes” are selected to build a patch of
sample Xi

Patch(Xi) =
{
Xi, Si(1), . . . , Si(n1), Di(1), . . . , Di(n2)

}
∈ RI1×I2×···×IM×(1+n) 10

where n = n1 + n2, Si(j) (j = 1, 2, . . . , n1) is the jth sample
in the same class, and Di(j)(j = 1, 2, . . . , n2) is the jth sample
in a different class.

For each Patch(Xi), the corresponding representation in the
output-reduced feature space is denoted by

Patch (X∗
i ) =

{
X∗

i , S
∗
i(1), . . . , S

∗
i(n1)

, D∗
i(1), . . . , D

∗
i(n2)

}
∈ RP1×P2×···×PM×(1+n). (11)

In the output-reduced feature space, in order to preserve the
discriminability of classes for classification, TDLA suggests
that distances between Xi and samples in the same class are as
small as possible, while the distances between Xi and samples
in a different class are as large as possible, as shown in Fig. 5.
Based on this point, we have the following optimizations on
patch Xi:

arg min
X∗

i

n1∑
j=1

D2
(
X∗

i − S∗
i(j)

)
(12)

arg max
X∗

i

n2∑
j=1

D2
(
X∗

i −D∗
i(j)

)
. (13)

We unify (12) and (13) by introducing a combination
factor α

arg min
X∗

i

n1∑
j=1

D2
(
X∗

i − S∗
i(j)

)
− α

n2∑
j=1

D2
(
X∗

i −D∗
i(j)

)
.

(14)
In order to simplify the following derivation, we set

β =

⎡
⎣ n1︷ ︸︸ ︷
1, . . . , 1,

n2︷ ︸︸ ︷
−α, . . .− α

⎤
⎦T

. (15)

Then, (14) reduces to

arg min
X∗

i

n1∑
j=1

βj ·
∥∥∥X∗

i −S∗
i(j)

∥∥∥2+ n2∑
j=1

βn1+j ·
∥∥∥X∗

i −S∗
i(j)

∥∥∥2

=argmin
X∗

i

n∑
j=1

βj ·
∥∥∥X∗

Pi(1)
−X∗

Pi(j+1)

∥∥∥2

=argmin
X∗

i

n+1∑
g=1

n+1∑
h=1

([ n∑
j=1

βj −βT

−β diag(β)

]
g,h

·
[
X∗

Pi(g)
⊗X∗

Pi(h)
;

(1 : M)(1 : M)
])

(16)

where XPi(k) and X∗
Pi(k)

denote the kth tensor sample in (10)
and (11), respectively. If we define

Q =

⎡
⎣ n∑

j=1

βj −βT

−β diag(β)

⎤
⎦ ∈ R(1+n)×(1+n) (17)

for each sample Xi, we have a final representation of the patch
optimization

arg min
X∗

i

n+1∑
g=1

n+1∑
h=1

(
Qg,h ·

[
X∗

Pi(g)
⊗X∗

Pi(h)
; (1 : M)(1 : M)

])
.

(18)

Then, the whole alignment of TDLA is obtained by summing
over all the patch optimizations of the training samples from
one to N . Because the local patch provided by (10) is unique
for each sample, we must unite the samples in each patch to a
unified system by assuming that the (1 + n) samples in (10) are
selected from the training samples

Whole(X) = {X1, . . . , XN} ∈ RI1×I2×···×IM×N . (19)

The unification can be achieved by using a selection matrix
Si ∈ RN×(1+n) defined by

Si(a,b) =

{
1, if a = Fi{b}
0, else

(20)

where Fi ∈ {i, i1, . . . , in} denotes the set of global indices
of samples in Patch(Xi). Then, the sum of all the patch
optimizations described in (18) can be written as

arg min
X∗

i
,...,X∗

N

N∑
g=1

N∑
h=1

(
Ωg,h ·

[
X∗

g ⊗X∗
h; (1 : M)(1 : M)

])
(21)

in which

Ω =

N∑
i=1

SiQiS
T
i ∈ RN×N . (22)

The full optimization (21) aims to obtain an optimal subspace
from the original high-order feature space for the subsequent
classification. It is worth emphasizing that the feature mapping
X ∈ RI1×I2×···×IM → X∗ ∈ RP1×P2×···×PM from the original
feature space to the reduced subspace can be implicit. For
linearization, we simply put (9) into (21)

arg min
U1,...,UM

N∑
g=1

N∑
h=1

Ωg,h ·
[(

Xg

M∏
i=1

×iU
T
i

)

⊗
(
Xh

M∏
i=1

×iU
T
i

)
; (1 : M)(1 : M)

]
. (23)

To avoid trivial solutions, we impose the following con-
straints to uniquely determine the projection matrices:

UT
i Ui = I, (i = 1, . . . ,M). (24)
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The objective function of the final optimization of TDLA
(23) and (24) is a multiparameter and nonconvex problem,
and there is no known optimal solution which allows for the
simultaneous optimization of all the projection matrices. To
overcome this problem, inspired by alternating optimization,
we compute Ui (i = 1, 2, . . . ,M) as follows. We iteratively
optimize Uk from k = 1 to k = M by fixing other (M − 1)
matrices rather than compute the optimal Ui (i = 1, 2, . . . ,M)
simultaneously. Here, we assume that only the projection ma-
trix Uk is unknown. Then, according to the tensor contraction,
the objective function (23) and (24) can be rewritten as (25).
Note that (25) is derived from the fact that for an arbitrary
matrix A, we have ‖A‖2 = tr(ATA)

arg min
UT

k
Uk=I

N∑
g=1

N∑
h=1

Ωg,h

·

⎧⎨
⎩
⎡
⎣
⎛
⎝Xg

M∏
I �=k

×iU
T
i

⎞
⎠× kU

T
k

⎤
⎦

⊗

⎡
⎣
⎛
⎝Xh

M∏
I �=k

×iU
T
i

⎞
⎠× kU

T
k

⎤
⎦ ; (1 : M)(1 : M)

⎫⎬
⎭

= arg min
UT

k
Uk=I

N∑
g=1

N∑
h=1

Ωg,h

· tr

⎧⎨
⎩UT

k

⎡
⎣
⎛
⎝Xg

M∏
I �=k

×iU
T
i

⎞
⎠

⊗

⎛
⎝Xh

M∏
I �=k

×iU
T
i

⎞
⎠ ; (k)(k)

⎤
⎦Uk

⎫⎬
⎭ . (25)

Based on the tensor contraction property given in (3), we can
further rewrite (25) as

arg min
UT

k
Uk=I

tr

⎡
⎣UT

k

(
N∑

g=1

N∑
h=1

Ωg,h ·Matk

⎛
⎝Xg

M∏
I �=k

×iU
T
i

⎞
⎠

·MatTk

⎛
⎝Xh

M∏
I �=k

×iU
T
i

⎞
⎠Uk

⎤
⎦ . (26)

Since the center part of optimization (26) can be computed
by known Ω and fixed Ui (i = 1, 2, . . . ,M, i �= k), we simply
denote

F (k) =

N∑
g=1

N∑
h=1

Ωg,h ·Matk

⎛
⎝Xg

M∏
I �=k

×iU
T
i

⎞
⎠

·MatTk

⎛
⎝Xh

M∏
I �=k

×iU
T
i

⎞
⎠ ∈ RIk×Ik . (27)

Then, we put (27) into (26) to further reduce the optimization
of Uk to

arg min
UT

k
Uk=I

tr
(
UT
k F (k)Uk

)
. (28)

The solution of (28) is acquired by combining the eigen-
vectors associated with the smallest Pk eigenvalues of matrix
F (k) [57].

Algorithm I summarizes the aforementioned procedure for
optimization. First, we initialize Ui (i = 1, 2, . . . ,M) as unit
matrices, i.e., Ui = IIi . Then, for each iteration, we iteratively
optimize Uk from k = 1 to k = M by fixing other (M − 1)
matrices by (28) and replace the original Uk with the latest
optimized value. It has been theoretically demonstrated that
such an alternating optimization procedure converges to a local
optimum [38], [56]. In the next section, we will empirically
show that the alternating optimization procedure converges
within a few iterations. The following index Λ is computed at
the end of each iteration round:

Λ =

N∑
g=1

N∑
h=1

{
Ωg,h ·

[(
Xg

M∏
i=1

×iU
T
i

)

⊗
(
Xh

M∏
i=1

×iU
T
i

)
; (1 : M)(1 : M)

]}
. (29)

In each round of optimization, the value of Λ is decreased
by the proposed procedure. If the error of Λ values between the
tth iteration and (t− 1)th iteration is small enough, it indicates
that the algorithm has converged.

Algorithm I: Procedure of the TDLA Algorithm

Inputs: Training samples X ∈ RI1×I2×···×IM (i = 1, 2,
. . . , N) and their class labels yi (yi ∈ [1, 2,
. . . , C]). Size of the samples in reduced feature
space X∗ ∈ RP1×P2×···×PM .

Step 1: Construct the alignment matrix Ω by (22);
Step 2: Initialization Ui = IIi (i = 1, 2, . . . ,M);
Step 3:

for t = 1 to T
for k = 1 to M

Optimize Uk by (28);
end
Compute Λ by (29) to check if conver-
gence is reached.

end

Outputs: Set of projection matrices Ui ∈ RIi×Pi (i = 1, 2,
. . . ,M) for multilinear transformation.
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Fig. 6. (a) RGB composites of Data Set 1 (bands 65, 52, and 36 for red, green,
and blue, respectively). (b) Reference data of Data Set 1.

V. EXPERIMENTAL RESULTS

The experimental analysis was conducted on hyperspectral
remote sensing images from the following three public data
sets.

The first data set is an urban site of the airborne HYDICE
from the mall in Washington, DC, which has an original size of
1280 × 307 pixels. In this study, we used a size of 250 × 307.
A total of 210 bands were collected in the 0.4–2.4-μm region of
the visible and infrared spectrums. The water absorption bands
were then removed, resulting in 191 channels [58].

The second experiment was performed on an airborne HSI
data set, which was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS) at the urban test area of Pavia,
northern Italy. The whole data set size is 1400 × 512 pixels,
and we used a size of 400 × 400 in this study. Some channels
were removed due to noise, and the remaining 102 spectral
dimensions from 0.43–0.83 μm were processed. This data set
was provided by the Data Fusion Technical Committee of the
IEEE Geoscience and Remote Sensing Society [59].

The third data set is from a mixed forest/agricultural site at
the Indian Pine test site in northwest Indiana, taken on June
12, 1992, which was gathered by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor. This data set was ob-
tained from an aircraft flown at 19 812-m altitude and operated
by the National Aeronautics and Space Administration Jet
Propulsion Laboratory. The data set has a size of 145 × 145
pixels and 220 spectral bands, measuring approximately 20 m
across the ground [58].

A. Experiment 1: HYDICE Data Set

Data Set 1 and the reference data are shown in Fig. 6(a) and
(b). There are seven classes of pixels to analyze: water, road,
roof, trail, shadow, grass, and tree. It is challenging to classify
in the hyperspectral remote sensing area, mainly because road,
roof, and trail are spectrally similar, in that they may be made
of similar materials.

The representative spectral curves of each class are shown in
Fig. 7. It is worth emphasizing that there is no single spectral
response representative of class “roof” for this data set; the
detailed analysis of this point is given in Table I.

We first show four pixels of the class “roof” and their
corresponding spectral curves in the first row of Table I. In
the experiments, as a case study, we used the 4-NN local
spatial structure of the analyzed pixel for feature extraction.
The analyzed pixels are located at the center of each subimage,

Fig. 7. Representative spectral curves in Data Set 1.

and the curves with a gray color represent the spectral curves
of the neighboring pixels of the center pixel. The six subtables
under the first row show the normalized distances among the
four pixels in the following extracted feature spaces: original
feature space, reduced feature space using PCA [18], locality
preserving projections (LPP) [60], linear discriminant analysis
(LDA) [14], DLA [55], and TDLA. In the vector-based feature-
extraction approaches, we used the BIP representation as the
input and reduced the size of feature to ten, while in the pro-
posed method, we also experimentally set the reduced feature
to a first-order tensor of size ten. There are 20 samples per class
selected as the input training samples in the TDLA algorithm.

From Table I, we can see that the pixel distances of the same
class were obviously reduced in the proposed TDLA-extracted
feature space; the sum of the distances decreased from 2.38
in the original feature space to 1.956 in the reduced feature
space, which is also the minimum value among the five feature-
extraction approaches. To further investigate the ability of the
proposed method to preserve the discriminability of classes for
classification, we also compared the normalized distances in the
extracted feature spaces of four pixels in different classes. The
results of this comparison are shown in Table II.

In Table II, we chose pixels from the classes of roof, road,
trail, and water. The classes of road, roof, and trail are spec-
trally similar in this data set, which can be observed in the
first row of Table II. Thus, the distances between them in
the original feature space and the two unsupervised feature-
extracted feature spaces are very close, as shown in Table II.
The sum values of the distances in the original feature space,
PCA feature, and LPP feature space are 1.987, 2.621, and
2.990, respectively. However, the sum value of the distances in
the proposed TDLA feature space reaches 6.231, which is the
largest index in Table II. In order to further compare many more
pixels’ distribution in the aforementioned six feature spaces,
Fig. 8 shows all the pixels of the reference data in different
feature spaces, under a 2-D condition. We use the analyzed
pixel features of bands 32 and 65 for Fig. 8(a), while we use
the top-two significant components of the extracted features by
different algorithms for Fig. 8(b)–(f), respectively. The number
of pixels in the reference data is given in the “test data” of
Table III. The results shown in Fig. 8(a)–(e) demonstrate
that the existing feature-extraction algorithms merge different
classes of pixels in the low-dimensional space. In contrast,
the proposed TDLA can effectively separate different classes
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TABLE I
SAMPLES OF THE SAME CLASS AND THEIR NORMALIZED DISTANCES IN EXTRACTED FEATURE SPACE

TABLE II
SAMPLES OF DIFFERENT CLASSES AND THEIR NORMALIZED DISTANCES IN EXTRACTED FEATURE SPACE
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Fig. 8. Two-dimensional representation of features for the different algo-
rithms. (a) Original. (b) PCA. (c) LPP. (d) LDA. (e) DLA. (f) TDLA.

TABLE III
TRAINING AND TEST SAMPLES FOR CLASSIFICATION IN DATA SET 1

Fig. 9. Classification maps of all the methods in Data Set 1, based on SVM.
(a) Original. (b) PCA. (c) LPP. (d) LDA. (e) DLA. (f) TDLA.

because the tensor representation preserves the spectral–spatial
information of the pixels and the optimization of TDLA pre-
serves the discriminability of classes for classification.

The classification maps for HSI using different features are
shown in Fig. 9, based on support vector machine (SVM). In
classification, training samples are selected from the reference
data randomly while using all of the reference data for testing.
The number of training samples and test samples is given in
Table III.

As shown in Fig. 9 and Table IV, the proposed TDLA-based
classification achieved the best results in both accuracy and
visual interpretation. In these maps, it can be seen that roof
pixels exist in the road pixels in all the classification maps.
There are also some roof pixels existing in the water pixels in
Fig. 9(a) and (d), because these pixel pairs have similar spectra.
Although the spatial information is addressed in all the meth-
ods, only a little improvement can be observed in Fig. 9(a)–(e),
because the spectral–spatial structure information is completely

lost in the vector representation. However, Fig. 9(f) shows
fewer misclassifications than the rest of the classification maps,
particularly for the class pairs of roof–road, road–shadow, and
trail–roof.

In order to thoroughly evaluate the different feature repre-
sentations, the averaged classification rates in 20 independent
experiments are compared in Table IV. The classification rates
are reported by using two common classifiers, i.e., SVM and
NN. In each experiment, the training samples were selected
from the reference data randomly. Classification rates observed
in Table IV indicate that TDLA obtained several of the top
classification rates in the individual classes and achieved the
highest overall accuracy (OA) and kappa coefficient, both by
SVM and NN.

The classification OAs, with respect to reduced dimen-
sionality for all the feature-extraction methods, are shown in
Fig. 10(a) and (b). From this, we can see that the proposed
method performed better than the other methods when the
dimensionality was larger than five and achieved the best clas-
sification OA for both SVM and NN. The classification OA of
all the algorithms stabilized when the reduced dimensionality
increased to 20 and 5, for SVM and NN, respectively.

B. Parameter Analysis

1) Size of Extracted Feature: In the experiment, the input
tensor Xi ∈ R191×5 was reduced to an output tensor of size
P1 × P2, where the parameters P1 and P2 determined the size
of the multilinear transformation matrices, i.e., the solution
of Ui was acquired by combining the eigenvectors associated
with the smallest Pk eigenvalues of matrix F (k). Here, we
experimentally show the eigenvectors in the first and second
orders, sorted in ascending order (Fig. 11).

For the first order, 191 eigenvalues were distributed as fol-
lows. From indices 1 to 7, the eigenvalues are negative and
with large values. From indices 8 to 140, the eigenvalues are
very close to zero and very slowly increase to nonnegative.
Then, starting from index 150, the eigenvalues increase quickly
to large values. Therefore, the best choice of P1 is around
seven. While for the second order, there are five eigenvalues,
but only the first one is negative, and the others are nonnegative,
so the best choice of P2 is around one. The corresponding
classification OA, with respect to variations of P1 and P2, is
shown in Fig. 12. When P2 > 1, the output feature is a second-
order tensor, so we compute Fig. 12 using NN as the unique
classifier. The surface in Fig. 12 also suggests that the optimal
values of P1 and P2 are seven and one, respectively. Based
on the aforementioned analysis, the optimal size of Pk for the
TDLA algorithm ought to be set experimentally by considering
the eigenvalues of matrix F (k) in the kth mode optimization.

2) Parameters for Building a Patch: There are three param-
eters, i.e., n1, n2, and α, used in building a patch in the TDLA
algorithm. Of these parameters, n1 and n2 are the numbers of
nearest samples for building a patch, and α is a tradeoff weight
of discrimination. In order to avoid cross-validation, we usually
set these parameters according to their physical meanings. That
is, n1 and n2 are decided by the size of the training samples,
and α is usually more than one in the classification tasks. In
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TABLE IV
CLASS-SPECIFIC RATES IN PERCENTAGE FOR VARIOUS FEATURES IN DATA SET 1

Fig. 10. Classification OAs, with respect to reduced dimensionality in Data
Set 1. (a) SVM. (b) NN.

Fig. 11. Eigenvectors of Data Set 1 in the first and second orders. (a) First
order. (b) Second order.

Fig. 12. Classification OAs, with respect to the size of extracted feature of
Data Set 1.

our experiments, we fix α at two. Fig. 13(a) and (b) shows
the effect of n1 and n2 on the classification OA in Data Set 1,
based on SVM and NN. The classification OA was obtained by

Fig. 13. Classification OAs, with respect to the number of samples for
building a patch of Data Set 1. (a) SVM. (b) NN.

reporting the mean and standard deviation values of 20 groups
of classification results, using independent training samples.
Here, we experimentally set n1 = n2. We considered that there
are 20 samples per class selected for training in the TDLA
algorithm. The classification curves in the two figures suggest
that a small size for the building patch helps to represent the
local geometry property in the TDLA algorithm. There is a peak
in the curves when the number of neighbors reaches five.

3) Convergence Analysis: Fig. 14(a)–(e) shows the error of
Λ values between the tth iteration and (t− 1)th iteration in
the alternating optimization procedure of various local spatial
structures in Data Set 1. It is clear that the TDLA algorithm
often converges at stable values in about three iterations. We
experimentally found that, when the iteration number is at five,
the error value reduces to no more than 0.001% of the Λ value.
We have also observed the same trend in the other two data
sets, as well as with different parameters. Experimental results
suggest that, in practice, we could fix the number of iterations
at five to guarantee that the TDLA algorithm has converged.

C. Experiment 2: ROSIS Data Set

Data Set 2 and the reference data are shown in Fig. 15(a)
and (b). The six classes of pixels that were analyzed are water,
roof, road, grass, tree, and shadow (Table V). The representative
spectral curves of each class are shown in Fig. 16.

In this data set, we still selected 20 samples per class as
input training tensors of TDLA. The classification result maps
are shown in Fig. 17, while the detailed averaged classification
rates are reported in Table VI. The classification results are
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Fig. 14. Convergence report of the proposed algorithm with Data Set 1. (a) 4-NN. (b) 8-NN. (c) 12-NN. (d) 20-NN. (e) 24-NN.

Fig. 15. (a) RGB composites of Data Set 2 (bands 102, 56, and 31 for red,
green, and blue, respectively). (b) Reference data of Data Set 2.

TABLE V
TRAINING AND TEST SAMPLES FOR CLASSIFICATION IN DATA SET 2

Fig. 16. Representative spectral curves of classes in Data Set 2.

similar to the reports described earlier with Data Set 1. The
proposed TDLA-based classification achieved the best perfor-
mance, particularly at the bridge over the river (distinguishing

Fig. 17. Classification maps of all the methods in Data Set 2, based on SVM.
(a) Original. (b) PCA. (c) LPP. (d) LDA. (e) DLA. (f) TDLA.

the pair of roof–shadow) and along the river (distinguishing the
pairs of grass–tree and grass–road). On the detailed classifica-
tion rate, the proposed algorithm achieved several of the top
classification rates of the individual classes and gave the best
OA and kappa, for both SVM and NN.

D. Experiment 3: AVIRIS Data Set

The AVIRIS hyperspectral data set used in this experiment is
shown in Fig. 18(a). The image shows a typical agricultural site
with many kinds of crops. The advantage in using this data set
is the availability of a reference map prepared from the field
surveys conducted at the time of image acquisition. The ten
major classes of reference data are shown in Fig. 18(b), and
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TABLE VI
CLASS-SPECIFIC RATES IN PERCENTAGE FOR VARIOUS FEATURES IN DATA SET 2.

Fig. 18. (a) RGB composites of Data Set 3 (bands 57, 27, and 17 for red, green, and blue, respectively). (b) Reference data of Data Set 3.

Fig. 19. Representative spectral curves of the classes in Data Set 3.

TABLE VII
TRAINING AND TEST SAMPLES FOR CLASSIFICATION IN DATA SET 3

the representative spectral curves of all classes are shown in
Fig. 19. This data set has been extensively used to test various
HSI analysis algorithms. The training and test samples were
generated from reference data randomly, the number of which
is listed in Table VII.

A similar classification performance can be observed from
Fig. 20 and Table VIII, in that the proposed TDLA-based
classification achieved the best performance from both visual
interpretation and accuracy. The analysis based on the three HSI
data sets demonstrated that the proposed TDLA is an effective
and robust feature-extraction algorithm.

Fig. 20. Classification maps of all the methods in Data Set 3, based on SVM.
(a) Original. (b) PCA. (c) LPP. (d) LDA. (e) DLA. (f) TDLA.

VI. CONCLUSION

In this paper, we have proposed a new scheme for HSI
spectral–spatial feature extraction. First, the spectral–spatial
feature of a pixel in HSI is represented as a second-order tensor.
Then, the TDLA algorithm is used to preserve the discrim-
inability of the classes for classification by considering the
discriminative locality information in the optimization. Finally,
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TABLE VIII
CLASS-SPECIFIC RATES IN PERCENTAGE FOR VARIOUS FEATURES IN DATA SET 3

the extracted feature is obtained by multilinear transformation,
under the definition of tensor algebra. Some advantages of this
work are the following: 1) The proposed tensor representation
can preserve as many as possible the original spatial constraints
of a certain pixel, and 2) the proposed TDLA is a generalized
DR framework for high-order data, which indicates that a more
comprehensive high-order feature could be processed by the
proposed framework directly. A range of experiments based
on several kinds of HSI data demonstrated that the proposed
method significantly improved the classification accuracies.
Nevertheless, there may still be room for improvement of
the input feature representations in TDLA, addressing more
discriminative features, e.g., the morphological feature [61],
texture feature [62], and polarimetric feature [63], which may
further improve the HSI classification performance. This will
be explored in our future work.
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