
7140 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 11, NOVEMBER 2014

New Postprocessing Methods for Remote Sensing
Image Classification: A Systematic Study

Xin Huang, Member, IEEE, Qikai Lu, Liangpei Zhang, Senior Member, IEEE, and
Antonio Plaza, Senior Member, IEEE

Abstract—This paper develops several new strategies for remote
sensing image classification postprocessing (CPP) and conducts a
systematic study in this area. CPP is defined as a refinement of
the labeling in a classified image in order to enhance its origi-
nal classification accuracy. The current mainstream classification
methods (preprocessing) extract additional spatial features in or-
der to complement spectral information and enhance classification
using spectral responses alone. On the other hand, however, the
CPP methods, providing a new solution to improve classification
accuracy by refining the initial result, have not received sufficient
attention. They have potential for achieving comparable accuracy
to the preprocessing methods but in a more direct and succinct
way. In this paper, we consider four groups of CPP strategies:
1) filtering; 2) random field; 3) object-based voting; and 4) relearn-
ing. In addition to the state-of-the-art CPP algorithms, we also
propose a series of new ones, e.g., anisotropic probability diffusion
and primitive cooccurrence matrix. In experiments, a number
of multisource remote sensing data sets are used for evaluation
of the considered CPP algorithms. It is shown that all the CPP
strategies are capable of providing more accurate results than
the raw classification. Among them, the relearning approaches
achieve the best results. In addition, our relearning algorithms are
compared with the state-of-the-art spectral–spatial classification.
The results obtained further verify the effectiveness of CPP in
different remote sensing applications.

Index Terms—Anisotropic diffusion, classification, cooccur-
rence matrix (PCM), filtering, Markov random field (MRF),
object-based, postprocessing, reclassification, relearning.

I. INTRODUCTION

C LASSIFICATION, as a classical and basic problem in
many remote sensing disciplines, has been extensively

studied. It provides a set of elementary input parameters for
various remote sensing applications, such as land-cover/use
mapping, change detection, environmental assessment, and
landscape analysis. Traditional classification algorithms use
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pixelwise methods with only spectral information considered,
such as maximum-likelihood classification [1], spectral unmix-
ing [2], decision tree [3], more advanced hybrid classification
[4], support vector machines [5], or the artificial immune net-
work classifier [6], among several others. These methods were
constructed based on medium or low spatial resolution images
where a large number of mixed pixels exist, and radiometric
signals are the most important information source for image
interpretation. In pace with the increasing availability of high
spatial resolution images, the traditional per-pixel classifica-
tion methods have been proved to be inadequate for informa-
tion extraction because the spectral information alone fails to
model the complicated and detailed geospatial structures in
the high-resolution data [7]. In this context, researchers have
proposed to exploit the spatial features as a complementary
source of information to the spectral bands. As a result, many
spectral–spatial classification techniques have been developed
in order to enhance the accuracy of the traditional classification
approaches [8].

The most commonly used spatial features for classification
purposes include wavelet textures [9], gray-level cooccurrence
matrix (GLCM) [10], pixel shape index [5], and morphological
profiles [11]. Meanwhile, in recent years, object-based image
analysis (OBIA) has received much interest. The basic idea of
OBIA is to segment the spatially adjacent pixels into spectrally
similar objects and then conduct image analysis on the objects
as the minimum unit of information [12]. OBIA has been
successfully applied to mapping private gardens [13], urban tree
species [14], forests [15], and urban shadow [16].

The aforementioned spatial feature extraction strategies can
be viewed as a form of preprocessing prior to classification,
which generates a series of additional features from the original
images, in order to improve the classification accuracy that can
be obtained in the original spectral space. However, classifica-
tion postprocessing (CPP) has not received sufficient attention.
We define CPP as a refinement of the labeling in a classified
image in order to enhance its original classification accuracy.
The basic assumption is that adjacent pixels are more likely to
belong to the same class, i.e., things that are near tend to be
more related between them than those that are distant.

The simplest CPP method is the majority filter [17]. Here,
a moving window is centered at each pixel in a classified
image, and the class that appears more often in the window is
then assigned to the central pixel. Schindler [18] proposed to
use Gaussian smoothing, bilateral filtering, and an edge-aware
filter for postclassification smoothing. These advanced filtering
algorithms consider the probabilistic outputs of the classifier
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TABLE I
CPP ALGORITHMS USED IN THIS STUDY (THE NEWLY PROPOSED

ALGORITHMS ARE HIGHLIGHTED IN BLUE)

and impose anisotropic weights on the pixels in the moving
window, which is a strategy that leads to better results than the
traditional majority filter.

Markov random fields (MRFs) [19] can be viewed as an
effective CPP strategy, since they are able to smooth the
classification and provide more homogeneous results on the
condition that the neighbors with the same label are preferred
and those with different labels are panelized. Solaiman et al.
[20] proposed an information fusion CPP method, where the
edge features derived from the original image as well as the the-
matic map are used to produce classification maps with sharp
boundaries and homogeneous regions. In [21], the directional
information is imposed on the probabilistic relaxation model for
postprocessing, in order to preserve the linear features. Some
CPP studies refer to knowledge or rules [8], [22], i.e., a set
of rules (e.g., shape, semantics, and context) are defined and
implemented on the raw classification results. However, these
assumptions or rules are dependent on the specific image scenes
and difficult to generalize.

Although some CPP algorithms exist, they have not received
due attention in their capacity for enhancing remote sensing
image classifications. To the best of our knowledge, a compre-
hensive evaluation (and further improvement) of techniques for
CPP is currently lacking. In this context, we aim to systemati-
cally investigate the available CPP methods for remote sensing
images and develop new strategies, analyzing their potential for
improving the obtained image classification results. As shown
in Table I, the CPP algorithms considered in this study are
categorized into four groups:

1) Filtering: In this group of algorithms, the final decision
on the label of the central pixel within a window is de-
termined by considering the class labels and probabilities
of all the pixels in the window. In this paper, anisotropic
diffusion filtering [23] is adopted for the first time in the
CPP problem.

2) Object-based voting (OBV): Majority voting is conducted
within each image object, based on an initial pixelwise
classification.

3) Markov random fields (MRFs): MRF is able to take ad-
vantage (in a flexible manner) of the contextual informa-
tion associated with images and the dependence among
neighboring pixels to improve the raw classification [19].

4) Relearning: Relearning is an innovative CPP strategy that
we present in this contribution. It aims at iteratively learn-
ing the classified image by considering the frequency and
spatial arrangement of the class labels. Unlike the three
aforementioned kinds of CPP strategies, relearning is
effective not only in terms of smoothing the classification
result but also in the task of enhancing class separability.
In this paper, we propose two novel relearning algorithms.
The first one (called relearning-Hist) is based on the class
histogram, where the class frequency histogram (calcu-
lated for the classified pixels within a moving window) is
used as a statistical feature for iterative reclassification.
The second one is the primitive cooccurrence matrix
(called relearning-PCM), where both the frequency and
the spatial arrangement of the classified pixels within a
moving window are simultaneously considered.

In order to comprehensively evaluate the performance of
the considered CPP algorithms, a series of multisource remote
sensing images are considered in the experiments, including
hyperspectral (two data sets), high-resolution (three data sets),
and SAR images (two data sets). Moreover, a comparative
study is conducted between the considered CPP methods and
the current mainstream spectral–spatial techniques for remote
sensing image classification. The main contributions of this
paper can be therefore summarized as follows.

1) We propose a series of novel CPP algorithms (see Table I).
2) We perform a systematic investigation of (available and

new) CPP strategies.
3) We conduct a detailed comparison between CPP tech-

niques and several commonly used spectral–spatial clas-
sification methods.

The remainder of this study is organized as follows:
Section II describes various state-of-the-art CPP algorithms,
and Section III focuses on the proposed relearning methods,
which are the main contributions of this paper. Section IV
introduces the multisource remote sensing data sets used for
validation purposes. Section V presents our experimental re-
sults, including a detailed parameter analysis and comparison.
Section VI concludes this paper with some remarks and hints at
plausible future research lines.

II. STATE-OF-THE-ART CPP METHODS

This section introduces the state-of-the-art CPP strategies,
including filters, object-based, and MRF methods. Note that
a new CPP algorithm based on anisotropic diffusion is also
presented.

A. Filtering-Based Methods

Filtering is the most widely used CPP method in state-of-
the-art remote sensing image classification. Filtering is carried
out based on a sliding window, and the class of the central
pixel is determined by considering the labels, probabilities, and
intensity values of all the pixels within it. In this paper, majority,
Gaussian, bilateral, and edge-aware filters [18] are investigated
for smoothing the classification results. Furthermore, we also
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propose a novel anisotropic diffusion CPP filtering. The deci-
sion rule of the filtering-based CPP methods is maximization
of the probability function

C(x) = argmax
i∈C

(p̃x,i) (1)

where C represents the labeling space, and C(x) is the final
label of the pixel x. p̃x,i denotes the probability of pixel x
belonging to the class i after filtering. A description of these
methods follows.

1) Majority filter: The majority class in the sliding window
is assigned to the central pixel.

2) Gaussian filter: The class of the central pixel is de-
termined by using the class probabilities and Gaussian
distance weighting within the local window w. The like-
lihood function of the Gaussian filter can be written as

p̃x,i =
1

Z(σ)

∑
y∈w

py,i ·Gσ (‖x− y‖) (2)

where Gσ is the Gaussian function with standard devia-
tion σ, and Z(σ) is the sum-to-one normalization term.
py,i denotes the initial probability that a pixel y belongs
to the class i, which is obtained by a pixelwise classifier.
w represents the window centered by the pixel x.

3) Bilateral filter: The bilateral filter is an enhanced version
of the Gaussian filter that simultaneously considers the
distance in the spatial domain and the distance in the in-
tensity (range) domain between the current and the cen-
tral pixel [24]:

p̃x,i =
1

Z(σ, γ)

∑
y∈w

py,i ·Gσ (‖x− y‖) ·Gγ (|I(x)− I(y)|)

(3)

where the spatial and the intensity information are respec-
tively modeled by two Gaussian functions, Gσ and Gγ .
The intensity image provides an additional constraint on
Gaussian smoothing. In this paper, two intensity images
are considered, i.e., the class probability and the original
image, respectively, which are denoted as the bilateral and
edge-aware filter:
Bilateral filter: Gγ(|I(x)− I(y)|) = Gγ(|px,i − py,i|);
Edge-aware filter: I(x) and I(y) denote the original

spectral value for pixel x and y, respectively.
This way, CPP smoothing is strong within relatively

homogeneous regions, and boundaries can be better pre-
served since the similarity of the intensity values between
neighboring pixels is considered.

4) Anisotropic diffusion: This approach aims to reduce the
image noise without blurring important parts of the image
content, e.g., edges and details. The fundamental function
adopted by anisotropic diffusion [23] is defined as

∂I

∂t
= dt(x, y)ΔI +∇d · ∇I (4)

where I is the image, and t is the time of evolution, i.e.,
the iteration number. Δ and ∇ represent the Laplacian
and gradient operators, respectively. d is the diffusion

coefficient, which controls the rate of diffusion. A dis-
crete solution of (4) can be derived using the forward-time
central-space method:

It+1(x, y) = It(x, y) + λ
∑
y∈Nx

dt(x, y) · ∇It(x, y) (5)

where Nx denotes the neighborhood around the central
pixel x (4-neighborhood is used for anisotropic diffu-
sion). λ is a constant parameter, controlling the stability
of the solution, and its range [0, 0.25] is suggested in [23].
It is set to 0.1 in this study. The diffusion coefficient (so-
called flux function) d is a key parameter of the diffusion.
According to [23], two functions are defined:

d (‖∇I‖) = e
−
(

‖∇I‖
K

)2

(6)

d (‖∇I‖) = 1

1 +
(

‖∇I‖
K

)2 (7)

where the free parameter K represents the edge-strength
to consider in the diffusion. It can be seen that a large
value of K will lead to an isotropic diffusion. Anisotropic
diffusion was originally adopted for image denoising.
In this paper, (5) is transformed into a CPP smoothing
method, by defining

p̃t+1
x,i = p̃tx,i + λ

∑
y∈Nx

d
(∥∥p̃tx,i − p̃ty,i

∥∥) · (p̃tx,i − p̃ty,i
)
,

with p̃t=0
x,i = px,i and p̃t=0

y,i = py,i, (8)

where the probability image is viewed as the input image
I; the gradient ∇ is expressed as the differential image
between the central pixel x and its neighborhood Nx.
From (8), it can be seen that the class likelihood of each
pixel is iteratively updated by considering the similarity
of the pixels in a neighborhood. Anisotropic diffusion is
an effective approach for image smoothing and denoising,
but, surprisingly, it does not seem to have been used for
remote sensing image classification purposes.

B. OBV

OBV-based CPP is inspired by the well-known OBIA ap-
proach [25]. However, the traditional OBIA method uses the av-
erage spectral vector of each object for classification purposes
[26]. This strategy does not generally show any improvements
over results yielded by using a pixelwise classification based
on the spectral information [27]. In this paper, the object-based
image processing approach is used for refinement of the raw
pixelwise classification, and majority voting is conducted based
on the boundary derived from the object-based segmentation.

The quality of image segmentation is a key factor in the
performance of the OBIA approach; however, until now, defin-
ing the homogeneity criteria and setting the corresponding
parameters for the accurate segmentation of remote sensing
images has been a difficult problem [28]. In this paper, an
adaptive mean-shift segmentation algorithm [12] is utilized for
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the OBV. The notable advantage of the adaptive mean-shift lies
in the fact that it can automatically choose the spatial bandwidth
of the mean-shift procedure according to the characteristics of
the local neighborhoods.

OBV is carried out using the label and probability, respec-
tively, for crisp and soft voting:

Crisp : ps,i =
1

Ns

∑
y∈s

τ (C(y) = i)

Soft : ps,i =
1

Ns

∑
y∈s

py,i (9)

where τ is an indicator function recording the number of times
that the pixels within a segment s are classified as class i. Ns

is the number of pixels in the segment s. The final label of the
segment is determined according to the maximum probability,
as indicated in (1).

C. MRF Model

The MRF model is a well-known probabilistic model that
is used to integrate the spatial context into image classifica-
tion problems [19], [29], [30]. It can be regarded as a CPP
strategy—note that it fully complies with the definition of a
CPP given in this study, i.e., it is able to optimize the raw
classification result by imposing the smoothness prior on the
pixels. The goal of the MRF is to maximize the global posterior
probability, which is equivalent to the minimization of the en-
ergy function (i.e., negative log-likelihood) according to Gibbs
distribution [19]. A basic expression of the MRF energy can be
written as

E(X,C) = −
∑
x∈X

ln(px,i) + β
∑
y∈Nx

[1− δ (C(x), C(y))]

(10)

where X and C denote the image and its labeling space,
respectively. Nx represents the neighborhood centered by pixel
x (8-neighborhood is used for the MRF). C(x) and C(y) are
the label of pixel x and y, respectively. δ(·) is the Kronecker
function, i.e., δ(x, y) = a for x = y and δ(x, y) = 0 otherwise,
used to penalize the change of labels in the neighborhood
Nx. Here, the constant a can be an arbitrary value since
the contribution of the spatial term is controlled by another
constant β.

Note that the global minimization of the energy function is
NP-hard. Consequently, a key problem for the implementation
of MRF is the inference strategy, i.e., how the configuration
with minimal energy is found. Traditional optimization tech-
niques use the so-called standard moves, where only one pixel
can change its label at a time. The standard moves, however,
are a weak condition, frequently leading to low-quality solu-
tions [31]. The iterated conditional modes (ICM) is a well-
known method using the standard moves, which chooses the
label giving the largest decrease of the energy function until
convergence. Another algorithm based on the standard moves is
simulated annealing [31], which is easy to implement; however,
it requires exponential time for minimization of the energy

function. More recently, efficient approximation optimization
methods based on graph cuts have been proposed. Specifically,
the α-expansion algorithm [31] is used in this study for the
optimization of the classical MRF. In contrast to the aforemen-
tioned algorithms using standard moves (e.g., ICM and simu-
lated annealing), the expansion algorithm can simultaneously
change the labels of arbitrarily large sets of pixels and find a
labeling within a known factor of the global minimum [31].

III. RELEARNING

The aforementioned CPP methods (filtering, OBV, and MRF)
are effective for reorganizing and optimizing the raw classifica-
tion. Nevertheless, they cannot enhance the separability of the
classes in the original feature space and, hence, have limited
ability for solving the problem of discrimination between spec-
trally similar classes. Consequently, in this work, we introduce
relearning methods based on the distribution of class labels
within the neighborhood of each pixel, in order to enhance
the separability between similar classes, and then improve the
classification results substantially.

A. Relearning-PCM

The first relearning algorithm that we have developed in this
contribution is called the primitive cooccurrence matrix (PCM)
and is inspired by the well-known GLCM [32]. GLCM is a
preprocessing approach that uses the spatial arrangement of the
gray level for textural feature extraction [33], whereas PCM is
a postprocessing approach in which the spatial arrangement of
the class labels is considered for relearning.

Analogous to the GLCM, the basic principle of the PCM
is demonstrated in Fig. 1. Its calculation is described in the
following steps.

Step 1) The initial classification divides the whole image
into C information classes. This step is similar to the
quantization step of the GLCM.

Step 2) Based on each moving window (of size = w) in
the classified image, a C× C PCM is generated,
where #(Ci,Cj) represents the number of times
that the class i and j occur with distance dis and
direction dir. The PCM, therefore, can be expressed
as PCM(w, dis, dir), as shown in Fig. 1.

Step 3) Prior information on the direction for an arbitrary
image is often not available. Thus, without loss of
generality, the multidirectional PCMs are summed
as follows:

PCM(w, dis) =
∑
dir

PCM(w, dis, dir) (11)

with dir = (0◦, 45◦, 90◦, 135◦). Moreover, in this
study, only the direct neighbors (i.e., those ob-
tained with dis = 1) are considered, and hence, the
PCM can be expressed with only one parameter w:
PCM(w). Note that higher-order neighbors might
contain additional information for characterizing the
spatial correlation between classified pixels (i.e.,
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Fig. 1. Demonstration of the PCM.

Fig. 2. Flowchart of the relearning-PCM algorithm.

the so-called primitives); however, this complicates
the problem and significantly increases the feature
dimensionality and computational burden.

Step 4) The primitive matrices derived from the multiple
windows can be further integrated because objects
in remote sensing imagery generally have multi-
scale characteristics: PCM =

∑
w PCM(w). The fi-

nal PCM consists of two parts: diagonal elements,
which represent the frequency of the primitives in
the windows around the central pixel; and nondiag-
onal elements, which describe the spatial cooccur-
rence correlation between the classes. Subsequently,
the frequency and spatial arrangement of the primi-
tives contained in the PCM are fed into a classifier
for relearning, as shown in Fig. 2. Note that relearn-
ing is an iterative postclassification method, i.e., the
classification is gradually optimized according to
the feedback provided by the PCM (class frequency
and spatial arrangement). The experiments reported
on Section V-B show that only a few iterations are
needed to achieve a steady and satisfactory result.

B. Relearning-Hist

The second relearning algorithm developed in this contribu-
tion (called relearning-Hist) is based on a local class histogram.
The initial classification transforms an image into a new primi-
tive (or labeling) space, based on which the image information
can be represented using the occurrence of primitives as a fea-
ture vector. It should be noted that the relearning-Hist algorithm
concentrates on the frequency of the primitives but not on their
spatial arrangement, i.e., only the information on the number

Fig. 3. Weighting kernel for the class histogram.

of occurrences of each primitive is considered. For instance,
“a narrow road” and “narrow a road” are regarded as the same
by this model. In contrast, the relearning-PCM method takes
the order of the primitives into consideration, by which the
spatial correlation between neighboring pixels is modeled. This
way, “a narrow road” and “narrow a road” represent different
configurations. The PCM model, however, only exploits their
direct neighbors [dis = 1 in (11)] by taking the computational
burden into account.

Specifically, the relearning-Hist method is implemented by
the following steps:

Step 1) The classes defined in a classified image are viewed
as the primitives of an image, providing an implicit
representation of the image.

Step 2) Given a moving window w with its central pixel x,
the local class histogram (frequency of the primi-
tives) is calculated as follows:

hist(x,w) = {h1(x,w), . . . hi(x,w), . . . , hn(x,w)} (12)
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TABLE II
INFORMATION OF THE REMOTE SENSING TEST DATA SETS CONSIDERED IN THIS PAPER

where hi(x,w) denotes the histogram of class i in
the local window. In order to consider the multiscale
characteristics, in the window, the pixels near the
center receive higher weights. As shown in Fig. 3,
the window w is divided into three levels, corre-
sponding to different weights, w1 = 1, w2 = 2/3,
and w3 = 1/3, respectively, for the calculation of
the class histogram. Note that although more sophis-
ticated weighting kernels can be considered, such as
the Gaussian kernel, or edge preservation strategies,
the multiwindow weighting strategy is adopted in
this paper in order to keep consistent with the set-
tings in the PCM algorithm.

Step 3) The class histogram is then used as the input for
relearning. The histogram is iteratively updated ac-
cording to the current classification result, until the
relearning stops. The experiments show that we can
obtain a steady and accurate classification result
after only three iterations.

C. Relation Between Different CPP Methods

The filter-based CPP methods aim to smooth the raw clas-
sification, by suppressing the salt-and-pepper effect resulting
from the pixelwise processing. Gaussian, bilateral, and edge-
aware filters consider distance, probability, and intensity as
weighting, respectively, in order to reduce the oversmoothing
effect. Moreover, the bilateral filter is a particular choice of
weights in an anisotropic diffusion process, which is obtained
from geometrical considerations [34], i.e., formally, the bilat-
eral filter is an approximation for the anisotropic diffusion with
geometrically sensible weights.

The object-based CPP methods can be cast into the filters.
The crisp OBV is actually a majority filter with segmentation-
adaptive weights by considering the boundary of each object,
and the soft OBV is a probability-based averaging filter with
such weights. The OBV-based CPP methods can also be inter-
preted as smoothness prior, since the pixels within an object are
forced to have the same label. As pointed out in [18], however,
the main weakness of the OBIA is that the segments cannot
precisely delineate the class boundaries. In this context, MRF,
which allows one to consider segmentation as a soft constraint,
is an appropriate alternative for the crisp segmentation. The
MRF-based CPP strategy aims at globally maximizing the
posterior probability (or minimizing the energy function) of a
classified image. It is also capable of suppressing the pixelwise
classification noise (salt-and-pepper) and smoothing the raw

result by penalizing the assignment of different labels in the
8-neighborhood.

The relearning CPP methods are different from the afore-
mentioned ones. Their principle is to adaptively learn the spatial
arrangement and correlation in a neighborhood of a classified
image. The relearning approaches also tend to smooth the
raw classification, since in most cases, nearby pixels have the
same label. Nevertheless and more importantly, the relearning
methods can correct the classification errors (i.e., enhance class
separability) by learning the implicit correlation or rules from
the spatial arrangement of labels and the class outputs within a
neighborhood.

In particular, we would like to emphasize at this point the
training approach adopted for the proposed relearning methods.
The estimated class patterns by the raw classifier are used as
input to the relearning in order to determine the cooccurrence
matrix or histograms. The exploitation of the contextual infor-
mation (e.g., frequency and arrangement of primitives) seems
to even out the noise in the initially estimated labeling space.
Consequently, all the CPP methods are based on the same
amount of information and, hence, can be compared fairly.

IV. DATA AND EXPERIMENTAL SETUP

This section presents the data sets considered and the setup
of the parameters used in the experiments.

A. Data sets

In order to test the robustness of the CPP methods discussed
in this paper, a series of multisource remote sensing images are
adopted, including hyperspectral, high spatial resolution, and
SAR data sets. Their basic information is provided in Table II.

1) Hyperspectral Data sets: The AVIRIS image from the
Indian Pines test site is a widely used hyperspectral data set
in classification applications. The image consists of 145 ×
145 pixels, with 220 spectral bands [see Fig. 4(a)], and con-
tains 12 crop types and a total of 10 171 labeled pixels for
algorithm testing (Table III). Classification of this image is a
very challenging problem because of the strong mixture of the
classes’ signatures and the unbalanced number of labeled pixels
per class [35].

The HYDICE airborne data flight over the Washington DC
Mall is also a public hyperspectral data set, which has been
widely used for the evaluation of various classification algo-
rithms [36]. Its main characteristic is that it possesses high
resolutions in both the spectral and spatial domains (210 narrow
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Fig. 4. Hyperspectral data sets of (a) the AVIRIS Indian Pines agricultural area and (b) the HYDICE DC Mall.

TABLE III
NUMBER OF THE VALIDATION SAMPLES (AVIRIS DATA SET)

bands with 2.5-m spatial resolution). The water absorption
bands were discarded from the original 210 channels in the
visible and infrared regions (400–2400 nm), resulting in 191
channels available for the experiments. As shown in Fig. 4(b),
this image consists of 1280 × 307 pixels, with 19 332 labeled
pixels for model validation (see Table IV). The HYDICE DC
Mall image is also a challenging data set for image classifica-
tion, mainly due to the following reasons: 1) the materials used
for constructing rooftops in the scene exhibit large diversity,
and hence, no single spectral response can be expected from this
class; 2) several groups of classes have similar spectral proper-
ties, such as water-shadow, trees-grass, and roofs-trails-roads,
which reduces spectral separability and increases classification
difficulty.

TABLE IV
NUMBER OF THE VALIDATION SAMPLES (HYDICE DC MALL DATA SET)

2) HSR Data Sets: High spatial resolution (HSR) data pro-
vide detailed ground information, and hence, exploitation of the
joint spectral–spatial features is imperative for accurate classi-
fication in this case. Thus, experiments on the HSR data sets, in
particular, are relevant for the evaluation of the considered CPP
models, which are constructed on the basis of the neighboring
information. In this paper, three HSR data sets are used for
validation and comparison of the various algorithms addressed
in this contribution. The test images are shown in Fig. 5(a)–(c),
respectively, for the QuickBird Wuhan, WorldView-2 Hainan,
and ZY-3 Wuhan areas. Their available reference samples are
reported in Table V. The challenge for interpreting these HSR
images is to discriminate between the spectrally similar classes,
e.g., grass-trees, water-shadow, and roads-buildings-soil.

3) SAR: In order to further validate the discussed CPP
methods, two SAR data sets are employed in this study. It is
interesting to see the performance of the CPP methods for the
SAR images, where a large amount of speckle noise exists.
The first test image, airborne synthetic aperture radar (AirSAR)
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Fig. 5. HSR data sets and their reference samples. (a) QuickBird Wuhan.
(b) WorldView-2 Hainan. (c) ZY-3 Wuhan.

L-band PolSAR data, was obtained by NASA JPL over the
Flevoland site in the Netherlands. The Pauli-RGB image and
ground truth are shown in Fig. 6(a). The Flevoland image is
a widely used SAR test image for land-cover classification,
containing different crop classes as well as bare soil, water,
and forest. PolSAR is an advanced form of SAR that emits and
receives multifrequency and fully polarized radar waves and
has shown advantages in land-cover classification [37]. The
other PolSAR image considered in this study was acquired
by the Electromagnetics Institute Synthetic Aperture Radar
(EMISAR) system over Foulum, Denmark. As shown in the

TABLE V
NUMBER OF THE VALIDATION SAMPLES FOR HSR DATA SETS

image and its reference data [see Fig. 6(b)], the study area
covers a vegetated region, which consists of water, conifer-
ous, rye, oat, and winter wheat. Information for the reference
samples of the two SAR test images is provided in Table VI.
The challenges for classifying the two SAR images consid-
ered in this experiment are twofold: 1) discriminating between
the different vegetation species and/or agricultural crops; and
2) smoothing the classification result that is blurred by the
speckle noise.

B. Experimental Setup

Our experimental setup first reports the parameters consid-
ered for the CPP algorithms and the classification (training sam-
ples and classifier). In the following, we report such parameters
for the different techniques considered in this work.

1) Filtering:
• Majority: Window size w = {3, 5, 7, 9, 11};
• Gaussian: Window size w = {3, 5, 7, 9, 11}, and

distance kernel parameter σ = (w − 1)/2;
• Bilateral: Window size w = {3, 5, 7, 9, 11}, distance

kernel parameter σ = (w − 1)/2, and probability
kernel parameter γ = {0.1, 0.2, 0.5, 1, 2, 5, 10, 20};

• Edge-aware: Window size w = {3, 5, 7, 9, 11}, dis-
tance kernel parameter σ = (w − 1)/2, and spec-
tral kernel parameter γ={0.02, 0.05, 0.1, 0.2, 0.5,
1, 2, 5};

• Anisotropic diffusion: Iteration number t = 150,
λ = 0.1, and parameter K = {0.5, 1, 2, 5}. Equa-
tion (7) is used as the flux function.

2) OBV:
• OBV-Soft and OBV-Crisp: The spatial bandwidth

is adaptively selected according to the pixel shape
index [5]. Spectral bandwidth = {10, 15, 20}, and
minimum region size = {1, 5, 10, 15, 20, 25, 30}.

3) MRF:
• MRF: Weight of the spatial item β = {0.05, 0.1,

0.2, 0.5, 1, 2, 5, 10, 20}.
4) Relearning:

• Relearning-PCM and relearning-Hist: Window size
w = {7, 9, 11}.

5) Classification:
• Classifier: Support vector machine (SVM) is chosen

as the base classifier of the CPP algorithms in this
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Fig. 6. SAR test images and ground truth references. (a) Flevoland AirSAR. (b) Foulum EMISAR.

TABLE VI
NUMBER OF VALIDATION SAMPLES (SAR DATA SETS) FOR

(a) FLEVOLAND AIRSAR AND (b) FOULUM EMISAR

study because it is a rapid and adaptive learning
approach that does not require prior assumptions on
the distribution of input features [8], [11]. The pa-

rameters of the SVM are: Penalty coefficient = 100,
kernel = RBF (radial basis function), RBF band-
width σ = 1/n (n is the dimension of the input
features).

• Training and test samples: 50 and 100 samples
per class selected from the reference are used for
training of the SVM for the hyperspectral and HSR
data sets, respectively. As for the SAR experiments,
20 samples per class are adopted. The rest of the
samples are used for the validation of the various
algorithms.

The parameter sensitivity is analyzed in Section V-B.

V. EXPERIMENTS

This section presents the general experimental results of the
CPP methods, with their parameter sensitivity analysis and a
visual comparison, followed by a detailed comparison between
the CPP methods and the current mainstream spectral–spatial
classifications. In particular, the proposed relearning methods
are analyzed in detail.

A. General Results

The general results obtained by the CPP algorithms investi-
gated in this study are provided in Table VII. Two commonly
used measures, namely, the overall accuracy (OA) and the
Kappa coefficient, were extracted from the confusion matrix for
quantitative assessment. Due to the high correlation between
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TABLE VII
OVERALL ACCURACY (%) OF THE CPP ALGORITHMS INVESTIGATED IN THIS STUDY FOR THE VARIOUS REMOTE SENSING DATA SETS.

THE MEAN AND STANDARD DEVIATION OF THE OA VALUES FOR EACH CPP ALGORITHM ARE REPORTED BASED ON 30 RUNS

WITH DIFFERENT STARTING TRAINING SETS. THE STANDARD DEVIATIONS ARE REPORTED IN THE BRACKETS

TABLE VIII
STATISTICAL SIGNIFICANCE TEST FOR THE SEVEN EXPERIMENTS IN THIS STUDY

(‘ + ’ = positive significance, ‘N’ = No significance, ‘− ’ = negative significance)

OA and Kappa, only the OA values are reported in the ta-
ble. Note that the accuracy of each algorithm is presented
with its optimal parameters. All the experiments are repeated
30 times with different starting training sets. This way, the mean
and standard deviation of the OA for each CPP algorithm are
reported in Table VII. Moreover, tests for statistical significance
have been performed, and the results of the z-scores [38]
are reported in Table VIII, where the symbol “+”, “N”, and
“−” denote positive (z > 1.96), no (−1.96 ≤ z ≤ 1.96), and
negative (z < −1.96) statistical significance, respectively. For
instance, “6N, 1-” for the “majority vs. Gaussian” signifies
that the majority filter obtains 6 no significance and 1 negative
significance in the seven experiments when compared with the
Gaussian filter.

The first noteworthy observation from the results reported
in Table VII is that the proposed relearning methods achieve
the highest accuracy values except for the AirSAR data set
when compared with the other CPP methods. Furthermore, it
should be noted that the accuracy improvements are strikingly
significant. For instance, compared with the raw classification,
the average improvements obtained by the relearning-PCM
are 31.4% (AVIRIS), 8.9% (HYDICE), 10.3% (QB), 7.7%
(WV-2), 9.0% (ZY-3), 7.1% (AirSAR), and 5.8% (EMISAR).
This conclusion is also supported by the significance test shown

in Table VIII, since all the other CPP methods obtain “N” and
“−” significance compared with relearning. The satisfactory
performance of the relearning methods is due to their ability
to enhance class separability. The traditional CPP algorithms,
such as MRF, filtering, and voting, however, are only able to
smooth the classification results and reduce the salt-and-pepper
effect.

From Tables VII and VIII, first of all, it can be seen that all
the CPP methods can provide higher accuracy values to varying
degrees, compared with the raw classification. The proposed
relearning methods obtain significantly better results than raw
classification in all the experiments, and this is followed by
anisotropic diffusion, giving 6 positive significance scores in
seven tests.

Among the five filtering methods, the “N” value is dominant,
showing that they provide similar accuracy values in most
cases. Nevertheless, it should be stated that the anisotropic,
edge-aware, and bilateral filters achieve slightly better results
than the majority method, since the former show slightly higher
accuracy values (up to 4%) and 1 ∼ 2 positive significance
scores in seven experiments.

The OBV methods achieve significantly better results than
the raw classification (4 ∼ 5 positive significance scores),
similar accuracy values with the majority and Gaussian filters
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Fig. 7. Comparison between the representative CPP algorithms in all the experiments, with the horizontal and vertical axes being the test images and the obtained
OA values, respectively.

(7 “N” values), but slightly worse results than the bilateral,
edge-aware, anisotropic filters and the MRF method (1 ∼ 2
negative scores), in terms of the tests in Table VIII. In particular,
from Table VII, it is noticed that the OBV algorithms outper-
form the other CPP methods in the Flevoland AirSAR image,
which can be attributed to its high-quality segmentation owing
to the regular croplands with uniform shape. This phenomenon
shows that the performance of the OBV strongly relies on the
quality of the segmentation. In addition, from Tables VII and
VIII, it can be seen that the OBV-Soft does not show obvious
advantages over the OBV-Crisp in all the experiments, which
shows that the different strategies used for the voting (based on
class probability or label) do not have a significant impact on
the OBV.

As for the MRF, it can be seen that it performs equally well
with the filtering methods, but slightly better than the OBV
since 1 ∼ 2 positive significance values are obtained. Compared
with the raw classification, the increments of the OA achieved
by the MRF are 16.5% (AVIRIS), 7.2% (HYDICE), 0.0%
(QuickBird), 4.6% (WV-2), 3.1% (ZY-3), 4.8% (AirSAR), and
5.1% (EMISAR), respectively.

Concerning the relearning strategy, the two proposed algo-
rithms yield very promising results in terms of their OA values,
which are higher than 90% in nearly all the experiments. Specif-
ically, among all the 63 significance tests (seven experiments
compared with the other nine methods), 70% are positive sig-
nificance, and the remaining 30% are no significance, without
negative scores reported. The two relearning algorithms achieve
similar results in terms of the accuracy values in Table VII and
the statistical test in Table VIII.

The OA values with the standard deviations for several
representative CPP algorithms are compared in Fig. 7, where
the horizontal and vertical axes indicate the test images and
the obtained OA values, respectively. From the figure, the
superiority of the relearning strategy compared to other CPP
algorithms can be clearly seen. Moreover, it results in high
accuracies but low standard deviations, which reveals that the
relearning-PCM is effective and robust. In addition, it can also
be seen that the anisotropic diffusion obtains comparable results
to the MRF, and, the bilateral filter also produces satisfactory
results.

In Fig. 7, it can be seen that the QuickBird data set represents
a special case, mainly because all the CPP algorithms do not
show any improvement with regard to the raw classification,
except for the relearning strategies. To further explore this
issue, the confusion matrices for the QuickBird data set ob-
tained by the raw classification, MRF, and relearning-PCM are
presented in Table IX. Such confusion matrices show that the

TABLE IX
CONFUSION MATRICES FOR THE QUICKBIRD DATA SET: (a) RAW

CLASSIFICATION, (b) MRF, AND (c) RELEARNING-PCM. THE

CONFUSION MATRIX WITH THE HIGHEST ACCURACY

IN 30 RUNS IS REPORTED FOR EACH METHOD

classification errors mainly point to the discrimination between
buildings, roads, and soil, which are spectrally similar. From
the tables, it can be also seen that when the relearning-PCM
algorithm is used, the misclassifications between the spectrally
similar classes are significantly reduced. For instance, the errors
for roads-buildings are 3350, 3331, and 504 pixels, respectively,
for the raw, MRF, and relearning-PCM. Furthermore, the sit-
uation is similar for the cases of buildings-roads, trees-grass,
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Fig. 8. Analysis of the parameter sensitivity for the CPP methods considered in this study. The training samples (50 pixels for each class) used to generate
the accuracy curves are randomly chosen from the reference. For the bilateral filter, the accuracy curves represent different window sizes (w = 3, 7, 11). For
the anisotropic diffusion, the accuracy curves represent the parameter K = 0.5, 1, 2, defined in (7). In the relearning methods, the curves stand for the accuracy
values achieved by different sizes of training samples (50 and 100 samples for each class, i.e., #50, and #100).

buildings-soil, and roads-soil, where the misclassifications ob-
viously decrease with the relearning-PCM method. The Quick-
Bird experiment in Table IX is a good example to show the
superiority of the proposed relearning strategy for enhancing
the separability between similar classes and improving the raw
classification.

B. Parameter Sensitivity Analysis

This section discusses how the parameters of the CPP al-
gorithms influence their performance. Fig. 8 shows the OA of
some representative CPP methods over a range of parameters
with the HYDICE DC Mall data set. The HYDICE image is
chosen for the analysis of parameter sensitivity because it is a
hyperspectral image with high spatial resolution, and hence, it
is representative of the data sets used in this study. In Fig. 8,
we can once again clearly observe the general performance of
the CPP algorithms: 1) all the postprocessing algorithms show
obviously higher accuracy values than the raw classification;
2) the relearning methods achieve steady and accurate classifi-
cation results; and 3) the random field, bilateral filter, and the
anisotropic diffusion can provide satisfactory accuracy values
when their parameters are well tuned. Detailed discussions are
given below.

1) Bilateral filter: A larger window size and kernel width
lead to higher accuracy values, showing that successful
application of the bilateral filter is based on a sufficient
characterization of contextual information around each
pixel. However, the parameters for the neighboring re-
sponse should be carefully tuned. For instance, in this ex-
periment, the window size of 7 with a probability kernel
width of 5 yields the optimal result (OA = 96.3%).

2) OBV: The minimum region size does not influence the
final result as the values in a range of 10–30 lead to
similar accuracy values.

3) MRF: It can be seen that the spatial weight, which
defines the degree for penalizing the dissimilarity in a

neighborhood, has an obvious impact on the classification
accuracy. It should be carefully chosen for an effective
MRF implementation.

4) Anisotropic diffusion: In Fig. 8, the curves represent
the accuracy values achieved by different values of the
coefficient K, defined in (7). As previously stated, the
value of K can be viewed as an indicator that defines
the degree of anisotropy in the diffusion, e.g., a larger
value signifies a more isotropic diffusion. Consequently,
the value of K should be selected according to the spatial
characteristics of the image scenes. For instance, in the
case of the HYDICE data set considered in this experi-
ment, the largest value (K = 2) has the optimal accuracy
curve, since the DC Mall image exhibits a relatively
isotropic landscape [see Fig. 4(b)], where buildings with
rectangular shape are regularly arranged. In addition, it
can be seen that the anisotropic diffusion needs about
30 iterations to reach convergence.

5) Relearning: The accuracy values obtained by the two
newly developed relearning algorithms are consistently
high in all cases. Note that the relearning methods with
only one iteration can significantly increase the OA of the
raw classification, i.e., from 90% to 98%. By comparing
the relearning-PCM and the relearning-Hist, it can be
seen that the former performs better and converges faster
than the latter. Only three iterations are needed for PCM
to achieve a stable status. It is therefore implied that the
consideration of the spatial arrangement of primitives can
enhance the performance and accelerate convergence of
the relearning algorithm. In addition, the performance of
the relearning methods with different training sets has
been also tested. As the accuracy curves in Fig. 8 show,
the increase in the number of training samples from 50 to
100 (per class) leads to an increment of the OA by 1 ∼ 2%
(on average). After three iterations, the relearning-PCM
with 100 training samples per class can achieve almost
perfect classification accuracy (over 99.5%).
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Fig. 9. Subset images of the classification maps for the HYDICE DC Mall image.

C. Visual Comparison

In addition to the accuracy values given in the previous
section, this section provides a visual comparison of the results
obtained by the CPP algorithms considered in this study. For the
HYDICE DC Mall image, the classification maps of the subim-
ages extracted are compared in Fig. 9. A detailed discussion of
the performance of each CPP algorithm follows.

1) Raw classification: The salt-and-pepper effect can be
clearly seen for the pixelwise classification. Meanwhile, a
lot of misclassifications occur between water-shadow and
trails-roofs due to their similar spectral reflectance.

2) Bilateral filtering: Compared with the raw result, the mis-
classifications in regions A, B, and C are partly corrected
by the bilateral filter, and the confusion between water
and shadow is also clarified. The improvements can be at-
tributed to the fact that the probability information in the
neighborhoods is effectively exploited in postprocessing.
However, it can be also observed that misclassifications
still exist, e.g., roof A is partially identified as trails.

3) Anisotropic diffusion: This produces a similar classifica-
tion map to the bilateral filter.

4) OBV-Soft: Although this approach is effective in sup-
pressing the salt-and-pepper noise of the pixelwise classi-
fication, it fails to discriminate between roads, roofs, and
trails.

5) MRF: It achieves satisfactory result, and the classification
map looks clear. The classification errors between roofs-
trails-roads are substantially reduced (see roofs A, B,
and C). However, some errors are not corrected, e.g.,
the confusion between roofs and trails in roof A. As
revealed in [18], the CPP methods based on the smooth-
ness assumption tend to oversmooth small structures to
some extent. In this regard, it can be observed that the
classification maps generated by the filters and MRF do
not exhibit clear boundaries between adjacent objects.

6) Relearning: The relearning-Hist and relearning-PCM al-
gorithms give very similar classification maps, where the
errors in regions A, B, and C have been totally recti-
fied. Moreover, the misclassifications between water and
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Fig. 10. Classification maps of the HYDICE DC Mall data set obtained by raw classification, MRF, and relearning-PCM methods.

shadow have been corrected. Compared with the results
achieved by the filters and MRF, the boundaries between
adjacent objects are clearer, and the shape of structures is
delineated better with the relearning methods.

Moreover, the classification maps of the whole image by raw,
MRF, and relearning-PCM methods are displayed in Fig. 10.
The MRF and relearning algorithms are of particular interest
since they achieve the most accurate results in the DC Mall
test and even in all the experiments. It can be observed that
relearning is more effective for improving the raw classification
than MRF and, at the same time, better at preserving the
detailed structures and edges. The satisfactory performance of
the relearning-PCM can be attributed to the fact that this method
is able to learn the implicit rules of spatial arrangement of
primitives.

The WorldView-2 Hainan data set is also taken as an example
for the visual comparison of the results of the CPP algorithms

(Fig. 11). In this case, two regions (A and B) are the focus of our
study. Region A is related to the confusion between buildings
and roads. It can be seen that the filtering and OBV methods
rely on the initial classification result, where some buildings in
region A were wrongly classified as roads. The MRF method
correctly identifies the buildings, but it causes oversmoothing
effects in this region, e.g., the shadows are merged with the
buildings nearby. This way, the whole region is classified as
buildings and detailed structures (e.g., shadow and shape of
roofs) are lost. On the other hand, in Fig. 11, it can be seen
that the proposed relearning methods are able to solve the mis-
classification problems, since most of the buildings in region A
are now correctly identified. The case of region B is similar to
region A, in which a number of building pixels are wrongly
classified as soil by the raw, filtering, and OBV algorithms,
but are correctly identified by the relearning methods. There-
fore, the WorldView-2 experiment also shows that only the
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Fig. 11. Classification maps for the CPP algorithms with the WordView-2 Hainan data set.

relearning methods (among all the CPP strategies considered
in this study) can provide sufficient discriminative ability for
the classification and avoid the oversmoothing effects.

The classification results for the Foulum EMISAR data set
are shown in Fig. 12. Only the reference regions are displayed,
according to the distributor of the data set [39]. It should be kept
in mind that the main task of postprocessing in this experiment
is to smooth the initial result, since the raw classification is
already quite good (average OA = 93.4%). From this point of
view, it can be seen that the anisotropic diffusion, MRF, and the
relearning methods achieve very accurate classification maps,
except that a few boundaries on the water body are incorrectly

identified by the MRF. The visual inspection is in agreement
with the quantitative accuracy values presented in Table VII.

D. Analysis of Relearning Methods

Here, a classification certainty analysis is conducted, in order
to analyze the mechanism of the proposed relearning methods.
The certainty Cert(x) for each pixel x can be described by the
margin of the classifier, i.e., the difference between the two
highest probabilities

Cert(x) = max
i∈C

(px,i)− max
i∈C\w+

(px,i) (13)
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Fig. 12. Classification results for the CPP algorithms with the Foulum EMISAR data set (blue = water, cyan = rye, yellow = oat, green = coniferous, red =
winter wheat). The original image and the ground truth are provided by the authors in [39].

Fig. 13. Classification certainty values of the relearning methods for different
test images.

where w+ denotes the class having maximal probability, i.e.,
the first item of (13). A larger value of Cert(x) shows more
reliable decision on the pixel x. The average classification
certainty values are reported in Fig. 13 for the two relearning
methods, where “Iteration = 0” denotes the raw classification
without relearning. It can be clearly seen that both relearning
algorithms can significantly raise the certainties of the raw
classification, and it tends toward stability after 3 ∼ 4 iterations.
By comparing Figs. 8 and 13, it can be found that the increase
in the margin (or certainty) corresponds to the increase in the
classification accuracy.

Moreover, in Fig. 14, a graphic example is provided in order
to show how the relearning methods improve the raw classifica-
tion iteratively. The focus of the example is on the shadows in
the leftmost part of the image, which were incorrectly classified
as water by the raw method, and on the roof in the middle,
which were incorrectly identified as roads by the raw classifica-
tion. Analyzing the classification certainty (the first row), it can
be observed that the values in the considered regions (i.e., the
shadows and roofs) become larger (brighter), corresponding to
the decrease in the errors observed from the classification maps
(the second row). Specifically, the misclassifications between
roads and roofs are gradually improved from iteration = 0 to 4,
and the results remain stable from iteration 4 to 10.

Another example is shown in Fig. 15. The classification
errors in this case occur between water and shadows and
roofs and trails. It can be similarly seen that the classification
certainty is gradually raised by the relearning algorithm. At the
same time, the classification maps are significantly improved
compared with the raw method (i.e., Iteration = 0), and in this
example, the results are steadily accurate from Iteration = 2
to 10.

E. Comparison

The experiments reported in previous subsections show that
the proposed CPP relearning algorithms are able to learn the
intrinsic rules or patterns in the raw classification result and
then provide more discriminative information and improve the
classification. Although the basic point of view of the relearning
is different from the commonly used spectral–spatial classifica-
tions, they are both effective for enhancing class separability by
considering the neighboring information. Thus, it is meaningful
to conduct a comparative study between the relearning methods
and the spectral–spatial classifications.

The hyperspectral data sets (AVIRIS Indian Pines data set
and the HYDICE DC Mall data set) are public and well-known
validation data sets for remote sensing image classification.
Therefore, we can conveniently carry out the comparison based
on the existing literature.

In the AVIRIS data set (Table X), four sophisticated spectral–
spatial classification algorithms are presented. Note that all the
methods were tested on the same reference samples.

1) MSSC-MSF(MSSC=multiple spectral−spatial classifier,
MSF = minimum spanning tree): The main principle
of this approach is to use an ensemble of classifiers
to generate a set of so-called markers, i.e., the most
reliably classified objects [40]. Subsequently, the marker-
controlled region growing, based on the MSF, is used for
identification of the unreliable objects.
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Fig. 14. Classification maps as well as their certainties for the relearning-PCM method (Example 1). Note that the bright and dark components correspond to
the high and low classification certainty, respectively (blue = water, magenta = shadow, white = roads, orange = roofs, light green = grass, sea green = trees,
yellow = trails).

Fig. 15. Classification maps as well as their certainties for the relearning-PCM method (Example 2).

TABLE X
COMPARISON BETWEEN EXISTING TECHNIQUES FOR SPECTRAL–SPATIAL CLASSIFICATION AND THE CPP ALGORITHMS CONSIDERED

IN THIS STUDY USING THE AVIRIS INDIAN PINES IMAGE (“# TRAINING” INDICATES THE NUMBER

OF TRAINING SAMPLES PER CLASS USED IN THE CORRESPONDING EXPERIMENT)

TABLE XI
COMPARISON BETWEEN EXISTING TECHNIQUES FOR SPECTRAL–SPATIAL CLASSIFICATION AND THE CPP ALGORITHMS

CONSIDERED IN THIS STUDY USING THE HYDICE DC MALL IMAGE

2) ECHO (extraction and classification of homogeneous ob-
ject): This is a well-known spatial classifier that exploits
the neighboring information for classification [41].

3) WLC-GA (WLC = weighted linear combination, GA =
genetic algorithm): Multiple classification methods are
combined by weighting each method according to its con-
tribution to the combination process [42]. Specifically,
a weighted linear combination optimized by a genetic
algorithm is used to determine the weight or contribution
of each classifier.

From Table X, it can be seen that the relearning-PCM outper-
forms the other methods in terms of the OA values. Meanwhile,

the relearning-Hist achieves significantly higher OA than the
ECHO classifier and slightly better result than WLC-GA.

In the HYDICE DC Mall data set (Table XI), four advanced
spectral–spatial classification algorithms, based on a series of
multifeature fusion strategies [8], are employed for comparison
with the proposed relearning methods:

1) VS-SVM (VS = vector stacking): The spectral informa-
tion stacked with the GLCM, differential morphological
profiles (DMP) [43], and the 3-D wavelet features [44]
is fed into an SVM for the classification. Vector stacking
is a simple but efficient approach for integrating multiple
spectral–spatial features [45].
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TABLE XII
COMPARISON BETWEEN THE EXISTING SPECTRAL–SPATIAL CLASSIFICATIONS AND

THE CPP ALGORITHMS FOR THE HSR DATA SETS (QUICKBIRD AND WV-2)

2) C-voting (certainty voting): The SVM-based multiple
classification system constructed from the aforemen-
tioned GLCM, DMP, and 3-D wavelet features is used
to divide the images objects into reliable and unreliable
ones. The labels of the unreliable objects are then deter-
mined according to the classifier with the highest degree
of classification certainty [8].

3) P-Fusion: This is a soft version of C-voting. The certainty
degree of each classifier is used as the weight of their
probabilistic output. Subsequently, the weighted proba-
bilistic outputs of the classifiers are fused to identify the
labels of the unreliable regions [8].

4) OBSA (object-based semantic analysis): The reliable ob-
jects are classified via the P-fusion algorithm, whereas
the unreliable ones are identified using a set of predefined
semantic rules [8].

From Table XI, it can be seen that the relearning-PCM yields
the best result, which is significantly better than VS-SVM,
C-voting, and P-fusion. The relearning-Hist also gives a high
degree of accuracy, which is similar to OBSA and higher than
the other methods. Note that although OBSA can produce a
satisfactory result, it is dependent on the quality of the segmen-
tation and the definition of the specific rule set. The relearning
methods, however, can learn the underlying rules according to
the frequency and spatial arrangement of the classified image,
instead of empirically setting a set of rules. In addition, by
comparing the results in Tables VII and XI in this experiment,
it can be seen that most of the CPP methods (e.g., Gaussian,
bilateral, edge-aware filters, and MRF) achieve higher accuracy
values (> 95%) than the spectral–spatial classifiers such as
VS-SVM, C-voting, and P-fusion.

In order to further verify the effectiveness of the considered
CPP methods, a comparative study is also carried out for three
HSR data sets (Table XII). The spectral–spatial classification
methods used for this experiment are briefly introduced.

1) DMP/GLCM: The DMP and GLCM features combined
with the spectral information are fed into an SVM for
classification.

2) OBIA: An adaptive mean-shift procedure [12] is used
to segment the image, and a series of spectral and spa-
tial properties (including the mean, standard deviation,
length, width, compactness, solidity, length-width ratio,
and extent) are generated for each segment and then
concatenated for the subsequent SVM classification.

3) MIL (multi-index learning) [46]: The principle of this
approach is to describe an image scene using a set of low-
dimensional semantic indexes that replace the traditional
high-dimensional and low-level features. The primitive
indexes include the morphological building/shadow index
[47], the normalized difference vegetation index, and the
spectral–spatial variation index constructed based on the

3-D wavelet textures [44]. The multi-index features are
learned via the multikernel SVM [35] since it is able to
weight the multiple indexes adaptively, according to their
relative importance for a specific task.

The comparison shown in Table XII is very promising as
the relearning methods significantly outperform the advanced
spectral–spatial classification algorithms. For instance, the ac-
curacy improvements achieved by the relearning methods are
about 4% (QuickBird) and 7% (WV-2) when compared with the
OBIA approach, which has been proved to be very efficient in
HSR image classification. In addition, by comparing Tables VII
and XII, it can be found that the filtering and MRF methods
do not yield comparable accuracy values to the spectral–spatial
classification in the QuickBird experiment, but they give better
results in the WV-2 data set.

With respect to the SAR experiments, the CPP algorithms
presented in this paper also show obvious advantages for clas-
sification. For instance, in the case of the EMISAR experi-
ment, all the CPP algorithms give higher classification accuracy
values than the supervised graph embedding algorithm, OA =
95.6% [39], which was specifically proposed for PolSAR image
classification.

VI. CONCLUSION

Most of the current remote sensing image classification
algorithms focus on preprocessing techniques, such as di-
mensionality reduction for hyperspectral imagery [48], spatial
feature extraction for HSR imagery [5], and textural feature
extraction for SAR data [49]. In general, the basic principle of
classification preprocessing is to enhance the spectral feature
space by extracting additional discriminative information from
the raw spectral bands, in order to improve the classification
accuracy. These methods have achieved great success in recent
years and are gradually becoming the standard methods for
image interpretation. Under this background, in this study, we
have presented several new methods for CPP, a strategy that,
comparatively, has not received as much attention as classifi-
cation preprocessing. CPP aims at optimizing or relearning the
labeling that is derived from the initial classification, according
to some implicit rules related with the spatial arrangement of
image primitives in geospatial environments.

It should be underlined that postprocessing has been avail-
able for improving remote sensing image classification for a
long time, such as the widely used majority filtering. However,
it has not received enough attention because researchers re-
garded it as a marginal method for classification that had limited
ability to significantly improve accuracy. In this context, the
motivation behind this paper is to update the definition of CPP
and to show that CPP strategies are capable of yielding compa-
rable accuracy to the one obtained by advanced spectral–spatial
classifiers.
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Specifically, we have defined a CPP framework and cate-
gorized it into four groups according to the current remote
sensing image processing techniques: filtering, object-based
approaches, random field, and machine learning. In addition to
existing methods, a series of new and effective CPP algorithms
have been proposed in this study (see Table I). The proposed
CPP framework has been validated using a set of multisource
remote sensing data sets, including hyperspectral, HSR, and
SAR images.

Our systematic study revealed that CPP algorithms can all
smooth the raw classification, reduce the salt-and-pepper ef-
fect, and improve accuracy. However, the experimental results
indicate that only the newly developed relearning methods are
able to enhance discriminative ability and significantly increase
classification accuracy. The superiority of the relearning meth-
ods can be attributed to the consideration of the occurrence and
spatial arrangement of the classes in neighborhoods.

According to the performances presented in the experiments,
the following CPP algorithms are suggested: bilateral filter,
anisotropic diffusion, random field, and relearning methods.
In particular, the proposed relearning strategy, both relearning-
Hist and relearning-PCM algorithms, should be included as the
baseline of the standard classification methods, due to its con-
venient implementation and promising classification accuracy.
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