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In recent years, it has been widely agreed that spatial features derived from textural, structural, and
object-based methods are important information sources to complement spectral properties for accurate
urban classification of high-resolution imagery. However, the spatial features always refer to a series of
parameters, such as scales, directions, and statistical measures, leading to high-dimensional feature
space. The high-dimensional space is almost impractical to deal with considering the huge storage and
computational cost while processing high-resolution images. To this aim, we propose a novel multi-index
learning (MIL) method, where a set of low-dimensional information indices is used to represent the com-
plex geospatial scenes in high-resolution images. Specifically, two categories of indices are proposed in
the study: (1) Primitive indices (PI): High-resolution urban scenes are represented using a group of prim-
itives (e.g., building/shadow/vegetation) that are calculated automatically and rapidly; (2) Variation indi-
ces (VI): A couple of spectral and spatial variation indices are proposed based on the 3D wavelet
transformation in order to describe the local variation in the joint spectral-spatial domains. In this
way, urban landscapes can be decomposed into a set of low-dimensional and semantic indices replacing
the high-dimensional but low-level features (e.g., textures). The information indices are then learned via
the multi-kernel support vector machines. The proposed MIL method is evaluated using various high-res-
olution images including GeoEye-1, QuickBird, WorldView-2, and ZY-3, as well as an elaborate
comparison to the state-of-the-art image classification algorithms such as object-based analysis, and
spectral-spatial approaches based on textural and morphological features. It is revealed that the MIL
method is able to achieve promising results with a low-dimensional feature space, and, provide a prac-
tical strategy for processing large-scale high-resolution images.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

High-resolution remotely sensed data can provide a large
amount of detailed ground information, and open new avenues
for remote sensing applications such as precise land use/land cover
mapping, landscape analysis, urban facility retrieval, regional envi-
ronment monitoring. However, increase of the spatial resolution
does not signify increase of the image processing accuracy. Specif-
ically, increase of the intra-class variation and decrease of the in-
ter-class variation lead to reduction of the separability of the
spatial patterns in the spectral domain (Bruzzone and Carlin,
2006). As a result, the traditional pixel-based and spectral-based
image classification techniques are inadequate for high-resolution
data (Huang and Zhang, 2013). In this context, researchers
proposed to exploit spatial information for complementing the
spectral feature space and enhancing separability of the spectrally
similar classes. The so-called spectral-spatial classification meth-
ods can be divided into the following two categories.
1.1. Exploration of spatial features

In this case, the structural and textural features are used as
additional bands to enhance the spectral information and raise
accuracies of high-resolution image classification. The commonly
used spatial bands include wavelet textures (Ouma and Tateishi,
2008), gray-level co-occurrence matrix (GLCM) (Aguera et al.,
2008), pixel shape index (Huang et al., 2007), geometric image fea-
tures (Inglada 2007), Gabor textural features (Reis and Tasdemir,
2011), morphological filters (Pingel et al., 2013), and morphologi-
cal profiles (Fauvel et al., 2012).
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On the other hand, in recent years, the integrative algorithms
combining multiple features have received increasing interest
since a single feature descriptor is not adequate for representing
complex high-resolution urban scenes. Huang and Zhang (2013)
proposed to integrate the spectral, structural, and semantic fea-
tures for classification of multi/hyperspectral imagery with high
spatial resolution. Dell’Acqua et al. (2009) exploited boundary, tex-
tural, and morphological features for rapid mapping of high resolu-
tion SAR scenes. Fusion of LiDAR and optical data also received
much attention for urban scene classification (Guo et al., 2011)
and residential building detection (Awrangjeb et al., 2010), since
the height information extracted from LiDAR is a useful feature
source for urban images.

1.2. Object-based image analysis (OBIA)

Its basic idea is to segment the spatially adjacent pixels into
spectrally similar homogeneous objects and then conduct image
analysis on objects as the minimum processing unit (Blaschke,
2010). Compared to the pixel-based approach, advantages of the
OBIA mainly lie in that it is able to reduce the local spectral variation
and intra-class variance, and, hence, avoid the salt-pepper effect.
OBIA is an active research area for remote sensing image interpreta-
tion. Some studies focus on segmentation, which is the core step of
OBIA, such as adaptive mean-shift procedure (Huang and Zhang,
2008), anisotropic morphological leveling (Tzotsos et al., 2011),
boundary-constrained multi-scale segmentation (Zhang et al.,
2013). Other relevant literature refers to scale parameter selection
(Liu et al., 2012) and optimization (Johnson and Xie, 2011) in order
to adapt the segmentation. In recent years, OBIA has been success-
fully applied to mapping private gardens (Mathieu et al., 2007),
urban objects extraction (Sebari and He, 2013), change detection
(Hussain et al., 2013), tree crown delineation (Jing et al., 2012), spa-
tial pattern analysis of vegetation cover (Yang et al., 2013), etc.

In spite of promising progress achieved for high-resolution im-
age processing, few studies have paid attention to the practical
techniques for information extraction from large-scale high-reso-
lution remote sensing data. The spectral-spatial approach, which
is the existing mainstream strategy for high resolution image clas-
sification, is always subject to the problem of high-dimensional
feature space, constructed by a series of parameters such as scales,
directions, statistical measures, and basis images. The high-dimen-
sional space poses a big challenge to storage and computation cost
for applications of high-resolution data.

In order to address this problem, we propose an innovative
multi-index learning (MIL) method for urban scene classification
based on high-resolution imagery. The notable characteristic of
the MIL is to describe the urban landscape using a set of low-
dimensional semantic indices that replace the high-dimensional
and low-level features. The first step of the MIL framework is to
decompose urban scenes into a series of information indices. In
this study, two categories of indices are proposed.

1) Primitive indices (PI): Urban landscapes can be represented
by a group of basic elements such as buildings, shadow, and
vegetation. These basic elements are calculated automati-
cally without training samples via the morphological build-
ing index (MBI) (Huang and Zhang, 2011), morphological
shadow index (MSI) (Huang and Zhang, 2012), and normal-
ized difference vegetation index (NDVI). It should be under-
lined that these indices actually provide more information
than the three classes. They also contain information for
non-buildings, non-shadow, and non-vegetation, respec-
tively. Therefore, these primitive indices are potential for
description of the semantic feature space in urban image
scenes.
2) Variation indices (VI): Spectral and spatial variation indices
are extracted by 3D wavelet transformation (3D-WT). The
notable property of 3D-WT is that it processes an image as
a cube, and, therefore, simultaneously describes variation
information in the joint spectral-spatial feature space (Yoo
et al., 2009). Accordingly, based on the 3D-WT, we propose
a couple of variation indices as a representation of spectral
and spatial information in a local image scene.

PI and VI are used to describe stationary (basic elements) and
dynamic (variation information) features, respectively. Subse-
quently, we propose to use the multi-kernel learning (Tuia et al.,
2010) for interpretation of the multi-index features. The proposed
multi-index learning (MIL) method is tested through a series of
sophisticated experiments, conducted on the GeoEye-1, QuickBird,
WorldView-2, and ZY-3 images. The first three datasets are used
for evaluation of MIL method by a detailed comparison to the exist-
ing state-of-the-art high-resolution image classification methods,
e.g., object-based image analysis (Bruzzone and Carlin, 2006;
Blaschke, 2010), spectral-spatial classification using multiscale
and multidirectional gray level co-occurrence matrix (GLCM)
(Pesaresi et al., 2008), and differential morphological profiles
(DMP) (Pesaresi and Benediktsson, 2001). Furthermore, perfor-
mance of the MIL method is then assessed using a large-scale
high-resolution data, ZY-3 satellite image over the urban area of
Wuhan city (260 km2) in central China. In this case, the high-
dimensional textural and structural features (e.g., GLCM, DMP)
are impractical due to the limitation of memory and processor of
a personal computer. In addition, ZY-3 satellite, launched on 9th
January 2012, is the China’s first civilian high-resolution satellite.
To our best knowledge, this study is the first assessment of ZY-3
satellite imagery for information extraction and urban mapping.

The remainder of this paper is organized as follows. The multi-
index feature extraction is described in Section 2. Then, the multi-
index learning is introduced in Section 3. Experimental results and
the comparative study are presented in Section 4, followed by the
conclusions and remarks in Section 5.
2. Multi-index feature extraction

This section describes the primitive and variation indices, as
well as a demonstration of the multi-index urban scene
description.
2.1. Primitive indices (PI)

PI includes a group of basic urban classes: buildings, shadow,
and vegetation, which are automatically calculated using MBI,
MSI, and NDVI, respectively. Information for other primitive classes
(e.g., roads, water) is implicitly contained in the three indices. For
instance, MBI is able to discriminate between buildings and roads,
while water and shadow can be distinguished based on MSI and
NDVI.
2.1.1. Morphological building index (MBI)
The basic idea of MBI is to build the relationship between the

spectral-spatial characteristics of buildings (e.g., local contrast,
size, isotropy, and brightness) and the morphological operators
(Huang and Zhang, 2011). It is constructed based on the fact that
the relatively high reflectance of roofs and the spatially adjacent
shadows lead to high local contrast of buildings (Pesaresi et al.,
2008; Huang and Zhang, 2011). The calculation of MBI is briefly
described as follows.
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Step1. Brightness image. The maximum value of the visible
bands for each pixel is recorded as its brightness. The visible
bands are focused on since they have the most significant con-
tribution to the spectral property of buildings (Pesaresi et al.,
2008).
Step2. Top-hat morphological profiles. The spectral-structural
characteristics of buildings are represented using the differen-
tial morphological profiles (Pesaresi and Benediktsson, 2001)
of the top-hat transformation (DMPTH),

DMPTH ¼ fDTHðd; sÞ;d 2 D; s 2 Sg

with
DTHðd; sÞ ¼ jTHðd; sÞ � THðd; s� DsÞj ð1Þ
where TH represents the top-hat by reconstruction (Huang and
Zhang, 2011) of the brightness image; s and d indicate the scale
and direction of a linear structural element, respectively; Ds is the
interval of the profiles; S and D, respectively, represent the sets of
scales and directions. The top-hat transform is used to measure
the contrast as it is able to highlight the locally bright structures
with a size up to a predefined value.

Step3. Calculation of MBI. It is defined by
MBI ¼
P

d

P
sDMPTHðd; sÞ
Nd � Ns

ð2Þ
where Nd and Ns are the numbers of directions and scales, respec-
tively. The average of the multiscale and multidirectional DMPTH

is defined as the building index since building structures have larger
feature values in most of the scales and directions in the morpho-
logical profiles due to their local contrast and isotropy. As a result,
the structures with large MBI values are more likely to be buildings.
A challenging task for building detection is to automatically filter
out roads that have similar spectral reflectance with buildings.
Roads are always elongated in one or two directions while buildings
are more isotropic. To this aim, in Eq. (2), MBI is implemented using
a series of linear structural elements that are able to measure the
directionality of local structures.

2.1.2. Morphological shadow index (MSI)
MSI is a twinborn index of MBI since shadows show spatially

similar but spectrally contrary properties with buildings (Huang
and Zhang, 2012). The calculation of MSI is based on the fact that
shadows have high local contrast but low radiometric reflectance.
Consequently, the black top-hat (BTH) is used to construct the
shadow index in contrast to the white top-hat for the building
index,

MSI ¼
P

d

P
sDMPBTHðd; sÞ
Nd � Ns

ð3Þ

where the BTH is able to highlight the dark structures within the
defined directions and scales.

2.1.3. Normalized difference vegetation index (NDVI)
NDVI is used to represent the urban vegetation components

such as grass and trees. Its calculation is based on the principal that
vegetation has a strong reflectance in the near infrared channel but
a strong absorption in the red channel.

2.2. Variation indices (VI)

In order to complement the stationary indices (i.e., PI), in this
study, we also propose a couple of variation indices, used to de-
scribe spectral and spatial variation information in a local image
area. VI is defined based on the 3D wavelet transformation, which
processes a multispectral remote sensing image as a cube (Yoo
et al., 2009). 3D-WT can be expressed by a tensor product,
Iðx;y;zÞ ¼ ðLx �HxÞ � ðLy �HyÞ � ðLz �HzÞ

¼ LxLyLz � LxLyHz � LxHyLz � LxHyHz

�HxLyLz �HxLyHz �HxHyLz �HxHyHz

�
ð4Þ

where � is the space direct sum, L and H represent the low- and
high-pass filters along the x, y, and z axis, respectively. x and y de-
note the spatial coordinates of an image, and z stands for the spec-
tral axis. Eq. (4) shows that one-level 3D-WT decomposition for an
image cube yields a series of subbands, consisting of the following
three blocks:

1) Approximation: LLL.
2) Spectral variation (��H): LLH, LHH, HLH.
3) Spatial variation (��L): LHL, HLL, HHL.

where the **H components denote spectral variation since the
high-pass filter is used in the spectral domain, and the ��L compo-
nents represent the spatial variation since they describe high-fre-
quency details (horizontal, vertical, and diagonal information) in
the spatial domain and low-frequency information in the spectral
domain. Accordingly, for a pixel i in a local image cube w, its spec-
tral and spatial variation indices (VIspe and VIspa, respectively) are
defined by

VIspeðiÞ ¼
1

Nw

X
w

ELLH
i2wðiÞ þ ELHH

i2w ðiÞ þ EHLH
i2w ðiÞ

ELLL
i2wðiÞ

( )
w

ð5Þ

VIspaðiÞ ¼
1

Nw

X
w

EHLL
i2wðiÞ þ ELHL

i2wðiÞ þ EHHL
i2w ðiÞ

ELLL
i2wðiÞ

( )
w

ð6Þ

where E is the energy function, which is defined as the quadratic
sum of the 3D wavelet coefficients for each subband. It can be seen
that Eqs. (5) and (6) describe the normalized ‘��H’ and ‘��L’ compo-
nents in a local image cube, representing the spectral and spatial
variation indices, respectively. The energy of the LLL subband is
used for normalization considering that the approximation compo-
nent in the 3D-WT decomposition contains majority of the energy
of wavelet coefficients. As shown in Eqs. (5) and (6), a multiscale ap-
proach is utilized for calculation of VI by considering multiple local
image cubes centered by the pixel i. The multiscale approach is able
to alleviate the boundary blur caused by the moving window pro-
cessing, and meanwhile take advantage of multiscale characteristics
in the high-resolution urban scenes. It should be noted that in order
to reduce the computational cost, the variation indices are calcu-
lated with non-overlapped windows. Unlike other textural or spa-
tial features that only focus on the spatial domain, VI is able to
simultaneously describe the spectral-spatial joint feature space.

2.3. Multi-index urban scene description

In this subsection, effectiveness of the proposed multi-index
features is demonstrated by comparison with two well-known
unsupervised feature extraction methods, PCA (principal compo-
nent analysis), and ICA (independent component analysis). Simi-
larly to PCA and ICA, PI can be viewed as an unsupervised image
feature transformation approach, resulting in a subspace of the ori-
ginal image. However, PI is a semantic-oriented transformation, re-
lated to a set of specific objects of interest, while PCA and ICA
correspond to the constraints of variance and independence,
respectively, which is a data-oriented transformation (Zhang
et al., 2006).

In Fig. 1, a high-resolution urban scene as well as its PCA, ICA, PI,
and VI features are shown for a visual comparison. It is clearly seen
that PI presents better discrimination ability for urban structures
than PCA and ICA. In the pseudo-color image of PI, the classes of
buildings, roads, soil, vegetation, and shadow are well represented



Fig. 1. Comparison and demonstration of unsupervised image feature transformation for PCA, ICA, PI (Red = MBI, Green = NDVI, Blue = MSI), and VI, respectively.
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as red, black, gray, green, and blue, respectively. Moreover, the Jef-
fries–Matusita (JM) distance (Richards and Jia, 1999) is used to mea-
sure the separability of several spectrally similar class pairs with the
transformed features (Table 1). The JM distance indicates how well
the selected class pairs are statistically separate. A high value indi-
cates that the feature space can be well separated, while a low one
indicates that the feature space is not well separated. In Table 1,
the JM values also support the observation that the three-channel
primitive indices (PI) are more potential for discrimination between
urban information classes than PCA and ICA, since the JM values of PI
are significantly higher than others. Moreover, it can be also seen
that the discrimination ability is further enhanced when PI and VI
are combined, showing that the variation indices are complemen-
tary to the primitive indices for the purpose of urban classification.

3. Multi-index learning

In this section, a novel multi-index learning (MIL) framework is
proposed for interpretation of the multiple information indices as
well as the multispectral signals in an urban scene. In recent years,
the support vector machine (SVM) has received much interest for
remote sensing image classification and its efficiency has been
proved in many applications, such as spectral-spatial classification
(Huang et al., 2007), multiscale interpretation (Bruzzone and Car-
lin, 2006), and multi-sensor fusion (Waske and Benediktsson,
2007). SVM is chosen as the base classifier of the multi-index
learning due to the following factors:
Table 1
JM distance for spectrally similar class pairs with different image feature transfor-
mation methods.

Subspace Buildings–roads Buildings–soil Roads–soil Trees–grass

PCA 1.10 1.34 0.98 1.61
ICA 1.13 1.29 0.91 1.59
PI 1.33 1.37 1.31 1.64
PI + VI 1.53 1.89 1.71 1.90

The largest values are highlighted as bold.
1) Rapid and adaptive learning.
2) Enhancing the separability of low-dimensional feature space

via the nonlinear mapping and kernel trick.
3) Not constrained to prior assumptions on the distribution of

input features (e.g., normal distribution).

It should be noted that, in addition to the simple single-kernel
SVM (S-SVM), we propose to exploit multi-kernel SVM (M-SVM)
for multi-index learning. M-SVM overcomes the drawbacks of the
S-SVM that works as a black box and gives no insight about the
importance of the distinct features (Tuia et al., 2010). As a result,
the M-SVM is able to weight the multiple indices adaptively
according to their relative importance for a specific task. The basic
principles of the single and multi-kernel SVMs are described
below.

Given a set of n labeled training samples fðxi; yiÞg
n
i¼1 with

yi e {�1, +1} and a nonlinear mapping /(�), the SVM classifier needs
to solve

min
w;ni ;b

1
2
kwk2 þ C

Xn

i¼1

ni

( )
ð7Þ

where w represents the vector of parameters for the optimal deci-
sion hyperplane f(x) = hw, /(x)i + b with b the bias. C is a regulariza-
tion parameter and ni is a slack variable. The problem can be
converted into maximization of the margin in the high-dimensional
space:

max
a

Xn

i¼1

ai �
1
2

Xn

i;j¼1

aiajyiyjhuðxiÞ;uðyiÞi
( )

ð8Þ

s:t:

Xn

i¼1

aiyi ¼ 0

0 � ai � C;8i ¼ 1;2;3; . . . n

8><
>:

where ai is the Lagrange multipliers that determine the support
vectors.
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Fig. 2. The processing flow of the proposed multi-index learning (MIL) framework
for urban mapping.
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The standard SVM uses one kernel for projecting the original
data to the high-dimensional feature space. Moreover, the SVM
classification highly depends on the kernel function utilized. The
use of a single kernel does not consider the heterogeneous distri-
bution of multi-source information, and, hence decrease the gener-
alization ability of the SVM. In this study, therefore, we also
propose to use the multiple-kernel framework for multi-index
learning. The M-SVM can be constructed with a linear combination
of several basis kernels,

Kðxi;xjÞ ¼
XM

m¼1

dmKmðxi;xjÞ ð9Þ

s:t:

dm P 0XM

m¼1

dm ¼ 1

8><
>:

where M is the number of candidate kernels; Km and dm represent
the m-th kernel and its weight, respectively.

The basic idea of the M-SVM is to determine the preserved ker-
nels and the corresponding weights. By optimizing the weight of
each basis kernel, the useful information hidden in the multi-index
features can be effectively mined and better exploited. However,
solving the M-SVM might be complicated and computationally
unaffordable when a high number of training samples or kernels
is used (Tuia et al., 2010). In order to overcome this problem, an
efficient algorithm, SimpleMKL (Rakotomamonjy et al., 2008),
which makes multi-kernel learning tractable for large-scale prob-
lems, is used in this study. SimpleMKL aims at wrapping a multi-
kernel SVM solver with a single kernel (e.g., the linear combination
in (9)). Specifically, by introducing (9) into (8), the multiple-kernel
dual problem can be expressed as

max
a

Xn

i¼1

ai �
1
2

Xn

i;j¼1

aiajyiyj

XM

m¼1

dmKmðxi;xjÞ
( )

: ð10Þ

It is shown that maximizing the dual problem in (10) is equiv-
alent to solving the following problem (Rakotomamonjy et al.,
2008)

min
d

JðdÞ such that
XM

m¼1

dm ¼ 1;dm P 0; ð11Þ

with JðdÞ ¼min
w;b;n

1
2

XM

m¼1

1
dm
kwmk2 þ C

Xn

i¼1

ni;

subject to
yi

XM

m¼1

hwm;/mðxiÞi þ b

 !
P 1� ni

ni P 0

8><
>:

Actually, the objective function J(d) is an optimal SVM objective
value, which is solved by a simple gradient method. Readers can
refer to Rakotomamonjy et al. (2008) for more details about mul-
ti-kernel learning and the SimpleMKL strategy.

4. Experiments and discussion

The processing chain of the proposed multi-index learning
method is shown in Fig. 2. This section refers to a series of elabo-
rate experiments, consisting of the following parts:

1) Introduction to the datasets and the experimental setup.
2) Evaluation of the proposed MIL method on three high-reso-

lution datasets: GeoEye-1 (GE-1) and QuickBird (QB) images
over urban areas, and a WorldView-2 (WV-2) image over a
rural area.
3) A comparative study on the three high-resolution datasets
between the proposed MIL method and a set of state-of-
the-art high-resolution image classification methods.

4) A large-scale high-resolution urban mapping (260 km2 cov-
ering the Wuhan City center) based on the ZY-3 satellite
(the first civilian high-resolution satellite of China).

4.1. Datasets and experimental setup

The three test datasets as well as their PI feature images are
shown in Fig. 3. It can be observed that the PI feature space exhibits
more discrimination information between urban structures com-
pared to the traditional spectral space. The characteristics of the
three datasets are listed below:

	 GE-1 Wuhan: It shows a typical urban landscape of Wuhan
City, with dense residential areas, sparse vegetation, and
bare land for construction.

	 QB Wuhan: It covers a campus scene, including regular
buildings with heterogeneous roofs, forests, meadows, water
body, etc.

	 WV-2 Hainan: It is a natural landscape in the Hainan Island,
with a lot of grasslands, soil, small buildings, water areas,
and a golf course.

The aforementioned images with different characteristics are
used to test the robustness of the proposed classification algo-
rithms. In order to assess the classification accuracy, a reference
map for each test image is manually delineated based on visual
interpretation (WV-2 Hainan) and a field campaign (GE-1 and QB
Wuhan). The number of the reference samples for each informa-
tion class in the three test datasets is provided in Table 2. The
training and test samples are randomly selected from the reference
samples for training and validation of the classification results,
respectively. The number of the training samples for each class is
100, 100, and 50, respectively, for GE-1, QB, and WV-2 images.

The parameters used in the three test images are provided
below.

	 MBI and MSI: D = {0�, 45�, 90�, 135�} for the directions,
S = {3, 11, 19, 27} for the scale parameters of the linear SE.



Fig. 3. High-resolution test images and their PI (primitive index) feature images for (a) GeoEye-1 Wuhan, (b) QuickBird Wuhan, and (c) WorldView-2 Hainan, respectively.
Note that the color-infrared multispectral images are shown, i.e., the near infrared channel is used as the Red component in the RGB space.
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Table 2
Number of reference and test samples (in pixels) for the three high-resolution datasets.

Classes GeoEye-1 Wuhan QuickBird Wuhan WorldView-2 Hainan

Reference Test Reference Test Reference Test

Roads 3187 2000 5103 5000 5357 5000
Grass 4098 2000 9179 5000 7417 5000
Buildings 20,074 2000 18,296 5000 11,578 5000
Soil 18,249 2000 3709 3000 22,189 5000
Shadow 1330 1000 4378 4000 1427 1400
Trees 5377 2000 17,415 5000 14,086 5000
Water body NA NA 16,614 5000 11,209 5000
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	 VI: w = {4 � 4 � 4, 8 � 8 � 4} for GE-1 and QB, and
w = {4 � 4 � 8, 8 � 8 � 8} for WV-2.

	 S-SVM: Regularization parameter C = 100, kernel = RBF
(radial basis function), RBF bandwidth r = 1/n (n is the
dimension of the input features).

	 M-SVM: Four RBF kernels for the multispectral (MS) fea-
tures and four RBF kernels for the multi-index (MI) features
are used in the multi-kernel learning. The bandwidths of
the four kernels are set to r = {0.1, 0.25, 0.35, 0.5} for both
MS and MI features. Note that all the MS and MI features
have been linearly normalized into [0,1] before they are
processed.

The parameters for the multi-index calculation are determined
according to the spatial resolution and sizes of the objects of inter-
est, while the parameters for the SVM-based classifiers are tuned
manually. It should be underlined that further optimization of
the parameter selection might improve the classification accuracy,
however, the improvement is not significant and this discussion is
beyond scope of this paper.

4.2. Results of the GE-1, QB, and WV-2 experiments

The classification accuracies (overall accuracy and Kappa coeffi-
cient) of the proposed multi-index learning method for the three
test datasets are shown in Table 3. In order to analyze the effect
of each feature source for urban classification, different combina-
tions of information indices as well as the multispectral features
are tested. The accuracies of the MS features are used as bench-
marks representing the traditional spectral-based classification
method, and all the results better than the benchmarks are high-
lighted as gray in the table. The comments on the experiments
are summarized as follows.

1) Individual use of VI or PI does not produce satisfactory
results since their OA and kappa values are much lower than
the MS classification. However, it is seen that PI significantly
outperforms VI in terms of accuracies, which shows that
primitive indices are more informative than the local varia-
tion features for urban classification.

2) Combination of PI and VI can strikingly enhance the perfor-
mance of their individual use. Comparing VI and ‘VI + PI’, the
improvements of OA achieved by the latter are 20%, 30%,
and 14% for GE-1, QB, and WV-2, respectively. As for PI and
‘VI + PI’, the improvements of OA are also significant: 12%,
9%, and 8%, respectively, for the three datasets. This observa-
tion reveals that the proposed PI and VI can complement each
other and provide more effective discrimination between
urban land cover classes. In addition, it is found that ‘PI + VI’
gives better results than the MS classification in the urban
areas (GE-1 and QB datasets).

3) Combination of MS (multispectral) and MI (multi-index):
Stacking of MS and MI gives the highest accuracies in all
the three experiments and their results are very promising
considering that the overall accuracies are higher than 90%
with a large number of test samples. In addition, it is found
that the M-SVM slightly outperforms S-SVM, and the
improvements are marginal (smaller than 1%).

The classification maps of the traditional multispectral (MS)
classification and the proposed multi-index learning (MIL) method
are compared in Fig. 4 for a visual inspection. Moreover, several
subsets are extracted from the three test images in order to show
the advantages of the MIL method compared to the MS classifica-
tion (Fig. 5).

Subset (a): It can be seen that a large number of misclassifica-
tions occur between soil, buildings, and roads for the MS classifica-
tion. However, these spectrally similar classes are correctly
identified by the MIL method.

Subset (b): Similarly to the case (a), the buildings that are
wrongly classified as roads by the MS are correctly identified by
the MIL. In addition, it can be seen that the road in the center of
the scene is correctly detected by the MIL but is wrongly labeled
as buildings by the MS.

Subset (c): The confusion between buildings and bare soil in the
MS classification can be overcome by the MIL.

4.3. Comparison

A comparative study is conducted in order to further verify the
effectiveness of the proposed multi-index learning method for
urban classification. To this aim, a series of state-of-the-art classifica-
tion methods for high-resolution images are carried out in this study
for the purpose of comparison, including: object-based image analy-
sis (OBIA) (Bruzzone and Carlin, 2006), spectral-spatial approach
based on the gray level co-occurrence matrix (GLCM) (Huang and
Zhang, 2013), and spectral-spatial classification using the well-
known differential morphological profiles (DMP) (Pesaresi and Bene-
diktsson, 2001). These algorithms are briefly described as follows:

Algorithm (1): OBIA.

Step1. Adaptive segmentation. The first step of the object-based
classification is to segment the image into a set of objects. In
this study, the adaptive mean-shift procedure (Huang and
Zhang, 2008) is employed considering that it is a robust feature
space analysis approach and the scale parameter can be adap-
tively determined according to the spatial homogeneity around
the object considered.
Step2. Spectral-spatial feature extraction. After segmentation, a
set of spectral and spatial features are extracted for each object.
The spectral properties refer to the mean and standard deviation
of the pixels within each object. The spatial features include
length, width, compactness, solidity, length–width ratio, and
extent:

	 Length/Width is defined as the length of the major/minor

axis of the ellipse that has the same second moments as
the object considered.



Table 3
Classification accuracies (OA = overall accuracy, K = Kappa coefficient) of the proposed multi-index learning method (MS = MultiSpectral, VI = Variation Index, PI = Primitive
Index) for GE-1, QB, and WV-2 experiments.

Datasets MS VI PI VI + PI MS + PI MS + PI + VI (S-SVM) MS + PI + VI (M-SVM)

GE-1
OA 80.9% 63.4% 71.9% 83.9% 88.6% 90.4% 90.0%
K 0.769 0.560 0.663 0.805 0.862 0.883 0.879

QB
OA 86.4% 57.6% 78.5% 87.4% 89.8% 92.1% 92.2%
K 0.841 0.504 0.748 0.852 0.881 0.907 0.908

WV-2
OA 86.4% 59.1% 65.2% 73.7%
K 0.839 0.528 0.589 0.694
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	 Compactness is computed as 2
Diameter �

ffiffiffiffiffiffiffiffiffiffiffi
Area
p

� �q
, where

Diameter indicates the diameter of a circle with the same
area as the object.

	 Solidity is defined as the proportion of the pixels in the
convex hull that are also in the object.

	 Extent is defined as the proportion of the pixels in the
bounding box that are also in the object. It is computed
as the area of the object divided by the area of the bound-
ing box.
A notable advantage of the OBIA is that it is convenient to
extract geometrical properties of objects, which are potential
for discrimination between spectrally similar urban classes.
Step3. The spectral and spatial properties for each object can be
expressed as a vector:
ðmeanðnÞ; stdðnÞÞNn¼1; ðL; W; Ratio; Com; Solidity; ExtÞ
n o

where N is the number of spectral bands. (mean, std) represent
the spectral features of an object (mean and standard devia-
tion), and (L, W, Ratio, Com, Solidity, Ext) are the geometrical
attributes of an object (Length, Width, Length–Width Ration,
Compactness, Solidity, and Extent, respectively). The spectral-
spatial feature vector is then input into the S-SVM for object-
based classification.
Algorithm (2): GLCM-based spectral-spatial classification.

Step1. The first two spectral principal components (PC1 and
PC2) extracted by the principal component analysis (PCA), con-
taining more than 90% information of the original spectral sig-
nals, are used as the basis images for the subsequent texture
calculation.
Step2. The GLCM texture feature can be expressed as a function
of window size (w), statistical measure (m), direction (d), and
basis images (base): GLCM(w, m, d, base). In this study, the
parameters are set as: w = {5 � 5, 9 � 9}, m = {Contrast, Homo-
geneity}, d = {0�, 45�, 90�, 135�}, base = {PC1, PC2}. The window
sizes are chosen according to the spatial resolution and the
sizes of the objects in the study area. The Contrast and Homoge-
neity are used as textural measures since they are commonly
used in urban areas, and they represent the spatial property
of heterogeneity and homogeneity in a local region,
respectively.
Step3. The spectral and textural features are written as a vector:
ðSPEðnÞÞNn¼1; GLCM
n o

;

where SPE(n) represents the spectral feature value for band n.
The hybrid feature vector is then input into the SVM for spec-
tral-spatial classification.
92.2% 91.9% 92.9%
0.908 0.905 0.917
Algorithm (3): DMP-based spectral-spatial classification.

Step1. The PCA transformation is used to generate the basis
images for the subsequent DMP computation.
Step2. DMP is a well-known structural feature extraction
approach for high-resolution images and it is effective in
describing multiscale shape profiles of objects. It can be
expressed as DMP(SE, m, base), where m stands for the morpho-
logical operators, and SE indicates the shape and sizes of the
structural element (SE). In this study, the parameters of the
DMP are set as: base = {PC1, PC2}, SE = {shape = ‘disk’, diame-
ter = (3, 5, 7, 9)}, and m = {opening/closing by reconstruction}.
Step3. The spectral and morphological features form a vector
fðSPEðnÞÞNn¼1;DMPg, which is then input into the SVM for spec-
tral-spatial classification.

The classification accuracies of the state-of-the-art high-resolu-
tion image classification algorithms as well as the proposed MIL
method are compared in Table 4. Generally speaking, the proposed
MIL method achieves the best results, except for the case of the QB
experiment, where OBIA slightly outperforms MIL. In particular, it
should be underlined that the dimension of the MIL input features
is much lower than other methods (9-dimensional feature for the
GE-1 and QB (4-d MS, 3-d PI, and 2-d VI), and 13-dimensional fea-
ture for the WV-2 (8-d MS, 3-d PI, and 2-d VI)). The results of the
OBIA are also very promising in all the experiments, especially
for the QB dataset (OA = 92.8%, the first ranking among all the
methods). The performance of the DMP-based spectral-spatial
classification is satisfactory since it gives overall accuracy larger
than 91% in QB and WV-2 experiments. As for the GLCM, it obtains
high accuracy in QB dataset (OA = 91.9%), but weak results in GE-1
and WV-2.

4.4. Large-scale experiment based on ZY-3 satellite

The proposed MIL method aims at achieving accurate image
classification over urban areas with a low-dimensional feature
space, and, hence, it is a practical technique for large-scale (regio-
nal scale) high-resolution urban mapping. To this aim, we design
an experiment of large-scale high-resolution urban classification
based on ZY-3, which is the China’s first civilian high-resolution
mapping satellite. Note that this is the first result of ZY-3 satellite
for urban mapping to our knowledge.

The study area is located at Wuhan, capital of Hubei Province
and one of the largest cities in China. The dataset was acquired
on 22 April 2012. It contains four spectral channels (Blue, Green,
Red, and Near Infrared) with a spatial resolution of 5.8 meter. As
shown in Fig. 6, the test image covers the city center of Wuhan
(260 km2). It is a typical urban landscape of China, where the
residential area is composed of high-density buildings but with



Fig. 4. Classification maps of MS (left column) and ‘MS + MI’ (right column) features for the three datasets (Orange = buildings, White = roads, Blue = water, Dark
Green = trees, Light Green = grass, Black = shadow, Yellow = Soil).

44 X. Huang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 90 (2014) 36–48



(a)

(b)

(c)

Fig. 5. Examples showing that the proposed multi-index learning method improves the traditional spectral classification, extracted from (a) GE-1, (b) QB, and (c) WV-2,
respectively.

Table 4
Classification accuracies (OA = overall accuracy, K = Kappa coefficient) for comparison
between several state-of-the-art high-resolution image classification algorithms
(OBIA, GLCM and DMP-based spectral-spatial classification) and the proposed MIL
method (Dim = the dimension of the input features).

Datasets OBIA GLCM DMP MIL

GE-1
Dim 14 36 20 9
OA 88.4% 81.5% 86.9% 90.4%
K 0.860 0.775 0.842 0.883

QB
Dim 14 36 20 9
OA 92.8% 91.9% 91.1% 92.1%
K 0.916 0.906 0.896 0.907

WV-2
Dim 22 40 24 13
OA 91.2% 83.5% 91.3% 91.9%
K 0.896 0.805 0.898 0.905
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inadequate green space (e.g., gardens, trees, meadows). Most of the
buildings have seven to ten floors. It should be kept in mind that in
this experiment a personal computer (e.g., equipped with Intel (R)
Core2 CPU and 2.0G RAM in this study) cannot support the data
processing for the high-dimensional feature extraction and classi-
fication (e.g., OBIA, GLCM, and DMP) due to the limitation of mem-
ory space and computational cost.

Table 5 shows the training and test samples used in this exper-
iment. The four reference images presented in Fig. 6 are delineated
manually according to a filed campaign and our prior knowledge
on the study area. The test samples consists of four validation
areas, (a) HanKou (commercial area), (b) QingShan (residential
area), (c) WuChang (educational area), and (d) HongShan (indus-
trial area), covering the main administrative districts of Wuhan
City center.

The accuracies of urban mapping by the proposed MIL method
for the four validation regions are provided in Table 6. The conclu-
sions are very clear:

1) In all the cases, the proposed MIL method achieves the best
results in terms of the accuracies. Compared to the MS clas-
sification, the improvements of OA are 9%, 4%, 7%, and 11%,
respectively, for the four test regions.

2) For the case of ‘MS + VI’, it can be seen that addition of VI can
enhance the traditional spectral classification in all the exper-
iments. As for the ‘MS + PI’, the results are more promising
since it gives much higher accuracies than the MS and ‘MS + VI’.

The results of the Wuhan urban mapping for the multispectral
classification and the proposed MIL method are compared in
Fig. 7 for a visual inspection. It is shown that the multi-index learn-
ing approach can obtain satisfactory result for regional urban map-
ping since the overall accuracies are 82% for test region (a) and (d),
and 90% for (b) and (c), with a large number of test samples (about
220,000 pixels) but a limited training samples (100 pixels for each
class).

4.5. Discussions

A notable characteristic of the proposed method is to represent
the complicated urban image scenes using a set of low-dimen-
sional semantic indices. The effectiveness for each information in-
dex is analyzed as follows:

1) MBI: It aims at modeling the spectral-spatial characteristics
of buildings based on a series of morphological operators
(brightness, local contrast, size, and isotropy).



Fig. 6. The ZY-3 Wuhan city image with four validation areas, corresponding to the four main administrative districts of Wuhan (Orange = buildings, White = roads,
Blue = water, Dark Green = trees, Light Green = grass, Magenta = shadow, Yellow = Soil). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 5
Training and test samples used in the ZY-3 experiment.

Class # Trainings samples # Test samples

Roads 100 31,191
Buildings 100 48,106
Shadow 100 18,289
Bare Soil 100 28,685
Grass 100 12,382
Trees 100 43,032
Water 100 38,114
Total 700 219,799

Table 6
Classification accuracies (OA = overall accuracy, K = Kappa coefficient) of the proposed
multi-index learning method (MS = MultiSpectral, VI = Variation Index, PI = Primitive
Index) for the four validation regions of ZY-3 experiment.

Datasets MS MS + VI MS + PI MS + PI + VI (S-SVM)

(a) HanKou
OA 73.4% 78.4% 81.7% 82.7%
K 0.668 0.730 0.770 0.782

(b) QingShan
OA 85.7% 87.2% 89.1% 89.4%
K 0.828 0.846 0.869 0.872

(c) WuChang
OA 83.4% 86.8% 90.1% 90.8%
K 0.794 0.837 0.875 0.885

(d) HongShan
OA 71.5% 72.8% 82.2% 82.3%
K 0.660 0.676 0.787 0.788

The largest values are highlighted as bold.
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	 Brightness and local contrast: The relatively high reflec-
tance of roofs and the spatially adjacent shadows lead
to high local contrast of buildings compared to their sur-
roundings. Accordingly, the top-hat transformation is
used to measure the local contrast.

	 Size: Sizes for most of buildings are within a scale range,
and, hence, the lengths of the linear structural elements
are used to define the spatial scale of buildings.

	 Isotropy: Buildings and roads are spectrally similar urban
structures, thus, it is difficult to discriminate between
them without considering their difference in the spatial
properties. Buildings show high local contrast in more
directions than roads, as buildings are compact and iso-
tropic but roads are elongated in one or two directions.
In this regard, MBI defines the isotropy by measuring
the multidirectional contrast based on the linear struc-
tural elements.
2) MSI: Construction of MSI is based on the observation that
buildings and shadow exhibit spatially similar but spectrally
contrary properties. Shadow, having low intensity value,
also shows high local contrast in different directions. Conse-
quently, MSI can be naturally defined within the framework
of MBI, by replacing the white top-hat (highlight bright
structures) by the black top-hat (highlight dark structures).

3) NDVI: Its effectiveness is guaranteed by the biophysical
model of vegetation.

4) VI: The primitive indices (MBI, MSI, NDVI) represent station-
ary image semantics, while VI aims at describing the image
spectral-spatial variations. The principle of VI is that urban
classes have different degrees of variations in spectral and
spatial domains, which provides discriminative information
for them.

The effectiveness of the information indices for modeling urban
landscapes is demonstrated in Fig. 8. The QuickBird and GeoEye-1
images are taken as examples since they exhibit typical and com-
plicated urban scenes. In the figure, the vertical axis represents the
average feature values which are calculated based on all the refer-
ence samples per each class and then scaled into the range
between 0 and 255. By focusing on the primitive indices, it can
be found that MBI, MSI, and NDVI are effective in highlighting
buildings, shadow, and vegetation, respectively, and, at the same
time suppressing other classes. In the case of spatial variation in-
dex (VIspa), it can be seen that it is able to describe the complexity
of different classes. For instance, buildings and shadow have high
VIspa values in both images since they present more structural var-
iation. On the other hand, water, bare soil, and grass, however, are
relatively homogeneous in the spatial domain, and, hence, they
have small VIspa values. With respect to the spectral variation index
(VIspe), it aims at depicting the image spectral variation across mul-
tispectral bands. From Fig. 8, it can be observed that there is not a
regular pattern for the VIspe, since it is related to specific image



Fig. 7. Classification maps of the multispectral-based and MIL-based approaches for urban mapping over Wuhan City Center (260 km2) (Class legend: Orange = buildings,
White = roads, Blue = water, Dark Green = trees, Light Green = grass, Black = shadow, Yellow = Soil).
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scenes, e.g., illumination, contrast, landscapes. However, it can pro-
vide discrimination information for different classes from the spec-
tral interpretation viewpoint.

The proposed multi-index learning (MIL) method aims to inter-
pret the urban image landscapes using a set of low-dimensional
information indices, which provides a practical strategy for urban
mapping. The high efficiency and satisfactory performance of the
MIL method can be attributed to the factor that the low-dimen-
sional feature space is composed of semantic information, which
has high discrimination ability for urban land cover classes.

The computational burden of the MIL method consists of two
parts: the multi-index calculation and learning. The primitive
indices (MBI, MSI, and NDVI) can be calculated rapidly and auto-
matically, while the variation indices based on the 3D wavelet
Fig. 8. Demonstration of the information indices for discrimination between
different information classes in QuickBird and GeoEye-1 images (VI_Spe and VI_Spa
denote spectral and spatial variation index, respectively).
transformation need more computation time since they are ex-
tracted for each local image cube. However, our experiments show
that the primitive indices combined with the spectral bands can
achieve satisfactory classification accuracies (see Tables 3 and 6).
We can, therefore, only choose the PI as the input features for ur-
ban mapping when the computational efficiency is of primary
importance. On the other hand, concerning the multi-index learn-
ing, the experimental results reveal that the single-kernel SVM
(S-SVM) can obtain similar classification accuracy with the multi-
kernel SVM (M-SVM) (see Table 3). Thus, the former can be used
as a reasonable alternative for rapidly interpreting the multiple
information indices. In addition, it should be noted that the parallel
computing can be considered in future for further improving the
efficiency of the proposed workflow.

The transferability of the proposed multi-index learning, which
is not addressed in this study, will be included in our future re-
search. The active learning (Tuia et al., 2011) and transfer learning
(Pan and Yang, 2010) can be considered for transferability of the
multi-index learning across image scenes and across different sen-
sors, in order to deal with the so-called covariate shift problem, i.e.,
the discrepancy between training and test data.

5. Conclusions

The contributions of this paper lie in the following three
aspects:

1) An innovative multi-index learning (MIL) method is pro-
posed for high-resolution image classification over urban
areas. The notable advantage of the MIL is that it is capable
of achieving accurate classification results with a low-
dimensional semantic feature space, including a set of sta-
tionary primitive indices (MBI, MSI, NDVI) and a couple of
dynamic indices (spectral and spatial variation).

Remarks: The effectiveness of the MIL method was verified in
the experiment Section 4.2, in which the feature combination
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‘MS + PI + VI’ provided the highest accuracies in all the experi-
ments. In addition, it was shown that the PI and VI were comple-
mentary since their combination could significantly improve the
performance of their individual use.

2) A comparative study was conducted for comparison
between the proposed MIL method and several state-of-
the-art high-resolution image classification algorithms that
had been proved to be effective in many applications, such
as the object-based image analysis (OBIA), multiscale tex-
tural classification (GLCM), and the differential morphologi-
cal profiles (DMP).

Remarks: The superiority of the proposed MIL method com-
pared to the well-known OBIA, GLCM, and DMP algorithms was
verified in the experiment Section 4.3. It was shown that the MIL
gave very promising results with a much lower feature space com-
pared to the existing methods (Table 4).

3) A large-scale high-resolution urban mapping (Wuhan City
center, 260 km2) based on ZY-3, which is the China’s first
civilian high-resolution satellite, was conducted in order to
test the feasibility of the MIL method for regional mapping.
Note that it is the first announcement of the results for urban
mapping from ZY-3 images.

Remarks: The effectiveness of the MIL method, as a practical
strategy for large-scale high-resolution urban mapping, was vali-
dated according to the satisfactory accuracies (Table 6).The future
research plans concerning the MIL framework refer to the follow-
ing points:

1) Improvement of the primitive indices, e.g., optimization of
the MBI and MSI, introduction of new information index.

2) An object-based MIL allowing for a rule-based post-
processing.

3) Attempt of more learning algorithms for the multiple infor-
mation indices, such as active learning (Tuia et al., 2011),
deep learning (Hinton et al., 2006).
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