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Abstract—In this study, urban building change detection is in-
vestigated, considering that buildings are one of the most dynamic
structures in urban areas. To this aim, a novel building change
detection approach for multitemporal high-resolution images is
proposed based on a recently developed morphological building
index (MBI), which is able to automatically indicate the presence
of buildings from high-resolution images. In the MBI-based
change detection framework, the changed building information is
decomposed into MBI, spectral, and shape conditions. A variation
of the MBI is a basic condition for the indication of changed
buildings. Besides, the spectral information is used as a mask
since the change of buildings is primarily related to the spectral
variation, and the shape condition is then used as a post-filter to
remove irregular structures such as noise and road-like narrow
objects. The change detection framework is carried out based on a
threshold-based processing at both the feature and decision levels.
The advantages of the proposed method are that it does not need
any training samples and it is capable of reducing human labor,
considering the fact that the current building change detection
methods are totally reliant on visual interpretation. The proposed
method is evaluated with a QuickBird dataset from 2002 and
2005 covering Hongshan District of Wuhan City, China. The
experiments show that the proposed change detection algorithms
can achieve satisfactory correctness rates (over 80%) with a low
level of total errors (less than 10%), and give better results than
the supervised change detection using the support vector machine
(SVM).

Index Terms—Building index, change detection, high resolution,
morphological, multitemporal, urban.

I. INTRODUCTION

C HANGE detection is one of the most important tech-
niques for remote sensing applications. It provides

essential information for decision making in the monitoring of
land use, design of the urban landscape, assessment of regional
environments, and rapid response to damaging events. The
traditional change detection techniques are built on low- or
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medium-resolution remotely sensed images. The traditional
methods therefore always refer to pixel-based radiometric dif-
ference between multitemporal images, due to the limitations
of the spatial resolution. In recent years, with the increasing
availability of high-resolution data, it is possible to identify
detailed changes occurring at the level of ground structures
such as buildings [1]. However, the development of high-res-
olution Earth Observation techniques poses challenges to the
traditional change detection methods. Conventional change
detection techniques become ineffective on high-resolution
images due to the following factors:
1) Pixel-based radiometric or spectral information is not ade-
quate for the representation of the geometrical and textural
information present in high-resolution images [2].

2) Pixel-based or radiometric-based change detection
methods are subject to a large number of false alarms
when applied to high-resolution images, due to the effects
of scene illumination, sensor view angles and the residual
misregistration between multitemporal images [3].

To solve these problems, spatial approaches that consider the
spatial dependence among neighboring pixels, e.g., object, tex-
tural or structural-based image description, have been proposed
for high-resolution image change detection. Gueguen et al. [1]
applied top-hat transformation to multitemporal high-resolution
images in order to detect internally displaced people camps after
the Haiti earthquake. Im et al. [4] proposed an object-based
change detection method based on image segmentation and cor-
relation image analysis techniques. The idea is based on the fact
that pairs of brightness values from the same geographic region
(e.g., an object) betweenmultitemporal images tend to be highly
correlated for no change and uncorrelated for change. Bovolo
[5] proposed a multilevel object-based change vector analysis
(CVA) approach, where the change information in multiple seg-
mentation scales was integrated. Berberoglu et al. [6] evaluated
CVA with and without image texture derived from the co-oc-
currence matrix and a variogram for detecting land use/cover
change. In the experiment it was found that the spectral bands
together with the variogram yielded the most accurate results.
Dalla Mura et al. [7] proposed to integrate morphological filters
and the CVA technique for high-resolution image change detec-
tion. Their experiments validated the effectiveness of the pro-
posedmethod in detecting changed areas in amore accurate way
than with the traditional pixel-based CVA technique. Pagot and
Pesaresi [8] conducted a comparative study of urban post-con-
flict change classification using a series of spectral and struc-
tural features in a support vector machine (SVM). Robertson
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and King [9] compared pixel- and object-based classification in
land-cover change mapping, and it was revealed that the ob-
ject-based approach depicted change information more accu-
rately than the pixel-based approach. Pacifici et al. [10] pro-
posed an innovative neural-net method for change detection
from high-resolution optical satellite imagery, called NAHIRI
(neural architecture for high-resolution imagery). The NAHIRI
model is an improved version of the post-classification com-
parison, which introduces another neural network as a change
mask. Chini et al. [11] further improved the NAHIRI system by
taking into account the classification uncertainty. More recently,
Pacifici and Del Frate [12] developed an automatic change de-
tection method in very-high-resolution images with pulse-cou-
pled neural networks (PCNN). The basic idea is to compare the
PCNN signals of the multitemporal images, and a correlation
function is then used to measure the similarity of the multitem-
poral outputs of PCNN.
Although some efforts have been devoted to the develop-

ment of high-resolution change detection techniques, little at-
tention has been devoted to change detection for a specific target
of interest. In this case, target-specific rules or filtering can be
integrated into the change detection by analyzing the spectral
and structural characteristics of the target. In this study, the
building change detection from multitemporal high-resolution
images is focused on the consideration that buildings are one of
the most dynamic urban structures. Especially in a developing
country such as China, knowledge of the construction and re-
moval of buildings is important information for the government,
and, hence, the change detection and database updating of urban
buildings is one of the major tasks for the regional departments
of land and resources. However, building change detection cur-
rently relies on human visual interpretation and manual manip-
ulation. In order to alleviate the intensity of manual work and
enhance the automation of change detection, we propose an in-
novative framework for urban building change detection from
multitemporal high-resolution images. The method is based on
a recently developed morphological building index (MBI) that
is able to automatically indicate the presence of buildings from
high-resolution imagery [13], [14]. The main advantage of MBI
is that it is an unsupervised building index, i.e., it can be im-
plemented without any training samples. Based on the MBI,
the building change information is represented by the following
three conditions.
1) MBI condition: The MBI is used to highlight the building
change areas and filter out other urban structures such as
roads, vegetation, and water bodies.

2) Spectral condition: The change of buildings should also be
related to spectral variation; therefore, the spectral change
is used as a mask.

3) Shape condition: The shape information is utilized as a
post-filter in order to reduce false alarms such as small
noise and road-like narrow structures.

The performances of the three conditions are discussed and
analyzed in the experiments. The QuickBirdWuhan 2002–2005
dataset is used to validate the building change detection algo-
rithms. The rest of the paper is organized as follows. Section II
describes the MBI operator and the proposed change detection
framework. The multitemporal high-resolution datasets are in-

troduced in Section III. Section IV discusses the experimental
results, as well as a comparative study with the SVM-based su-
pervised change detection. Section V concludes the paper.

II. METHODOLOGY

A. Morphological Building Index (MBI)

The basic idea of MBI is to build a relationship between
the spectral-spatial characteristics of buildings (e.g., brightness,
size, and contrast) and themorphological operators (e.g., top-hat
by reconstruction, granulometry, and directionality), which are
summarized as follows.
• Brightness: The maximum value between the visible bands
for each pixel is recorded as its brightness. The visible
bands are focused on since they have the most significant
contribution to the spectral property of buildings [15].

• Local contrast: The relatively high reflectance of roofs and
the spatially adjacent shadows leads to a high local contrast
of buildings. Top-hat transformation is used to describe
the contrast since it is able to highlight the locally bright
structures with a size up to a predefined value.

• Size: Buildings in the high-resolution images show compli-
cated spatial patterns with multiscale characteristics. Dif-
ferential morphological profiles (DMPs) [16] are therefore
used to construct the building index.

• Directionality: A challenging task for the construction of
a building index is how to automatically filter out roads
that have a very similar spectral reflectance to buildings.
Roads are always elongated in one or two directions while
buildings are more isotropic. Consequently, the MBI is im-
plemented using a series of linear structural elements (SE)
that are able to measure the directionality of local struc-
tures [17].

The MBI is calculated by the following steps.
Step 1) Calculation of the maximum digital number (DN).

The maximum of the multispectral bands for each
pixel is recorded for the subsequent processing:

(1)

where indicates the DN of pixel for
the -th spectral band, and is the number of
multispectral bands. represents the maximum DN
image.

Step 2) DMPs of the top-hat transformation. The spec-
tral-structural characteristics of buildings are repre-
sented using the DMPs of the top-hat transformation
(TH-DMP) with multiscale and multidirectional SE,
which is defined as

with

(2)

where represents the opening-by-reconstruction
[16] of the feature image ,
and indicate the scale and direction of a linear SE,
respectively, and is the interval of the profiles. It
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Fig. 1. Performance of the MBI: (a) is a true-color QuickBird image from Wuhan University; and (b) is the TH-DMP histogram for the main land-cover classes,
where the horizontal axis represents the scale and direction of SE, and the vertical axis represents the TH-DMP feature values. The horizontal axis is labeled from
scale 1 (s1) to scale 7 (s7) with four directions (45 , 90 , 135 , and 180 ) at each scale.

should be noted that the scale parameter is used to
extract objects with different sizes.

Step 3) Calculation of MBI. The MBI is defined as the
average of the multiscale and multidirectional
TH-DMP:

(3)

where and are the numbers of directionality and
scale, respectively. Four directions are considered
in this study since it was shown that an
increase in did not lead to an increase in accu-
racy of the building detection [13], [14]. The scale
parameters are determined according to the sizes of
the buildings and the spatial resolution of the im-
ages. The construction of MBI is based on the fact
that building structures have larger values in most of
the scales and directions in the TH-DMP histogram,
due to their local contrast and isotropy. As a con-
sequence, the structures with large MBI values are
more likely to be buildings, and the other compo-
nents are filtered out.

Fig. 1 shows the TH-DMP histogram of the main land-cover
classes, including buildings, roads, vegetation and background.
In Fig. 1(b), the vertical axis stands for the TH-DMP feature
values, and the horizontal axis represents the scale and direc-
tion. Specifically, the scale parameters are set to and

with an interval of 5 . At each scale, four
directions (45 , 90 , 135 , and 180 ) are considered. Accord-
ingly, four directions and seven scales lead to a 28-dimension
TH-DMP feature, as shown in the horizontal axis of Fig. 1(b).
It can be clearly seen that in most of the dimensions, the feature
values of the TH-DMP for buildings are significantly larger than
the other land-cover classes. In this way, theMBI is able to auto-
matically highlight buildings and suppress the background, and,
thus, it has the potential to indicate the change information of
buildings from high-resolution imagery.

B. Conditions of Building Change

The spectral, MBI and shape conditions should be satisfied
simultaneously for the identification of building change.

1) Spectral Condition (C1): Building change information is
primarily related to the spectral variation. This assumption is
based on the fact that the change of buildings always leads to a
change in the spectral reflectance of the area where the change
takes place. The spectral change magnitude is therefore used to
describe the spectral variation:

(4)

where is the spectral change value of pixel ,
calculates the absolute value, and and represent the
maximum DN values of pixel at time t1 and t2, respectively.
The spectral condition (C1) of building change is defined as:

(5)

with T(SPE) being the spectral threshold.
2) MBI Condition (C2): The spectral condition indicates the

general change information for all the land-cover classes; how-
ever, target-driven change detection should be related to the
characteristics of the target of interest. To this end, the MBI is
used to focus on the change information of buildings. The ad-
vantages of MBI include that it is fast, effective, and unsuper-
vised, without a requirement for the selection of training sam-
ples. In this study, the MBI condition is defined at both the fea-
ture and decision levels. At the feature-level, the difference of
the multitemporal MBI feature images is directly used to indi-
cate the change of buildings. At the decision-level, the building
information in the multitemporal datasets is first extracted, and
the difference in the multitemporal building information is sub-
sequently used to detect the change of buildings. The MBI con-
dition (C2) at the feature-level is formulated as:

(6)

where MBI(i) is the MBI change value of pixel , and
and represent the MBI feature values of pixel at
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Fig. 2. Processing chain of the MBI-based automatic building change
detection.

time t1 and t2, respectively. T(MBI) is the change threshold.
The MBI condition (C2) at the decision-level is defined as:

(7)

where stands for the change of buildings, and and
represent the detected building information at time t1 and

t2, respectively.
3) Shape Condition (C3): The shape condition is used to

reduce false alarms by removing irregular structures such as
road-like narrow objects. The assumption of the shape condition
is that the changed building structures should satisfy the basic
shape properties of buildings, such as rectangularity and size. It
should be noted that the shape is considered as a post-filter and
cannot be used before the spectral and MBI conditions. This is
because the shape information alone is not adequate to identify
the presence or change of buildings, and a blind use of shape or
semantic conditions might lead to a low accuracy of informa-
tion extraction [18]. Furthermore, the shape condition is carried
out based on image objects instead of pixels. Consequently, be-
fore its implementation, the objects that indicate the changed
building areas are primarily formed by labeling the connected
components. Connected component labeling [19] is carried out
by scanning an image, pixel-by-pixel, in order to identify con-
nected pixel regions, i.e., regions of adjacent pixels which share
the same intensity value. Specifically, in this study, the spatially
adjacent building change pixels are connected with the 8-con-
nectivity approach. In this way, shape attributes can be extracted
from the objects, and the shape condition (C3) is defined as:

(8)

where stands for the area of the object obj, and
represents the geometrical index (GI) [14] of the buildings:

(9)

where is a coefficient used to adjust the range of the GI values,
and it is normally set to 10. T(A) and T(G) are the thresholds for
the area and GI, respectively. The area stands for the number of
pixels in an object, and it is used to remove small noise. The
GI is defined as the ratio between the rectangular fit and the

Fig. 3. The RGB true-color QuickBird image pairs from 2002 and 2005 over
Hongshan District, Wuhan, central China. The two subset images (a) and (b) are
highlighted with two rectangular frames.

length-width ratio. The rectangular fit is defined based on the
creation of a rectangle with the same area as the considered ob-
ject. It is calculated by comparing the number of pixels inside
the rectangle and the total number of pixels for the considered
object. A building object is expected to have a large GI since it is
usually related to a high rectangular fit and a small length-width
ratio. The GI is able to suppress irregular and narrow structures
that are apparently not buildings. Definiens [20] software is used
to generate the rectangular fit and the length-width ratio as the
inputs of the shape condition.

C. MBI-Based Building Change Detection

Based on the aforementioned conditions, two novel building
change detection algorithms are proposed at the feature-level
and decision-level, respectively.
The processing chain of the MBI automatic building change

detection is shown in Fig. 2. It should be kept in mind that C2
is related to the feature-level or decision-level. The processing
steps are described as follows.
Step 1) Preprocessing: The multitemporal images are radio-

metrically corrected and co-registered. The registra-
tion process is implemented by the use of a polyno-
mial function of the second order, according to a se-
ries of carefully chosen ground control points.

Step 2) Calculation of the multitemporal feature images: The
brightness images and the MBI images at time t1
and t2 are calculated, respectively. All the feature
images are linearly scaled into the range of 0 to 1.

Step 3) C1 and C2: The image structures that simultaneously
satisfy the spectral and MBI conditions are labeled
as the candidate change components of buildings.

Step 4) Component connection: The objects of changed
buildings are formed by connecting the spatially
adjacent changed components that are generated by
Step3.

Step 5) Shape filtering: The GI and area attributes are used
to reduce the false alarms in the results.
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Fig. 4. The two subsets and their ground truth maps of building change used for the evaluation of the proposed algorithms. The first and second rows display the
datasets of test areas (a) and (b), respectively. In the ground truth maps, the black patches indicate the changed buildings while the white color indicates unchanged
areas.

The processing chain can be easily embedded into an urban
information management system and can be used to rapidly de-
tect building change information from high-resolution imagery.
It can help to significantly alleviate the burdensome manual
work of delineating changed buildings from a remote sensing
image database.

III. DATASETS

The analysis of the building change detection is carried out
based on a pair of QuickBird multispectral images acquired in
2002 and 2005, as shown in Fig. 3. Both the images include
three visible spectral bands and one near-infrared band, with a
spatial resolution of 2.4 m. A total of 15 ground control points
were chosen for the co-registration of the multitemporal image
pairs, resulting in a residual misregistration of less than 1 pixel.
The study area lies in the Hongshan District of Wuhan City, and
covers approximately 1.2 km by 2.7 km. It is a typical urban
landscape of China, where dense residential and commercial
areas are mixed together. Due to the rapid infrastructure con-
struction and updating in this rapidly developing country, the
study area shows complicated land-cover change.
In order to effectively evaluate the building change detection

algorithms, two subsets were chosen from the study area, with a
field campaign generating twomanually delineated ground truth
maps of building change, as presented in Fig. 4. In the study
area, the changed buildings refer to both newly built and rebuilt
ones. The main challenge lies in that the roads and bright soil
may lead to false alarms due to their similar spectral properties
to buildings. Furthermore, the different acquisition conditions
at the two dates and the residential registration noise also result
in a large number of false alarms.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the different change condi-
tions (spectral, MBI, and shape) is reported, and the discussion
is divided into two parts: feature-level and decision-level. The
sensitivity of parameters is also analyzed. The experiment setup
is summarized as follows.
1) Combination of change conditions
• MBI condition only (C2)
•
•

2) Parameters
• The thresholds of the spectral condition T(SPE) are 0.1,
0.2, and 0.3.

• The thresholds of the MBI condition T(MBI) for both
feature and decision levels are from 0.1 to 0.9, with an
interval of 0.1.

• The thresholds of the shape condition are set to
pixels and , according to our previous

experiments [13], [14] and the spatial characteristics of
the buildings in the study area.

3) Accuracy evaluation
Four indexes are used to evaluate the accuracy of the
building change detection by comparing the detection
results and the ground truth map:
•

>
•

•
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Fig. 5. Accuracies of the proposed building change detection at the feature-
level with C2 and for test area (a) (left column) and area (b) (right
column). All the charts share the same legend, which is displayed only once in
the left-upper chart. The horizontal axis represents the MBI threshold T(MBI).
‘NA’ in the legend means that the spectral condition is not used.

•

The background includes unchanged buildings and other
land-cover classes that are not of interest in this study. The
average error defined in this paper indicates the overall error
and a balance between the omission and commission errors. It
should be noted that the average error can be used to estimate
the operation intensity of manual work that is required to
correct the omission and commission errors derived from the
computer-based processing.

A. Results at the Feature-Level

The accuracies of C2 and at the feature-level for the
two subsets are shown in Fig. 5, where ‘NA’ means the spectral
condition is not considered. The observations can be summa-
rized as follows.
1) General trend: The correctness rate and the false alarms
decrease and the missed alarms increase gradually with
increasing values of T(MBI) since more components have
been removed with a larger change threshold. The curves
of the average error show that there is a tradeoff between
the false alarms and missed alarms, and it can be seen that
the balance point or the appropriate threshold is around

.

Fig. 6. Influence of the shape condition for the building change detection at the
feature-level for test areas (a) and (b). The left and right columns represent the
accuracies without and with the shape condition, respectively. The horizontal
axis represents the MBI threshold T(MBI) from 0.1 to 0.4, with an interval of
0.1.

Effects of the spectral condition: By analyzing the results
with different spectral thresholds T(SPE), it can be seen that the
spectral condition is able to effectively reduce the false alarms
and average errors but at the same time maintain the correctness
rate. However, the influence of the spectral condition weakens
gradually when the value of T(MBI) becomes larger.
When the shape condition is considered, the results are pre-

sented in Fig. 6 for both test areas (a) and (b). In both datasets,
the left and right columns show the accuracies without and with
the shape constraint, respectively. It should be noted that only
the results with , 0.2, 0.3, and 0.4 are reported be-
cause the other results cannot give a satisfactory correctness rate
(less than 80%). From the figures, it can be seen that the addi-
tion of the shape condition leads to a reduction in the correctness
rate, to some extent. The reduction in test area (a) is more ap-
parent than in test (b), but, at the same time, their average errors
also decrease significantly. It can be stated that with the shape
constraints the average error is reduced at the cost of a decrease
for the correctness rate. In this experiment, the parameters of

and gen-
erate satisfactory results since they maintain the correctness rate
and simultaneously achieve the lowest average error.

B. Results at the Decision-Level

The accuracies of C2 and at the decision-level for
the two subsets are shown in Fig. 7. It can be seen that the ac-
curacy curves of test areas (a) and (b) show similar trends. The



HUANG et al.: MULTITEMPORAL HIGH-RESOLUTION REMOTELY SENSED IMAGES 111

Fig. 7. Accuracies of the proposed building change detection at the decision-
level with C2 and for test area (a) (left column) and area (b) (right
column). All the charts share the same legend, which is displayed only once in
the left-upper chart. The horizontal axis represents the MBI threshold T(MBI)
from 0.1 to 0.9, with an interval of 0.1.

first observation regarding the decision-level change detection
is that it cannot achieve comparable correctness rates to the fea-
ture-level approach, since the highest correctness rates for the
feature-level detection are 95.5% and 96.4% for test areas (a)
and (b), respectively, but the highest correctness rates for the
decision-level approach are 81.9% and 84.4%, respectively. It
can be attributed to the fact that the decision-level change detec-
tion relies on the binarization of the multitemporal MBI images,
leading to information loss for building change. An appropriate
range for the T(MBI) is between 0.4 and 0.7 as they give rel-
atively high correctness rates and low average errors. With re-
spect to the threshold of the spectral condition, it can be seen
that with an increasing value of T(SPE), the correctness rates
decrease but the average errors are also reduced, which is sim-
ilar to the results observed in the feature-level detection.
When the shape condition is taken into account, the results

are presented in Fig. 8 for test area (a) and (b). Only the re-
sults with , 0.5, 0.6, and 0.7 are reported since
the other parameters do not yield satisfactory correctness rates
(less than 75%). From Fig. 8, it can be seen that the addition of
the shape condition significantly decreases the correctness rates
by an average of 5%. For the case of , the cor-
rectness rate decreases by 10%. However, on the other hand, the
average errors do not show an obvious reduction. From the re-
sults of test area (b), it can also be found that the decrease in cor-

Fig. 8. Influence of the shape condition for the building change detection at the
decision-level for test areas (a) and (b). The left and right columns represent the
accuracies without and with the shape condition, respectively. The horizontal
axis represents the MBI threshold T(MBI) from 0.4 to 0.7, with an interval of
0.1.

rectness rate is greater than the reduction in average error when
the shape condition is considered. Although the decision-level
building change detection does not achieve a satisfactory per-
formance compared to the feature-level, it is able to yield ac-
ceptable results if the parameters are appropriately chosen. For
instance, it gives a correctness rate of 75% and an average error
of 15% for test area (a), and a correctness rate of 80% and an
average error of 12% for test area (b), with and
0.6.

C. Visual Inspection

In Figs. 9 and 10, a series of three-color maps are used to
show the influence of the spectral, MBI, and shape conditions
for test areas (a) and (b), respectively. Each color map is gener-
ated by superimposing the detection results of ,
0.2 and 0.3 as red, green and blue bands, respectively. Specifi-
cally, the black color shows unchanged areas, and the red, green,
and blue colors represent the changed buildings that are de-
tected at , 0.2, and 0.3, respectively. The yellow,
cyan, and magenta colors indicate the changed buildings de-
tected by two of the three spectral thresholds, i.e., (0.1, 0.2),
(0.2, 0.3), and (0.1, 0.3), respectively. The white color repre-
sents the changed buildings that are identified by all three spec-
tral thresholds. From the figures, it can be clearly seen that the
smaller spectral and MBI thresholds lead to higher correctness
rates but more false alarms. On the other hand, larger thresholds
correspond to lower correctness rates but fewer false alarms.
This phenomenon is natural since more changed components
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Fig. 9. Changed building maps of study area (a) at both the feature and decision
levels with different parameters. All the maps are generated by the spectral,
MBI, and shape conditions . A series of three-color maps
are used to show the influence of the spectral thresholds by superimposing the
detection results of , 0.2 and 0.3 as the red, green and blue bands,
respectively. Specifically, the black color shows unchanged areas, and the red,
green, and blue colors represent the changed buildings that are only detected
by , 0.2, and 0.3, respectively. The yellow, cyan, and magenta
colors indicate the changed buildings detected by two spectral thresholds, such
as (0.1, 0.2), (0.2, 0.3), and (0.1, 0.3), respectively. The white color represents
the changed buildings that are identified by all three spectral thresholds.

are detected by a small change threshold. In this case, the cor-
rectness rates increase at the cost of an increase in the false
alarms. There is, therefore, a tradeoff between correctness rate
and false alarms, and it is controlled by the change thresholds.
However, it should be noted that although large thresholds do

Fig. 10. Changed building maps of study area (b) at both the feature and deci-
sion levels with different parameters. All the maps are generated by the spectral,
MBI, and shape conditions . A series of three-color maps are
used to show the influence of the spectral thresholds by superimposing the de-
tection results of , 0.2 and 0.3 as the red, green and blue bands,
respectively. The legend is the same as Fig. 9.

Fig. 11. The processing flowchart of the SVM-based building change detection
method.

not give the highest correctness rates, they are able to visually
indicate most of the building change information with fewer
false alarms. This is meaningful for alleviating human labor
since current building change detection is entirely reliant on
human interpretation.
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TABLE I
AN ACCURACY COMPARISON FOR THRESHOLD-BASED AND SVM-BASED BUILDING CHANGE DETECTION ALGORITHMS

Fig. 12. Comparison between the proposed building change detection methods and the MBI-SVM algorithm. The parameters of the feature-level and decision-
level methods are set as: and , respectively. Black components represent changed buildings
and the white color indicates the background.

D. Comparison

In order to validate the proposed feature-level and deci-
sion-level change detection algorithms, support vector machine
(SVM) is used to interpret the multitemporal MBI feature
images and produce the building change maps for comparison
(noted as the MBI-SVM). The processing flowchart is shown in
Fig. 11. In this comparative experiment, 100 training samples
in pixels are randomly selected from the ground truth for the
changed buildings and background, respectively. The radial
basis function (RBF) function is used as the SVM kernel, and its
parameters are chosen manually ( ,
and the Gamma parameter of the RBF kernel is set to 0.5).
SVM is used as a benchmark in order to test whether the pro-
posed method is able to achieve comparable performance to the
supervised change detection approach via machine learning.
The quantitative accuracies of the feature-level, deci-

sion-level, and the MBI-SVM algorithms are compared in
Table I for both test areas (a) and (b). Their change detection

maps over the whole study area (Hongshan District, Wuhan)
are displayed in Fig. 12 for a visual inspection. The following
observations can be obtained:
1) The shape filtering is able to significantly reduce the false
alarms (e.g., noise and road-like narrow structures) of the
MBI-SVM algorithm by 4.8% and 5.3% for test areas (a)
and (b), respectively, but at the cost of a decrease in the
correctness rate of 2.8% and 8.1%.

2) The feature-level algorithm provides a higher correct-
ness rate and a lower average error than the decision-
level and MBI-SVM algorithms. The decision-level
change detection achieves comparable accuracies to the
MBI-SVM.

The above results show that the threshold-based approaches
are able to effectively indicate the building change information
from high-resolution imagery. The results of both the visual in-
spection and the quantitative accuracies can be considered as
satisfactory, even when compared to the SVM-based machine
learning algorithm.
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V. CONCLUSION

The contribution of this study is to propose a novel building
change detection method for multitemporal high-resolution im-
agery. The basic idea of the method is to indicate the building
change information based on the difference of the multitem-
poral morphological building index (MBI) at feature or deci-
sion-level. The characteristic of the proposed method is that
it is implemented without any training samples, but it is able
to achieve higher correctness rates and lower average errors
than the SVM-based supervised algorithm. It should be kept
in mind that automatic building change detection from com-
plicated urban landscapes using high-resolution imagery is a
challenging task due to the spectral confusion between roads,
buildings and other ground materials, and the geometrical dif-
ferences between multitemporal high-resolution images caused
by different view angles. Although the proposed algorithms are
subject to several parameters, including the thresholds of spec-
tral andMBI change, they do not require the selection of training
samples and, hence, they have the potential to replace the cur-
rent urban building change detection methods, which are totally
reliant on human visual interpretation. In addition, according to
the parameter sensitivity analysis conducted in this study, the
appropriate parameters are suggested as ,
and for the feature-level change de-
tection approach (The MBI feature images are linearly scaled
into the range from 0 to 1).
The effectiveness of the proposed algorithm has been val-

idated on QuickBird images (2002 and 2005) of Hongshan
District of Wuhan City in central China. The study area is
a typical Chinese urban area with different kinds of urban
building change, including construction, updating and removal.
The main experimental results are summarized as follows:
1) In terms of quantitative accuracies, the feature-level detec-
tion gave significantly higher correctness rates and lower
overall errors than the decision-level algorithm, while the
decision-level detection achieved comparable results to the
machine learning change detection by SVM.

2) From the visual interpretation point of view, most of the
changed buildings were labeled by the three algorithms
(i.e., the threshold-based and the MBI-SVM methods). In
particular, the feature/decision-level algorithms with larger
thresholds generated satisfactory visual results since the
false alarms were significantly suppressed. It can therefore
be stated that the proposed algorithms are able to reduce
the human labor that is required for the current building
change detection systems.
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