
Classification of hyperspectral urban
data using adaptive simultaneous
orthogonal matching pursuit

Jinyi Zou
Wei Li
Xin Huang
Qian Du

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 05/12/2015 Terms of Use: http://spiedl.org/terms



Classification of hyperspectral urban data using
adaptive simultaneous orthogonal matching pursuit

Jinyi Zou,a Wei Li,a,* Xin Huang,b and Qian Duc

aBeijing University of Chemical Technology, College of Information Science and Technology,
Beijing 100029, China

bWuhan University, State Key Laboratory of Information Engineering in Surveying,
Mapping and Remote Sensing, Wuhan 430079, China

cMississippi State University, Department of Electrical and Computer Engineering,
Mississippi 39762, United States

Abstract. Simultaneous orthogonal matching pursuit (SOMP) has been recently developed for
hyperspectral image classification. It utilizes a joint sparsity model with the assumption that each
pixel can be represented by a linear combination of labeled samples. We present an approach to
improve the performance of SOMP based on a priori segmentation map. According to the map,
we first build a local region where within-segment pixels are preserved while between-segment
pixels are excluded. Hyperspectral pixels in the preserved region around the test pixel are then
simultaneously represented by a linear combination of training samples, whose weights are
recovered by solving a sparsity-constrained optimization problem. Finally, the label of the
test pixel is determined to be the class that yields the minimal total residuals between the
test samples and the approximations. Experimental results demonstrate that the proposed adap-
tive SOMP (ASOMP) is superior to some existing classifiers, such as the original SOMP and the
recently proposed weighted-SOMP (WSOMP). For example, the ASOMP performed with an
accuracy of 95.53% for the ROSIS University of Pavia data with 120 training samples per class,
while SOMP obtained an accuracy of 87.61%, an improvement of approximately 8%. © 2014
Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.085099]
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1 Introduction

With the rapid development of sensing technology, hyperspectral imagery (HSI) obtained by
remote sensing systems has been investigated in many practical applications.1,2 HSI is a specific
image which records more spectral information than the common RGB pictures. Usually, HSI
covers hundreds of spectral channels.3 With a large number of spectral bands, HSI provides
wealthy information to distinguish different physical materials and objects.4 With spatial reso-
lution being improved, HSI can provide more accurate classification for heterogeneous urban
image scenes.

In pattern recognition literatures, there are different types of classification methods. One of the
most classic classifiers is based on the Bayesian theory,5 which relies on the characteristic of stat-
istical probability. The k-nearest-neighbor (K-NN) classifier6 employs the Euclidean distance
between training and testing samples and assigns the class label according to the most frequent
class label in the k-nearest range. In recent years, nonlinear neural networks (NN)7 have also been
applied for classification tasks. One of the most important and famous classifiers is support vector
machine (SVM),8 which provides superior and stable performance in HSI classification by learning
an optimal decision hyperplane to best separate the training samples using a kernel function to map
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the nonlinear samples into a high-dimensional feature space. The key part of the SVM is the kernel
function.9 Some popular kernels include linear, polynomial, and radial basis function (RBF), in
which the RBF kernel function is the most widely used one for the SVM in HSI.10

In recent years,11,12 combination of the spectral and spatial information into classification has
drawn increasing attention for HSI classification. One strategy involves spatial features or spatial
smoothness, such as morphological filtering, morphological leveling,13 Monte Carlo optimization,
and Markov random fields,14 which has offered better accuracy compared to using pixel-wise fea-
tures only. Another strategy is to use a composite kernel (CK)15 where both spectral and spatial
information are added into kernel functions to generate a new kernel. In Refs. 3 and 16, combi-
nation of a segmentation map with SVM classification results through majority voting was pro-
posed. In this method, several segmentation or clustering approaches17 were employed, such as k-
means, expectation maximization,18 and iterative self-organizing data analysis (ISODATA).19,20 In
Refs. 3 and 16, clustering-based segmentation of hyperspectral images was explored, and a tax-
onomy and survey of clustering techniques can be found in Ref. 21. Multinomial logistic regres-
sion22 is another widely used classification method which employs the logistic function to provide
the posterior probability. A fast algorithm for sparse multinomial logistic regression has been
developed in Ref. 23. In Ref. 24, a generalized CK framework was presented based on multinomial
logistic regression, combining the spectral and the spatial information in HSI.

In Ref. 25, simultaneous orthogonal matching pursuit (SOMP), which relied on the observation
that a hyperspectral pixel can be represented by a joint sparsity model (JSM) of a linear combi-
nation of training samples, has been developed for hyperspectral image classification. In SOMP,
the sparsity of the input data with respect to a given overcomplete training dictionary is used, and
hyperspectral pixels in a small neighborhood around the test pixel are simultaneously represented
by a linear combination of training samples. The represented test pixels can be recovered by solv-
ing an optimization problem constrained by the sparsity level.26,27 Finally, the label of the test pixel
is determined to be the class that yields the minimal total residuals between the test samples and the
approximations. SOMP has aimed at the similarity between neighboring pixels by adopting a JSM.
With a JSM, SOMP was originally designed to exploit the spatial correlation across neighboring
pixels. The algorithm is based on the assumption that neighboring pixels often consist of similar
materials and share a common sparsity pattern, which makes the simultaneous sparse recovery
possible. However, we observe that SOMP is based on a fixed region (e.g., 3 × 3, 5 × 5, etc.)
of each test pixel that may also include between-class pixels especially for complex urban
image scenes. In these areas, materials even within a small region may greatly change, which
indicates the disadvantage of SOMP with a fixed window. In Ref. 28, a kernel-version of
SOMP was discussed. In Ref. 29, a nonlocal weighted joint sparse representation classification
method was proposed. In the weighted-SOMP method (denoted as WSOMP), for each pixel
located in a local region, a similarity matrix between the central pixels and its neighboring pixels
was calculated, and the matrix was viewed as nonlocal weights for further sparse representation.

In this context, we propose an adaptive approach to improve the SOMP algorithm based on a
priori segmentation map. From the segmentation map, we exclude the pixels of different materi-
als from the central pixel in the region. Then, we represent the pixels by a sparse coefficient
vector and calculate the residuals between the original and the reconstructed pixels on a
class-specific dictionary. This approach effectively avoids the aforementioned shortcomings
of SOMP. In order to demonstrate its superiority, the proposed adaptive-SOMP (ASOMP)
will be compared with the state-of-the-art approaches, such as the original SOMP and the
recently proposed WSOMP, using real ROSIS hyperspectral data.

The remainder of this paper is organized as follows. In Sec. 2, the original SOMP, the
WSOMP, and the proposed ASOMP are introduced. In Sec. 3, the experimental results are pre-
sented. Finally, concluding remarks are made in Sec. 4.

2 Proposed Method

2.1 Simultaneous Orthogonal Matching Pursuit

The SOMP (Ref. 25) classifier considers the fact that neighboring pixels tend to belong to the
same class with high probability. Assume a given hyperspectral data set with training samples
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X ¼ fxigNi¼1 in Rd with M classes, where d is the dimension of the image and N is the total
number of training samples. Xm is a matrix with a size of d × Nm, where Nm is the number of
available training samples for class m, and

P
M
m¼1 Nm ¼ N.

The SOMP classifier25 is based on a JSM26,30 to extract the contextual information in HSI. It
is assumed that pixels for the same material in a region share a common sparsity pattern. Thus,
the similar neighboring pixels can be sparsely represented by a linear combination of a few
shared atoms. If test samples yi and yj are the adjacent pixels with similar spectral signatures,
yi can be presented as

yi ¼ Xαi ¼ αi;λ1xλ1 þ αi;λ2xλ1þ · · · þαi;λKxλK ; (1)

whereX is the dictionary of structured training samples andΛK ¼ fλ1; λ2; : : : ; λKg is the support
of the sparse vector αi. Thus, yj should have a similar expression as

yj ¼ Xαj ¼ αj;λ1xλ1 þ αjλ2xλ1þ · · · þαj;λKxλK : (2)

The JSM can be applied on a small region of pixels. Figure 1(a) illustrates a region with nine
connected pixels, where y1 is the central pixel, and y2, y3, y4, y5, y6, y7, y8, and y9 are the eight
neighboring pixels. We represent Y ¼ ½y1; y2; y3; y4; y5; y6; y7; y8; y9� as a set of spatial neigh-
borhood pixels. According to the SOMP algorithm,25 Y can be expressed as

Y ¼ ½y1; y2: : : y9� ¼ ½Xα1;Xα2: : :Xα9� ¼ X½α1;α2; : : : ;α9� ¼ XS; (3)

where S is a sparse matrix with only K nonzero rows and it consists of the sparse vectors
fαigi¼1;: : : ;9 corresponding to each pixels. It is assumed that each sparse vector fαigi¼1;: : : ;9

shares the same support ΛK because the neighboring pixels are most likely similar.
In SOMP,25 the sparse matrix S can be recovered by solving the following problem:

min kSkrow;0 subject to: XS ¼ Y; (4)

where kSkrow;0 denotes the nonzero rows of S. This optimization problem can reformulated by
adding a slack tolerance,25 described as

S̃ ¼ arg min kSkrow;0 subject to: kXS − YkF ≤ σ (5)

Fig. 1 (a) Nine connected regions, (b) 25 connected regions, (c) segmentation map with a patch of
region size 3 × 3, (d) a patch of region size 3 × 3, and (e) chosen data for the central pixel from the
patch of region.
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or denoted as the equivalent optimization problem

S̃ ¼ arg min kXS − YkF subject to: kSkrow;0 ≤ K0; (6)

where K0 denotes as the sparsity level and k · kF denotes the Frobenius norm. This simultaneous
sparse recovery problem is NP-hard and can be solved by OMP (Refs. 26 and 31) greedy
algorithm.

Once the sparse matrix S̃ is obtained, we can calculate the total error residuals between the
original test samples and the recovered approximations obtained from class-specific dictionaries

rmðYÞ ¼ kY − XmS̃mkF; (7)

where S̃m denotes the Nm rows corresponding to class m and the minimal total residual of the
training dictionary will win this label of the central pixel y1,

Classðy1Þ ¼ arg min
m¼1: : :M

rmðYÞ: (8)

2.2 Weighted-SOMP

For each central pixel, WSOMP adopted a similarity matrix as an adaptive weight for its neigh-
boring pixels. Suppose in the nine connected neighboring pixels Y ¼ ½y1; y2: : : y9�, y1 is the
central pixel and others are neighboring pixels. For y1, the spectral similarity with yi is defined
as kyi − y1k, i ¼ 1; 2; 3; : : : ; 9, and the weights coefficient is represented as

wði; 1Þ ¼ fðkyi − y1kÞ; (9)

where the function fð·Þ can be a Gaussian kernel. For two very similar samples, the weight in
Eq. (9) is close to one; for two very dissimilar samples, the weight approaches zero. Once the
weights of the surrounding pixels are obtained, a thresholding process is then applied to discard
all the pixels whose weights are smaller than a preset threshold value w1; for all the pixels whose
weights are large than a threshold w2, then their weights will be set to be a constant 1. The
thresholding process can be defined as

Wði; 1Þ ¼
(
0 0 < wði; 1Þ ≤ w1

wði; 1Þ w1 < wði; 1Þ ≤ w2

1 w2 < wði; 1Þ ≤ 1

i ¼ 1; 2; 3; : : : ; 9. (10)

Then Eqs. (5) and (6) are further described as

S̃ ¼ arg min kSkrow;0 subject to: kXS − YWkF ≤ σ; (11)

S̃ ¼ arg min kXS − YWkF subject to: kSkrow;0 ≤ K0; (12)

whereW ¼ diag½Wð1; 1Þ;Wð2; 1Þ; : : : ;Wð9; 1Þ� represents a diagonal matrix, and each diagonal
element denotes the weight of the corresponding neighboring pixel to the sparse representation
of the central test pixel. Obviously, a larger weight indicates more contribution in the represen-
tation, which is mainly from similar pixels according to Eq. (10).

Once the sparse matrix S̃ is obtained, the total error residuals are calculated between the
testing samples and the recovered approximations obtained from class-specific dictionaries

rmðYÞ ¼ kYW − XmS̃mkF; (13)

and the minimal total residual of the training dictionary will be assigned to the label of the central
testing pixel y1, which is represented as

Classðy1Þ ¼ arg min
m¼1: : :M

rmðYÞ: (14)
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2.3 Adaptive-SOMP

In SOMP, a greater window size is preferred for large homogeneous regions in HSI while a
smaller window size is more appropriate for heterogeneous regions with complex distribution.
Unfortunately, there is always a fixed window size for the current SOMP, which is an obvious
weakness. The reason is that for a too-small window size, the spatial information cannot be fully
utilized; for a too-big window size, it is inevitable that pixels in the block are confused among
different materials. In this paper, we mainly investigate how to adaptively choose neighboring
pixels to improve the performance of SOMP. Specifically, we improve the SOMP algorithm
based on a priori segmentation map, from which within-segment pixels are preserved while
excluding between-segment pixels. In other words, we first select a large window size, no matter
if it is homogeneous or heterogeneous; and then, an a priori segmentation map facilitates the
adjustment so that only samples with the similar spectral characteristics to the central pixel in this
region will be maintained.

Here, we take an example of nine connected pixel regions as shown in Fig. 1(d). Figure 1(c)
illustrates a part of the segmentation map of the data, which the same digital number (e.g., 1, 2, 3,
4) in the map indicates the similar material. In Fig. 1(d), y1, y2, y3, y5, and y7 represent the pixels
belonging to the same material and the rest are other materials. In the ASOMP, we exclude the
pixels belonging to different materials from the region, and y1, y2, y3, y5, and y7 are preserved as
the new neighboring pixels Ỹ, which can be further expressed as

Ỹ ¼ ½y1; y2; y3; y5; y7� ¼ ½Xα1;Xα2;Xα3;Xα5;Xα7� ¼ XS: (15)

This joint sparse recovery problem is NP-hard and can be approximately solved by greedy
pursuit algorithm similar to the original SOMP

min kSkrow;0 subject to: XS ¼ Ỹ; (16)

where S is a sparse matrix with only few nonzero rows, and for each central pixel, the row of S is
transformable according to the pixels in the chosen neighboring region. Similar to SOMP, this
problem can be compactly presented as

Ŝ ¼ arg min kSkrow;0 subject to: kXS − ỸkF ≤ σ (17)

or

Ŝ ¼ arg min kXS − ỸkF subject to: kSkrow;0 ≤ K0: (18)

After the sparse recovery problem is solved, the error residuals between the original test
samples and the reconstructed pixels from class-specific dictionaries are calculated as

rmðỸÞ ¼ kỸ − XmS̃mkF; m ¼ 1; 2; : : : ;M: (19)

The label of the central pixel is determined to be the minimal residual of the class

Classðy1Þ ¼ arg min
m¼1: : :M

rmðỸÞ: (20)

.
The ASOMP demonstrates an adaptive feature extraction and pixel clusters process. Also for

each pixel classification, the set of test samples is self-adapted by its neighboring region accord-
ing to the presegmentation map. The segmentation map actually performs as the guided diction-
ary, from which dissimilar pixels are removed from the corresponding HSI region. In the
proposed ASOMP, the segmentation map is obtained by the popular mean-shift clustering.32
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3 Experiments and Analysis

The image scene used for experiments were recorded by the reflective optics system imaging
spectrometer (ROSIS) over University of Pavia. The data consists of 610 × 340 pixels and the
spatial resolution is 1.3 m. The number of spectral bands is 115 with the spectrum coverage
range from 0.43 to 0.86 μm. After removing the 12 most noisy channels, 103 bands are pre-
served in our experiments. There are nine classes in the image scene, which are asphalt, mead-
ows, gravel, trees, metals sheets, bare soil, bitumen, bricks, and shadows. We randomly select
120 training samples for each class from the ground truth map. Details on the training samples
and the test data set are listed in Table 1. The second HSI data was recorded by the same sensor
over the Center of Pavia during a flight campaign over Pavia, northern Italy.12 The number of
spectral bands is 102 for Pavia Center. The original data are a 1096 × 1096-pixel image.
However, some of the samples contain no information and have to be discarded before analysis.
So, the experimental image consists of 1096 × 492 pixels and each pixel has 102 spectral bands

Table 1 Training and test data for the University of Pavia data as well as the classification
accuracies of three different classifiers (120 training samples per class).

Class Samples Accuracy (%)

No Name Test Train SOMP WSOMP ASOMP

1 Asphalt 6631 120 69.33 85.69 90.08

2 Meadows 18,649 120 92.98 97.59 98.70

3 Gravel 2099 120 97.52 99.24 99.60

4 Trees 3064 120 69.91 87.83 89.69

5 Metal sheets 1345 120 99.93 96.95 71.23

6 Bare soil 5029 120 94.77 99.32 95.17

7 Bitumen 1330 120 97.74 99.70 99.62

8 Bricks 3682 120 91.34 95.71 99.08

9 Shadow 947 120 60.82 78.88 97.78

Total 42,779 1080 87.61 94.80 95.53

Fig. 2 Classification accuracy versus different window sizes for three classifiers (120 training
samples per class) using the University of Pavia data.
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after 13 noisy bands are discarded. There are also nine classes called water, trees, meadow, brick,
soil, asphalt, bitumen, tile, and shadow, and more details are listed in Table 3.

We mainly compare the performance of the proposed method (i.e., ASOMP) with the original
SOMP and the recently proposed WSOMP. As for parameter tuning, after our empirical study,
the error tolerance σ is fixed to be 0.1 for all the SOMP, WSOMP, and ASOMP; in addition, the
maximum iterations have been set to be 100 that is associated with the level of sparsity K0.

25 For
the WSOMP, the lower bound (i.e., threshold) in Eq. (10) is set to be 0.14 and the upper bound is
set to be 0.88, which are the same as in the original paper.29

First of all, we investigate the classification performance of three classifiers with different
window sizes using the University of Pavia data as illustrated in Fig. 2. For SOMP, it achieves the
highest accuracy (i.e., 87.61%) when the window size is 15 × 15; nevertheless, it decreases when
the window size becomes larger, which is due to the large window region containing many differ-
ent materials. We observe that the WSOMP improves the classification performance due to the
discarded pixels which are viewed as less correlated to the central pixels. The WSOMP achieves
the best performance when the window size is 21 × 21. The best performance of the proposed
ASOMP apparently outperforms the original SOMP, and it offers the accuracy of 95.53%, an

Fig. 3 For the University of Pavia data (120 training samples per class): (a) the false-color image,
(b) train set, (c) test set, classification maps obtained by (d) SOMP, (e) WSOMP, and (f) ASOMP.
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improvement of approximately 8% to the SOMP, and approximately 1% to the WSOMP. The
improvement owes much to the benefit of the adaptively selected neighborhood. As mentioned
before, a local region where within-segment pixels are preserved while excluding between-seg-
ment pixels has been selected. The selected region has some advantages: on one hand, it utilizes
the spatial information in HSI; on the other hand, it guarantees that remaining data only contains
one type of materials and keeps the purity even within a large window size. This is also the
reason that the ASOMP holds the steady accuracy when the window size increases, which
is very different from the other two classifiers. Figure 3 further illustrates the thematic maps
resulting from these three classifiers. From Fig. 3, it is apparent that the classification map
of the ASOMP is less noisy than those of SOMP and WSOMP, especially for bricks and shadow
class, which is actually consistent to the results listed in Table 1. It is worth noting that for
WSOMP, two thresholds have to be chosen empirically. When thresholding is not applied
(that is to say, when the lower bound is 0 and the upper bound is 1), the method cannot

Fig. 4 Classification accuracy versus different window sizes for three classifiers (60 training sam-
ples per class) using the University of Pavia data.

Table 2 Training and test data for the University of Pavia data as well as the classification accu-
racies of three different classifiers (60 training samples per class).

Class Samples Accuracy (%)

No Name Test Train SOMP WSOMP ASOMP

1 Asphalt 6631 60 50.04 57.67 60.94

2 Meadows 18,649 60 85.97 87.14 89.84

3 Gravel 2099 60 94.00 97.47 98.62

4 Trees 3064 60 73.53 85.70 89.13

5 Metal sheets 1345 60 99.41 97.10 69.67

6 Bare soil 5029 60 86.34 90.57 94.45

7 Bitumen 1330 60 96.17 96.77 98.05

8 Bricks 3682 60 76.45 86.94 89.30

9 Shadow 947 60 39.07 50.37 78.35

Total 42,779 540 78.83 83.16 85.60
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demonstrate its superiority. Furthermore, it becomes suboptimal if two fixed thresholds are used
for the whole scene. Comparatively, our method avoids this issue by directly removing the dis-
similar pixels according to the segmentation map.

Next, we experiment on the same data while changing the number of training samples per
class to be 60 as illustrated in Fig. 4. The proposed ASOMP still has the highest accuracy when
the window size is 17 × 17, the optimal window size for the SOMP is 9 × 9, and the one for the
WSOMP is 17 × 17. The improvement between the ASOMP and the WSOMP is consistently
larger than 2% for different window sizes. Table 2 lists the classification accuracy for each class
under optimal parameters for these three classifiers, and Fig. 5 illustrates the classification maps.
We further evaluate the sensitiveness of the proposed method to varying numbers of training
samples per class as shown in Fig. 6. When the number of training samples per class is low
(e.g., 40), the ASOMP and WSOMP performs worse than the SOMP because too few training
samples cannot construct a complete training subdictionary. If the subdictionary size is too small,
the training samples may be insufficient to faithfully represent the subspace associated with each
class, leading to a lower classification accuracy. Nevertheless, the proposed ASOMP is superior
to the SOMP and the WSOMP when the number of training samples per class is larger.

Fig. 5 For the University of Pavia data (120 training samples per class): (a) the false-color image,
(b) train set, (c) test set, classification maps obtained by (d) SOMP, (e) WSOMP, and (f) ASOMP.
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Then, we experiment on the Pavia Center data as listed in Table 3, and the classification maps
are illustrated in Fig. 7. With optimal parameters, the proposed ASOMP still outperforms the
SOMP and the WSOMP. From the results in Fig. 7, it is apparent that classification maps of the
ASOMP are less noisy than those of SOMP, especially for bitumen and trees class. In Table 3,
there are six classes having higher class-specific accuracy of the proposed ASOMP. It is worth
mentioning that the overall accuracy of the proposed ASOMP is not far more superior to the
SOMP in this urban area than in the previous data. One of the reasons is that most of the regions
in the University of Pavia scene are heterogeneous; however, the Center of Pavia data have more
homogeneous regions, especially, the class water occupies nearly 66% of the total data set.

Finally, we provide the computational complexity of the SOMP and the proposed ASOMP.
The computational complexity is upper-bonded byOðTBNK0Þ for both SOMP and ASOMP, and
T is the number of the simultaneously represented pixels. Although for the same window size,
the number of the simultaneously represented pixels in the proposed ASOMP is less than the

Fig. 6 Classification accuracy versus different numbers of training samples per class for three
classifiers (for SOMP, W ¼ 9; for WSOMP and ASOMP, W ¼ 17) using the University of
Pavia data.

Table 3 Training and test data for the Center of Pavia data as well as the classification accuracies
of three different classifiers (120 training samples per class).

Class Samples Accuracy (%)

No Name Test Train SOMP WSOMP ASOMP

1 Water 65,278 120 99.96 99.95 99.85

2 Trees 6508 120 86.03 84.97 91.90

3 Meadow 2905 120 95.80 91.88 97.83

4 Brick 2140 120 93.88 91.64 96.26

5 Soil 6549 120 93.24 92.17 93.68

6 Asphalt 7585 120 79.67 84.13 77.35

7 Bitumen 7287 120 89.23 91.08 94.41

8 Tile 3122 120 99.26 98.85 99.90

9 Shadow 2165 120 91.36 91.18 87.71

Total 103,539 1080 95.98 96.12 96.54
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SOMP. Then, we demonstrate the computing time of the two algorithms. All the programs are
implemented in MATLAB on an Intel(R) Core(TM) 2 Duo CPU machine with 4 GB of RAM.
Tables 4–6 list the computing time (in seconds) of the original SOMP and the proposed ASOMP
with different window sizes. From these results, it can be seen that the computational speed of
the proposed method is relatively faster than the SOMP, even with a large window size (e.g.,
W ¼ 15). We note that with the same window size, the proposed ASOMP only requires the
neighboring pixels similar to the central pixel for sparse representation; however, the SOMP
sparsely represents the central pixel using all the pixels in the local region. Thus, for each iter-
ation, the computational cost of the sparse matrix S in the ASOMP is much less than the SOMP
due to the smaller size of the sparse matrix S.

Fig. 7 For the Center of Pavia data (120 training samples per class): (a) the false-color image,
(b) train set, (c) test set, classification maps obtained by (d) SOMP, (e) WSOMP, and (f) ASOMP.

Zou et al.: Classification of hyperspectral urban data using adaptive simultaneous orthogonal matching pursuit

Journal of Applied Remote Sensing 085099-11 Vol. 8, 2014

Downloaded From: http://remotesensing.spiedigitallibrary.org/ on 05/12/2015 Terms of Use: http://spiedl.org/terms



4 Conclusion

In this paper, a new ASOMP method was proposed for hyperspectral image classification. The
proposed method combined a priori segmentation map with the sparse-representation-based
classification to ensure that a testing sample be represented by its neighboring similar pixels
only. The segmentation map actually performs as the guided dictionary, from which dissimilar
pixels are removed from the corresponding local region. The experiments using hyperspectral
ROSIS urban data demonstrated that our proposed ASOMP method yielded superior classifi-
cation results compared to the original SOMP and the recently proposed WSOMP.
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