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A multiscale feature fusion approach for classification of very high
resolution satellite imagery based on wavelet transform

X. HUANG, L. ZHANG* and P. LI

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote

Sensing, Wuhan University, China

(Received 15 December 2006; in final form 15 April 2008 )

A novel methodology based on multiscale spectral and spatial information fusion

using wavelet transform is proposed in order to classify very high resolution

(VHR) satellite imagery. Conventional wavelet-based feature extraction methods

employ single windows of a fixed size, which are not satisfactory as the VHR

imagery contains complex and multiscale objects. In this paper, spectral and

spatial features are extracted based on a set of concentric windows around a

central pixel in order to integrate the information across different windows/

scales. The proposed method is made up of three blocks: (1) the conventional

wavelet-based feature extraction methods are extended from single band

processing to multispectral bands, and from single window to multi-windows,

(2) two multiscale fusion algorithms are proposed to exploit the multiscale

spectral and spatial information and (3) a support vector machine (SVM), a

relatively new method of machine learning, is used to classify the multiscale

spectral–spatial feature sets. The proposed classification method is evaluated on

two VHR datasets and the results show that the multiscale approach can improve

the classification accuracy in homogeneous areas while simultaneously preserving

accuracy in edge regions.

1. Introduction

Traditional image processing techniques have been proven to be inadequate for

classification of very high resolution (VHR) remotely sensed imagery (Gong and

Howarth 1990, Gong et al. 1992). Detailed features and small objects can be

detected in VHR images and, consequently, the spectral signatures inside an
information class become more heterogeneous and different objects become more

spectrally similar (Myint et al. 2004). The resulting high intraclass and low

interclass variabilities lead to a reduction in the statistical separability of the

different land-cover classes in the spectral domain (Bruzzone and Carlin 2006). The

introduction of spatial features has been found effective for addressing this problem.

Therefore, many spatial feature extraction methods have been proposed and

integrated with spectral features for classification of VHR satellite data. One

commonly applied statistical procedure is the grey level co-occurrence matrix
(GLCM), which is a widely used texture analysis technique for satellite data and has

been successful to a certain extent (Barber and LeDrew 1991, Gong et al. 1992,

Zhang 1999). A method based on straight lines to assess land development in high

resolution satellite images was introduced and a set of statistical measures were
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extracted based on the sub-windows showing the regional line distribution (Unsalan

and Boyer 2004a). An edge detection method, integrating a region-growing

approach was used to improve classification for the images of the Indian remote

sensing satellite 1C (IRS-1C) (Sun et al. 2003). Benediktsson et al. (2003, 2005)

presented a technique of extended morphological profiles to describe multiscale

spatial features and to interpret VHR satellite imagery. A length–width extraction

algorithm (LWEA) was developed to extract the length and width of spectrally

similar connected groups of pixels (Shackelford and Davis 2003). Huang et al.

(2007) proposed a pixel shape index (PSI), which was a modified version of the

LWEA. The PSI was calculated by a predetermined number of equally spaced lines

(direction-lines) radiating from the central pixel.

This paper studies wavelet-based spectral and spatial features. Wavelet theory is

well suited in any area of study where signals are complex and non-periodic, and it is

particularly good at describing a scene in terms of the scale of the textures in it

(Acharyya et al. 2003). Myint et al. (2004) compared the wavelet transform

approach with spatial autocorrelation, the fractal approach and the GLCM. It was

found that the wavelet approach is the most accurate of all four approaches for

urban feature discrimination in VHR images. Acharyya et al. (2003) applied the M-

band wavelet and neurofuzzy hybridization to segment the images of the IRS-1A.

They found that the use of wavelet theory provided an effective representation of

these images in terms of frequencies in different directions and orientations at

different resolutions. Fukuda and Hirosawa (1999) proposed a wavelet-based

texture feature set via the energy of sub-bands by the wavelet decomposition of a

local window in an image. In their experiments, the wavelet feature set was

successfully applied to the classification of SAR images. They carried out the

classification by the simple minimum distance classifier for the purpose of

examining the efficiency of the wavelet-based texture feature, and they thought

that if more powerful classifiers such as neural networks were used, classification

accuracy might be further improved.

Based on some approaches previously presented in the literature, this paper

proposes a novel wavelet-based multiscale spectral–spatial feature fusion technique

for classification of VHR satellite imagery. The salient aspects of the strategy are the

following:

(1) A set of concentric windows with different sizes around a pixel is defined for

identifying objects and structures on different scales. In addition, the

wavelet-based multiscale spectral–spatial feature set is based on multispectral

bands instead of a single channel.

(2) Two multiscale information fusion algorithms are proposed. The first is an

adaptive window method, which adaptively determines the optimal window

for each pixel, and the other is a multiple window pyramid approach, which

considers the information at all the windows.

(3) A support vector machine (SVM) is employed to classify the multiscale

spectral–spatial feature sets. The notable advantages of the SVM include self-

adaptability, swift learning pace and its high-dimensional property in feature

space.

The rest of this paper is organized as follows. Section 2 provides a detailed

description of the extended wavelet-based feature extraction method. Sections 3 and

4 describe the two multiscale fusion algorithms and the SVM-based classification
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technique, respectively. Two experiments on QuickBird and IKONOS multispectral

images to evaluate the performance of the proposed methodology are described in

§5, and §6 concludes the paper.

2. Multiscale spectral–spatial feature extraction based on wavelet transforms

The traditional feature extraction methods based on wavelet transform can be

described as after a square local area around each pixel is decomposed, different

statistical measures of each sub-image are calculated and are assigned to the

components of the feature vector of the central pixel in the area (Fukuda and

Hirosawa 1999). The conventional methods are extended in this paper, and the flow

charts are shown and compared in figure 1.

The processing techniques in figure 1 can be analysed in terms of the following

aspects:

(a) Band selection. Zhang et al. (2006) extracted the wavelet texture features

using the first principal component (PCA1) based on principal component

analysis (PCA) (Jollie 1986) on a set of multispectral Quickbird bands. Ouma

et al. (2006) carried out an investigation to determine which band is optimal

for urban tree texture extraction in IKONOS images. Myint et al. (2004)

compared the classification performance of wavelet-based features for

different spectral bands and found that the highest accuracies were achieved

by bands 6 and 12 and PCA1 of the advanced thermal land application

sensor (ATLAS) images. Traditionally, the optimal band or PCA1 is used as

the base image for wavelet transform. However, it is important to consider all

the spectral information because VHR sensors, such as IKONOS and

Quickbird, include only a few spectral bands, and loss of spectral

information may lead to a decrease in classification accuracy. Spatial

information is similar among different bands and much redundancy exists if

all the multispectral bands are used as base images for spatial features.

Therefore, in this paper, the multiscale spectral features are built on all the

available multispectral bands, while the spatial information is produced using

only the PCA1 image.

(b) Window size. Myint et al. (2004) tested and compared different window sizes,

and the largest window (65665) was found most effective for homogeneous

texture regions. In some literature, an 868 window size was employed for

VHR images since it was a trade-off between homogenous accuracy increase

and detail preservation (Fukuda and Hirosawa 1999, Zhang et al. 2006).

Acharyya et al. (2003) used a small window in order to detect the fine

structures. A geostatistical analysis indicated that there was no single window

size that would adequately characterize the range of textural conditions

present in VHR images (Coburn and Roberts 2004). Therefore, it is not

sound to use a fixed window size for feature extraction, especially for

VHR images. In this paper, two algorithms are proposed to integrate

spectral and spatial features at different scales and which are described in

detail in §3.

The proposed multiscale wavelet-based spectral–spatial feature extraction method

can be described as follows:

Step1. For each pixel (i, j), define a set of concentric windows around it: {w16w1,

…, ws6ws, …, wN6wN} (1(s(N).

Multiscale spectral and special feature fusion approach 5925
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Figure 1. Flowchart of: (a) the conventional wavelet-based feature extraction algorithm and
(b) the improved version in this paper.
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Step2. Define the original multispectral images as scale s50 and the spectral–

spatial features are extracted using w16w1, ws6ws and wN6wN moving windows.

Step3. (3a) The initializing value of w is set to ws;

(3b) Four sub-images can be obtained via wavelet transform (downsampling) of

the w6w window region and the size of each sub-image is (w/2)6(w/2);

(3c) If w/251, then the wavelet decomposition stops and go to Step4; if w/2.1,

then let w5w/2 and go to 3b.

This step aims to decompose the w6w area iteratively until four wavelet

coefficients (approximate, horizontal, vertical and diagonal) are obtained. In this

study, the Daubechies wavelet family (Daubechies 1990) is selected and the filter

length is set to 4. It should be noted that the proposed algorithm is not sensitive to

the wavelet transform approach and the filter kernels.

Step4. Let s5s + 1 and repeat Step2 and Step3 until the wavelet coefficients for all

the spectral bands at different scales have been calculated (i.e. s5N).

Step5. The multiscale spectral feature set for the central pixel (i, j) can be defined

as:

Spe i, jð Þ~ S0
pe i, jð Þ, . . . , Ss

pe i, jð Þ, . . . , SN
pe i, jð Þ

n o
,

with Ss
pe i, jð Þ~ As

b i, jð Þ
�� ��� �B

b~1
0ƒsƒN, 1ƒbƒBð Þ,

ð1Þ

where As
b i, jð Þ denotes the approximation wavelet coefficient of pixel (i, j) calculated

by Steps 2 to 4. The parameters b and s represent the spectral channel and scale

factor, respectively. It should be noted that A0
b i, jð Þ denotes the original spectral

feature value in band b.

Step6. The multiscale spatial features are computed based on the PCA1 band.

PCA is performed on the set of multispectral bands because it is optimal for data

representation in the mean square sense and the first PCA band represents most of

the information variation in the image. The multiscale spatial feature set for pixel

(i, j) can be defined as:

Spa i, jð Þ~ S1
pa i, jð Þ, . . . , Ss

pa i, jð Þ, . . . , SN
pa i, jð Þ

n o
,

with Ss
pa i, jð Þ~ V s i, jð Þk kz Hs i, jð Þk kz Ds i, jð Þk k 1ƒsƒNð Þ,

ð2Þ

where Vs(i, j), Hs(i, j) and Ds(i, j) are high-frequency wavelet coefficients for pixel

(i, j) at scale s for the vertical, horizontal and diagonal directions, respectively.

Step7. Go through the whole image and calculate the multiscale spectral and

spatial feature sets for each pixel. It is well known that combining spatial and

spectral information can improve land use classification for VHR satellite imagery

(Dell’Acqua et al. 2004). Hence, equations (1) and (2) are combined and the

multiscale spectral–spatial feature set for the whole image can be written as:

F~ F 0, � � � , F m, � � � , FN
� �

,

with F 0~S0
pe and F s~ Ss

pe, Ss
pa

n o
1ƒsƒNð Þ:

ð3Þ

3. Multiscale feature fusion

Coburn and Roberts (2004) showed that there was no single window size that would

adequately characterize the range of textural conditions present in VHR data.

Multiscale spectral and special feature fusion approach 5927
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Hence, in this paper, the multiscale feature fusion algorithm is proposed to utilize

information across different scales adaptively. It aims to increase the classification

accuracy in homogeneous areas and at the same time preserve the accuracy in edge

regions. In order to address this problem, two methods are proposed to fuse

multiscale information. The first is an adaptive window (AW) algorithm and the

second is a multiple window (MW) pyramid algorithm.

3.1 Adaptive window algorithm

The AW algorithm employs an adaptive scale fixing approach for different textural

regions. It is preferable to characterize a texture using a large window so that a

sufficient amount of information is considered. Yet, a small window is necessary to

accurately locate the boundaries between homogeneous regions. In order to

determine the suitable scale for a pixel adaptively, the edge feature is used as

supplementary information and is defined as:

Et if pixel i, jð Þ is at the edge,

Eb i, jð Þ~0 otherwise,

�
ð4Þ

where b is the number of spectral band (1(b(B). The Sobel edge detector, the

Prewitt edge detector, the TBL edge detector (Sun et al. 2003) and the Canny filter

(Solaiman et al. 1998) have been tested for satellite imagery. In this study, edge

detection is performed using the Canny filter, since it is an optimal edge detector,

having a low probability of false or missing edges and a high accuracy of edge

positioning. After edge detection, a concept of edge density is defined for each pixel:

Es
density i, jð Þ~

P
i, jð Þ [Rs

E i, jð Þ

ws|ws

, ð5Þ

where Rs is a ws6ws window around the pixel (i, j) and E i, jð Þ~ 1
B

PB
b~1

Eb i, jð Þ.

Based on the multispectral and edge information in different local windows, a

scale selection index (Sindex) is defined for choosing the optimal scale for each pixel:

Ss
index i, jð Þ~

XB

b~1

ss
b i, jð Þ
ss

b

" #
|Es

density i, jð Þ, ð6Þ

where ss
b i, jð Þ and ss

b are the local standard deviation computed for pixel (i, j) and the

global standard deviation for the whole image in band b at scale s, respectively. The

Sindex is a measure of local heterogeneity: low values correspond to homogeneous

areas, while high values represent heterogeneous areas. A larger value of Ss
index i, jð Þ

shows that the information at scale s contains more detailed features and hence, if a

large window is used for the central pixel (i, j), some important edge and structural

information may be smoothed. Therefore, Sindex is used to adaptively select the optimal

scale Oscale(i, j) and the corresponding optimal window Owindow(i, j) for each pixel. The

optimal scale Oscale(i, j) for a pixel (i, j) can be determined by:

Oscale i, jð Þ~ arg min
1ƒsƒN

Ss
index i, jð Þ

� �
, ð7Þ

where the operator ‘arg min’ means to find the optimal parameter s by minimizing the

function. A low value of Oscale(i, j) shows that edge or geometrical detail is around the

5928 X. Huang et al.
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central pixel and hence the information in a small window is more reliable for

classification. A large Oscale(i, j) denotes that the central pixel lies in a homogeneous

area and a large window is used to improve the classification. Given that the optimal

scale Oscale(i, j) for pixel (i, j) corresponds to the optimal window Owindow(i, j), some

new feature sets are computed by averaging all the sequential combinations on the

windows smaller than or equal to the optimal window Owindow(i, j):

SOscale
pe i, jð Þ~ 1

Oscale i, jð Þz1

XOscale i, jð Þ

x~0

Sx
pe i, jð Þ ð8Þ

and

SOscale
pa i, jð Þ~ 1

Oscale i, jð Þz1

XOscale i, jð Þ

x~1

Sx
pa i, jð Þ, ð9Þ

where the optimal scale represents the largest window size included in the average

operation and x denotes the scales smaller than or equal to the optimal one

(x(Oscale(i, j)). In equations (8) and (9), the features at the windows ws(Owindow(i, j)

are averaged because this can enhance the homogeneity and at the same time

preserve the detailed and edge information. The parameters SOscale
pe and SOscale

pa denote

the multiscale fusion feature sets of spectral and spatial information for the whole

image, respectively, and F Oscale~ SOscale
pe , SOscale

pa

n o
denotes the multiscale spectral–

spatial feature set. The classification rule for the adaptively fused multiscale feature

can be described as:

C i, jð Þ~ckuC la F Oscale i, jð Þ
� �

~ck, ð10Þ

where C la FOscale i, jð Þ
� �

denotes the class label for the pixel (i, j) classified with

feature set FOscale , C(i, j) is the class label of pixel (i, j) and ckf gp
k~1 represent the class

labels in classification maps (C(i, j) g {c1, ..., ck, ...cp} with 1(k(p).

3.2 Multiple windows pyramid algorithm

The AW algorithm integrates multiscale features by selecting an optimal scale and

averaging the information at the windows smaller than or equal to the optimal one.

A (B + 1)-dimensional fusion feature set FOscale~ SOscale
pe , SOscale

pa

n o
is used for

classification in the AW algorithm, while the MW algorithm aims to exploit the

feature set F (see equation (3)), which contains all the multiscale spectral and spatial

information. The MW algorithm fuses multiscale features automatically by

integrating a set of concentric windows in a classifier. Considering that human

interpreters may simultaneously use multiple windows of a variety of sizes to build

evidence of the image pattern (Binaghi et al. 2003), the MW algorithm is an attempt

to mimic human perception in identifying objects of different shape and structure on

different scales. The classification rule for the MW algorithm can be described as:

C i, jð Þ~ckuCla F i, jð Þð Þ~ck, ð11Þ

where F(i, j) denotes the spectral/spatial features in the multiple windows for pixel

(i, j). It is worth noting that, as the MW algorithm provides a large amount of

Multiscale spectral and special feature fusion approach 5929
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information, it always leads to a high-dimensional feature vector ((N + 1)6B + N).
For this reason, a SVM is used to classify the feature sets extracted by the multiple

windows as it is a classification technique intrinsically less sensitive to the high

dimensionality of the feature space (Bruzzone and Carlin 2006).

4. Support vector machine

Conventional classifiers, such as the maximum likelihood classifier, are not capable of

achieving a satisfactory accuracy for VHR data. This is because the estimated

distribution function usually employs the normal distribution, which may not

represent the actual distribution of the data. In recognition of this, the fuzzy

ARTMAP (Dell’Acqua et al. 2004), BP neural networks (Benediktsson et al. 2005),

probabilistic relaxation (Unsalan and Boyer 2004b) and probability neural networks

(Tian et al. 1999) have been tested for integrating the spectral and spatial features. In

this paper, a SVM is employed to interpret the multiscale spectral–spatial features
because of its computational simplicity, superior accuracy and high-dimension

property in feature space when compared to other classifiers (Cortes and Vapnik 1995).

SVM classifiers of the form f(x)5wW(x) + b learn from the data {(xi, yi)|xi g Rd,

yi g {21, 1}, i51, …, D}, where xi is a d-dimensional feature vector in a d-

dimensional space of real numbers, f(x) denotes a hyperplane that separates samples

label yi on each side and the weight vector w and bias term b are the parameters of

the hyperplane. The hyperplane calculation can be formulated into a constrained

optimization problem as:

min
w,b,ji

1

2
wk k2

zC
Xn

i~1

ji

( )
subject to yi wW xið Þzbð Þ§1{ji, ji§0, ð12Þ

where C is a regularization parameter and ji is a slack variable. Based on the

Lagrange formulation, the optimal discriminant function can be expressed in terms

of Lagrange dual variables ai:

f xð Þ~
X
i [ SV

aiyjK xi, xj

	 

zb, ð13Þ

where SV (support vector) is the set of training samples with associated dual

variables ai satisfying ai.0. A kernel function K(xi, xj) is introduced into the SVM

so that the original input space can be transformed nonlinearly to a higher
dimensional feature space where linear methods may be applied (Liu et al. 2006). A

specific application for a SVM needs to handle several issues:

(1) Multiclass problem. While the SVM was originally designed for binary

classification, most remote sensing applications involve multiple classes. Two
approaches are commonly used for an M-class SVM (Foody and Mather

2004, Melgani and Bruzzone 2004): (a) one against all (OAA) involves a

parallel architecture made up of M SVMs, one for each class. Each SVM

solves a two-class problem defined by one information class against all the

others and the winner-takes-all rule is used to decide the class label for each

pixel; (b) one against one (OAO), M(M–1)/2 SVMs are applied on each pair

of classes. In this case, each SVM carries out a binary classification in which

two information classes are analysed against each other and the most
commonly computed class label is reserved for each pixel. In this paper, the

OAO method is employed.

5930 X. Huang et al.
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(2) Selection of kernel function. Based on the kernel function in equation (13),

the SVM finds an optimal linear hyperplane in a higher dimensional feature

space that is nonlinear in the original input space. The kernel trick avoids

direct evaluation in the higher dimensional feature space by computing it via

the kernel function with data vectors in the input space. The commonly used

kernel functions are the radial basis function (RBF) and the inhomogeneous

polynomial function (POLY):

POLY : K xi, xj

	 

~ xi

:xjz1
	 
q

RBF : K xi, xj

	 

~exp {

xi{xjk k2

2s2

� �
8><
>:

, ð14Þ

where q is the order of the POLY kernel function and s is the kernel

parameter. In this paper, the SVM classifier with a RBF kernel is used,

because it has been proven effective in a number of different classification

problems.

(3) Parameter optimization. In addition, the kernel based implementation of the

SVM involves problems pertaining to the selection of multiple parameters,

including the kernel parameters s and the regularization parameter C. Some

standard methods exist that can facilitate the selection of parameters in the

SVM classifier design. In our method, these parameters were selected using

the leave one out (LOO) algorithm, which minimizes the estimate of the

expected generalization error using a gradient descent search over the space

of the parameters (Melgani and Bruzzone 2004).

5. Experiments

Two VHR datasets were tested for the proposed multiscale classification technique.

In experiments, the statistics employed to measure classification accuracies were the

overall accuracy (OA) and the Kappa coefficient based on the confusion matrix. In

this paper, a more precise accuracy assessment procedure is adopted to evaluate the

performance of different feature sets at different scales. The test samples were

divided into two subsets: homogeneous areas and edge regions. This approach was

used because feature sets on larger window sizes (or coarser resolution) usually

perform well in homogeneous areas, but produce low accuracies in edge regions

(Myint et al. 2004). Therefore, the effectiveness of the multiscale classification

algorithm should be evaluated based on both homogeneous and edge accuracies.

5.1 IKONOS dataset

The imagery used for this experiment was acquired by the IKONOS commercial

remote sensing satellite over Shenzhen City in the south of China and consists of

four multispectral (MS) bands with 4 m resolution. The four MS bands collect data

at the red, green, blue and near-infrared channels. The test image comprised 512

lines and 512 columns and is shown in figure 2(a). Table 1 shows the relationship

between scale, resolution and window size and feature set.

The multiscale spectral and spatial feature images are shown in figure 2.

According to table 1 and figure 2, an 868 window size represents a local area of

32632 m, which is larger than the size of many objects in the image, such as road,

building, grass, tree, etc. Therefore, in this experiment, only the information at pixel
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level 262 and 464 window sizes is employed for feature fusion. The optimal scale

Oscale(i, j) (see equation (7)) for each pixel is shown in figure 2(h), where larger

windows are assigned to homogeneous areas and smaller ones are used for edge

pixels.

Table 2 shows the numbers of samples in the training and test sets for different

information classes. The accuracy statistics for different feature sets are provided in

table 3.

From the classification accuracies in table 3, it can be observed that:

(a) When spectral information is used alone for classification, the features

extracted by the 262 and 464 windows enhance the accuracies both in

homogeneous and edge regions, which shows that the contextual information

can increase the accuracy of classification of VHR data effectively. It is worth

noting that the spectral classification at scale s51 outperforms that at scale

s52 because a large local window may change or destroy some fine structures

and geometrical details in the VHR image. Although spectral features are

used alone, the proposed AW and MW algorithms significantly increase the

Figure 2. (a) IKONOS multispectral image in Shenzhen City, south of China. Multiscale
spectral feature images for scale: (b) s51, (c) s52 and (d) s53. Multiscale spatial feature
images for scale: (e) s51, (f) s52 and (g) s53. (h) The optimal window size for each pixel.

Table 1. The relationship between scale, resolution, window size and feature set.

Scale (s) 0 1 2 3
Window size 161 262 464 868
Resolution (m) 4 8 16 32
Feature set F0~ S0

pe

n o
F1~ S1

pe, S1
pa

n o
F2~ S2

pe, S2
pa

n o
F3~ S3

pe, S3
pa

n o
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classification results at pixel level. Compared with the results of pixel level

classification, the accuracy improvements for homogeneous areas are 9.8%

and 12.1% in OA and 11.5% and 13.8% in Kappa for the AW and MW

algorithms, respectively. The improvements for edge regions are 5.5% and
3.0% in OA and 6.4% and 3.4% in Kappa, respectively.

(b) Purely spectral information cannot discriminate spectrally similar objects

effectively, especially for VHR data. Therefore, the introduction of wavelet

high-frequency features evidently improves the spectral classification, both in
homogeneous and edge regions. This tendency can be clearly seen from

table 3. Compared to the results of pixel level classification, the accuracy

improvements for homogeneous areas are 14.1% and 14.2% in OA and 16.5%

and 16.3% in Kappa for the AW and MW algorithms, respectively. The

improvements for edge regions are 8.8% and 6.4% in OA and 9.8% and 7.4%

in Kappa, respectively.

The classification maps for different feature sets for the same area as figure 2 are
shown in figure 3. The confusion matrices for figures 3(a), (d) and (e) are provided in

table 4.

Table 2. Number of training and test samples for different information classes in the
IKONOS dataset.

Class
Number of

training samples
Test set on

homogeneous area
Test set on
edge area

Water 72 710 198
Tree 74 1141 359
Road 97 269 454
Building 85 2005 634
Bare soil 75 162 74
Shadow 74 830 708
Grass 72 238 188
Total 549 5355 2615

Table 3. Accuracy statistics for different feature sets in the IKONOS experiment (OA
represents overall accuracy and the highest accuracies for different feature sets are

highlighted).

Feature Scale Feature set

Homogeneous
accuracy

Edge
accuracy

OA (%) Kappa OA (%) Kappa

Spectral 0 S0
pe

74.08 0.685 74.61 0.690

1 S1
pe

79.31 0.744 76.90 0.715

2 S2
pe

78.19 0.729 74.99 0.689

AW SOscale
pe

83.83 0.800 80.15 0.754

MW Spe 86.13 0.823 77.59 0.724

Spectral and
spatial

1 F1~ S1
pe, S1

pa

n o
82.35 0.778 78.70 0.734

2 F2~ S2
pe, S2

pa

n o
82.88 0.785 78.36 0.730

AW FOscale~ SOscale
pe , SOscale

pa

n o
88.22 0.850 82.91 0.788

MW F5{Spe, Spa} 88.27 0.848 80.99 0.764
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Comparing the AW and MW algorithms with pixel level classification

(figures 3(a), (d) and (e)), the improvements in homogeneous areas for the

producer’s accuracy (PA) of building are 24.6% and 36.3% for the AW and MW

algorithms, respectively; the improvements for bare soil are 14.8% and 14.2% for the

PA and 19.5% and 30% for the user’s accuracy (UA), respectively. For the accuracy

statistics in edge regions, improvements occurred in water, tree, bare soil, building,

road and grass for the PA and in water, tree, road, building, bare soil, shadow and

grass for the UA.

5.2 Quickbird dataset

The image used in this experiment is of the urban area of the city of Beijing. As is

well known, China is a developing country that has shown rapid economic and

social development in recent years. In particular, because Beijing is to be the host

city of the 2008 Olympic Games, additional investment has stemmed from

governments and enterprises to accelerate the city construction, especially for the

infrastructure. The VHR satellite images will play an important part in regional

planning, project programming and construction monitoring, etc. The Quickbird

image used in this experiment consists of three multispectral bands (RGB) with

2.44 m spatial resolution (the infrared channel is unfortunately not available). The

image, of size 5126512 pixels, is shown in figure 4(a). Table 5 shows the number of

samples in the training and test sets for different information classes.

Figure 3. (a) Classification map for spectral information at pixel level. Classification results
of spectral–spatial feature sets at scale: (b) s51 and (c) s52. Classification maps of multiscale
fusion feature sets for (d) AW and (e) MW algorithms.
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The multiscale spectral–spatial feature images are displayed in figure 4. In the

experiment, 161 (the pixel level), 262, 464 and 868 window sizes are used for

multiscale information fusion. The optimal window for each pixel is shown in

figure 4(h). The classification accuracies for different feature sets are shown in

table 6.

Table 4. Accuracy statistics for the classification maps in figure 3.
W – water, T – tree, R – road, B – building, BS – bare soil, S – shadow, G – grass, UA – user’s

accuracy and PA – producer’s accuracy.

(a) Homogeneous and edge accuracies for pixel level classification (figure 3(a)).

Homogeneous areas Edge regions

W T R B BS S G UA W T R B BS S G UA

W 681 0 0 0 0 31 0 95.7 171 1 0 0 0 15 0 91.4
T 0 972 1 34 0 45 8 91.7 0 297 14 45 0 50 10 71.4
R 0 0 245 581 0 2 0 29.6 0 4 402 208 0 3 0 65.2
B 0 37 22 979 24 22 8 89.7 0 10 32 264 18 31 26 69.3
BS 0 0 0 100 138 0 0 58.0 0 0 0 15 56 0 0 78.9
S 29 86 0 130 0 730 0 74.9 27 21 0 10 0 609 0 91.3
G 0 46 1 181 0 0 222 49.3 0 26 6 92 0 0 152 55.1
PA 95.9 85.2 91.1 48.8 85.2 87.9 93.3 86.4 82.7 88.6 41.6 75.7 86.0 80.9

OA574.1%, Kappa50.685 OA574.6%, Kappa50.690

(c) Homogeneous and edge accuracies for multiscale spectral–spatial approach (figure 3(e)).

Homogeneous areas Edge regions

W T R B BS S G UA W T R B BS S G UA

W 708 0 0 0 0 0 0 100 180 0 0 0 0 0 0 100
T 0 1004 0 0 0 14 0 98.6 1 309 0 34 0 31 4 81.5
R 0 0 185 132 0 0 0 58.4 0 4 388 81 0 0 0 82.0
B 0 61 84 1706 1 63 28 87.8 0 21 65 477 0 98 73 65.0
BS 0 0 0 22 161 0 0 88.0 0 0 0 0 74 0 0 100
S 2 76 0 145 0 753 0 77.2 17 14 0 33 0 579 0 90.1
G 0 0 0 0 0 0 210 100 0 11 1 9 0 0 111 84.1
PA 99.7 88.0 68.8 85.1 99.4 90.7 88.2 90.9 86.1 85.5 75.2 100 81.8 59.0

OA588.3%, Kappa50.848 OA581.0%, Kappa50.764

(b) Homogeneous and edge accuracies for multiscale spectral classification (figure 3(d)).

Homogeneous areas Edge regions

W T R B BS S G UA W T R B BS S G UA

W 699 0 0 0 0 0 0 100 164 0 0 0 0 0 0 100
T 0 1039 0 3 0 33 2 96.5 0 328 0 0 0 14 15 91.9
R 0 0 220 267 0 0 0 45.2 0 0 400 111 0 0 0 78.3
B 0 1 49 1657 3 83 0 92.4 0 4 37 499 13 134 9 71.7
BS 0 0 0 13 159 0 0 92.5 0 0 0 0 61 0 0 100
S 11 69 0 65 0 714 0 83.1 34 20 17 24 0 560 8 84.5
G 0 32 0 0 0 0 236 88.1 0 7 0 0 0 0 156 95.7
PA 98.5 91.1 81.8 82.6 98.2 86.0 99.2 82.8 91.4 88.1 78.7 82.4 79.1 83.0

OA588.2%, Kappa50.850 Overall accuracy582.9%, Kappa50.788
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From the results in table 6, it can be seen that:

(a) Comparing the classification results for scales s50, s51 and s52, the feature

sets at the larger windows achieve higher accuracies in homogeneous areas,

but lower accuracies in edge regions. Therefore, we should evaluate the

effectiveness of different window sizes considering both homogeneous and

edge accuracies. This is especially important for VHR image processing. The

information at low resolution is not reliable for edge areas as, at those scales,

details and edge information have been smoothed by the decomposition

process in a large window area. From the accuracy statistics in table 6, it can

be seen that the two multiscale fusion approaches obtain better results than

Figure 4. (a) Quickbird multispectral image in Beijing, China. Multiscale spectral feature
images for scale: (b) s51, (c) s52 and (d) s53. Multiscale spatial feature images for scale: (e)
s51, (f) s52 and (g) s53. (h) The optimal window size for each pixel.

Table 5. Number of the training and test samples for different information classes in the
Quickbird dataset.

Class
Number of

training samples
Test set on

homogeneous area
Test set on
edge area

Water 70 858 792
Tree 80 712 948
Road 85 1554 1159
Building 79 2679 1923
Bare soil 70 532 221
Shadow 76 1133 880
Grass 78 278 216
Total 538 7746 6139
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the fixed window algorithm. Hence, it is necessary to integrate multiscale

information in order to increase the homogeneous accuracy and at the same

time keep the detail features.

(b) The accuracies achieved by integrating spectral and spatial features are

higher than those obtained using purely spectral information. The introduc-

tion of wavelet-based structural features obviously improves the spectral

classification, both in homogeneous and edge regions. This is because

spectral information alone cannot discriminate spectrally similar objects

effectively and wavelet-based high-frequency coefficients represent the edge

and geometrical structures. The proposed wavelet-based spectral–spatial

feature sets are effective for classifying VHR imagery.

The classification maps for different feature sets are shown in figure 5, and the

confusion matrices for figures 5(a), (d) and (e) are provided in table 7.

From figure 5 and table 7, it can be observed that the multiscale fusion algorithms

can improve the classification and reduce the pepper-salt effect in homogenous

areas, and at the same time preserve the geometrical and structural information

effectively. Compared to figure 5(a), the improvements in figures 5(d) and (e) are

obvious, especially for the spectrally similar road, building and bare soil because of

the introduction of multiscale wavelet-based spatial features.

Comparing the AW and MW algorithms with pixel level classification

(figures 5(a), (d) and (e)), the improvements in homogeneous areas are 9.9% and

6.4% in OA and 12.0% and 7.6% in Kappa, respectively. The multiscale fusion

algorithms also increase the classification accuracies in edge regions, the

improvements in OA are 3.9% and 6.0% and 4.1% and 6.5% in Kappa for the

AW and MW algorithms, respectively.

6. Conclusions

In this paper, a novel wavelet-based technique exploiting multiscale spectral and

spatial information is proposed to classify very high resolution (VHR) satellite

imagery. The limitation of the conventional wavelet-based feature extraction

Table 6. Accuracy statistics for different feature sets in the Quickbird experiment (highest
accuracies for different feature sets are highlighted).

Feature Scale Feature Set

Homogeneous
accuracy

Edge
accuracy

OA (%) Kappa OA (%) Kappa

Spectral 0 S0
pe

83.72 0.800 74.33 0.689

1 S1
pe

84.65 0.811 73.12 0.673

2 S2
pe

84.77 0.811 71.18 0.647

AW SOscale
pe

86.81 0.836 73.48 0.674

MW Spe 89.53 0.869 78.84 0.736

Spectral and
spatial

1 F1~ S1
pe, S1

pa

n o
85.00 0.815 73.81 0.681

2 F2~ S2
pe, S2

pa

n o
86.42 0.831 73.76 0.677

AW FOscale ~ SOscale
pe , SOscale

pa

n o
93.64 0.920 78.27 0.730

MW F5{Spe, Spa} 90.16 0.876 80.29 0.754
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approach is the fixed shape and choice of size of the analysis window. The proposed

methodology aims to extract multiscale features by integrating the information in a

set of concentric windows around each pixel in the image. The proposed approach is

made up of three blocks:

(1) The conventional wavelet-based feature extraction method is improved.

Multispectral bands are considered because VHR satellite sensors only

include a few spectral bands and hence spectral information is very important

for classification. The multiscale spectral and spatial feature sets are

extracted. The multiscale spectral feature sequence is obtained based on

the approximate sub-bands via wavelet transform for different window areas,

while the multiscale spatial feature sets are calculated by integrating the

directional sub-bands (horizontal, vertical and diagonal).

(2) In order to exploit the multiscale spectral–spatial feature sets, two

information fusion algorithms are proposed. The first is an adaptive window

(AW) algorithm. It aims to select the optimal window for each pixel and the

multiscale features are incorporated by averaging the feature sets at reliable

scales for each pixel. The second is a multiple window (MW) pyramid

algorithm, which aims to exploit the multiscale spectral and spatial feature

sets automatically by the machine learning approach.

(3) A support vector machine (SVM) is then used to interpret the multiscale

feature sets. The choice of an SVM-based classification architecture is

Figure 5. (a) Classification map for spectral information at pixel level. Classification results
of spectral–spatial feature sets at scale: (b) s51 and (c) s52. Classification maps of multiscale
fusion feature sets for (d) AW and (e) MW algorithms.

5938 X. Huang et al.

D
ow

nl
oa

de
d 

by
 [

C
en

tr
al

 M
ic

hi
ga

n 
U

ni
ve

rs
ity

] 
at

 1
3:

27
 2

9 
O

ct
ob

er
 2

01
4 



motivated by its self-adaptability, swift learning pace and high-dimensional

property in feature space.

In experiments on the two VHR datasets, the proposed classification technique

performed better than the conventional algorithms. The multiscale fusion approach

can obviously increase the accuracies in homogeneous areas and at the same time

Table 7. Accuracy statistics for the classification maps in figure 5.
W – water, T – tree, R – road, B – building, BS – bare soil, S – shadow, G – grass, UA – user’s

accuracy and PA – producer’s accuracy.

(a) Homogeneous and edge accuracies for pixel level classification (figure 5(a)).

Homogeneous areas Edge regions

W T R B BS S G UA W T R B BS S G UA

W 858 0 0 0 0 0 0 100 792 2 0 0 0 0 0 99.8
T 0 693 0 304 0 0 41 66.8 0 719 8 68 0 0 53 84.8
R 0 0 1403 556 0 0 0 71.6 0 0 810 293 0 2 0 73.3
B 0 0 149 1664 27 8 0 90.0 0 23 324 1035 36 17 1 72.1
BS 0 0 2 79 505 0 0 86.2 0 0 17 473 184 0 0 27.3
S 0 0 0 65 0 1125 0 94.5 0 57 0 36 0 861 0 90.3
G 0 19 0 11 0 0 237 88.8 0 147 0 18 1 0 162 49.4
PA 100 97.3 90.3 62.1 94.9 99.3 85.3 100 75.8 69.9 53.8 83.3 97.8 75.0

OA583.7%, Kappa50.800 OA574.3%, Kappa50.689

(b) Homogeneous and edge accuracies for multiscale spectral classification (figure 5(d)).

Homogeneous areas Edge regions

W T R B BS S G UA W T R B BS S G UA

W 858 0 0 0 0 0 0 100 792 0 0 0 0 0 0 100
T 0 693 0 100 0 0 52 82.0 0 840 0 21 0 1 73 89.8
R 0 0 1370 55 0 0 0 96.2 0 0 704 102 0 0 0 87.3
B 0 0 184 2517 62 14 0 90.7 0 18 451 1448 39 175 4 67.8
BS 0 0 0 0 470 0 0 100 0 0 4 347 178 0 0 33.7
S 0 0 0 4 0 1119 0 99.6 0 31 0 0 0 704 0 95.8
G 0 19 0 3 0 0 226 91.1 0 59 0 5 4 0 139 67.2
PA 100 97.3 88.2 94.0 88.4 98.8 81.3 100 88.6 60.7 75.3 80.5 80.0 64.4

OA593.6%, Kappa50.920 OA578.3%, Kappa50.730

(c) Homogeneous and edge accuracies for multiscale spectral–spatial approach (figure 5(e)).

Homogeneous areas Edge regions

W T R B BS S G UA W T R B BS S G UA

W 858 0 0 0 0 0 0 100 792 0 0 0 0 0 0 100
T 0 629 0 181 0 0 24 75.4 0 740 0 41 0 0 30 91.3
R 0 0 1303 53 0 0 0 96.1 0 0 687 33 0 0 0 95.4
B 0 0 251 2385 64 46 0 86.9 0 22 471 1567 123 20 1 71.1
BS 0 0 0 0 468 0 0 100 0 0 0 270 98 0 0 26.6
S 0 0 0 39 0 1087 0 96.5 0 91 1 12 0 860 0 89.2
G 0 83 0 21 0 0 254 71.0 0 95 0 0 0 0 185 66.1
PA 100 88.3 83.9 89.0 88.0 95.9 91.4 100 78.1 59.3 81.5 44.3 97.7 85.7

OA590.2%, Kappa50.876 Overall accuracy580.3%, Kappa50.764
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preserve the detail and edge features. In experiments, two comparisons were made.

In the first, the classification results for different scales were compared. The

experimental statistics show that larger analysis windows produced higher

homogeneous accuracies but lower edge accuracies, and smaller windows resulted

in higher accuracies in edge regions but lower accuracies and pepper-salt effects in

homogeneous areas. The proposed AW and MW algorithms can overcome this

trade-off effectively. In the second comparison, classification results for spectral

feature sets were compared with spectral–spatial feature sets. In experiments, the

classification by integrating spectral and spatial features clearly outperformed the

purely spectral classification. This result shows that the extended wavelet-based

feature extraction method was effective for VHR image classification.
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