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Abstract—Due to the rapid process of urbanization, there is an
increasing demand for detecting building changes over time using
very high-resolution (VHR) images. Traditional two-dimensional
(2-D) change detection methods are limited due to the image per-
spective variation and illumination discrepancies. One current
trend for building detection combines the use of orthophotos and
digital surface models (DSMs), because of its robustness against
false changes, as well as its capability of providing volumetric
information. In this paper, we propose an object-based three-
dimensional (3-D) building change detection framework based on
supervised classification, which makes use of the height, spectral,
and shape information in a combined fashion with object-based
analysis. The proposed method follows the following steps: First,
a synergic mean-shift segmentation method is applied on the
orthophoto with the constraints of the DSM, which derives seg-
ments with homogenous spectrum and height. In a second step,
the segments are classified with a hybrid decision tree and SVM
approach, and then the segments of the building class are merged
as building objects for change detection. An initial change indi-
cator (CI) is then computed for each building object concerning
height and spectral information. Finally, an adaptive CI updat-
ing strategy based on segment overlapping is proposed and the
traffic light system based on a dual threshold is used to identify
the change status of each building as “change,” “no-change,” and
“uncertain change”. The experimental results on scanned aerial
stereo images have demonstrated that our proposed framework
is able to achieve high-detection accuracy on images with limited
spectral quality.

Index Terms—Change indicator (CI), classification, decision
tree analysis, digital surface model, random forest, support vector
machine, three-dimensional (3-D) change detection.

I. INTRODUCTION

M ONITORING building changes are important tasks for
building-related applications. On one hand, it serves

as a critical step for updating the maps and three-dimensional
(3-D) models in the geo-database; on the other hand, the build-
ing change itself is of much interest for applications such as
urban growth analysis, building code compliance, and building
material flow estimation.
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Change detection techniques use two-dimensional (2-D)
low-resolution images have been intensively studied to assess
the change at the landscape level, which have achieved sat-
isfactory results [1], [2]. However, such techniques applied
to very high-resolution (VHR) images are limited by prob-
lems with illumination discrepancy and perspective variations
[3], [4], as well as the increased spectral ambiguities. These
techniques usually require images to have approximately the
same viewpoint with similar spectral responses [5]. Thus, the
increased resolution may not necessarily bring about positive
effects on the change detection results. The recent develop-
ment of dense matching techniques produces light detection
and ranging (LiDAR) comparable results, which has substan-
tially increased the availability of usable height information
from optical images [6]–[8]. Therefore, a current trend is to
incorporate the 3-D (height or depth) information for detect-
ing changes from VHR images [9]–[12], which is supposed to
be more robust and capable of providing additional information
such as volumetric differences.

Several studies compared digital surface models (DSMs) by
subtracting them for volumetric analysis [13], which is straight-
forward to avoid illumination and shadow problems from
image-based 2-D change detection approaches. Such methods
usually require high-quality DSMs (i.e., generated by LiDAR),
as the results are purely dependent on the analysis of the geom-
etry. However, a simple subtraction of DSMs may result in
unwanted changes, such as disturbances from seasonal varia-
tion of trees, noise, and coregistration errors. This is even more
problematic with DSMs generated with dense image match-
ing (DIM) techniques, since the matched DSMs usually contain
some noise and blunders. Moreover, researchers sometimes are
interested in only one type of urban objects (i.e., buildings,
roads, or vegetation). To reduce the ambiguities from unwanted
changes, a postclassification method in [14] was proposed for
building change detection by first truncating the height dif-
ferences with a given threshold, and then applied supervised
methods based on various shape features to eliminate false pos-
itives from trees. Rottensteiner [11] combined the multispectral
images and DSM to update the geo-database of the buildings,
where the multispectral images were used for extracting a veg-
etation index, and the resulting buildings were specified as
“demolished, “ “new,” and “changed”.

Pixel-based change detection is sensitive to noise and other
disturbances, whereas object-based methods are more robust
[15]. Tian et al. [12] proposed a region-based method to jointly
compare the height and intensity differences under the con-
straints of the segmented regions from the orthophotos, and
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then applied change vector analysis [16]. Similar object-based
methods using Dempster–Shafer fusion [17] of spectral and
height information can be found in [18]. To fully explore the use
of object-based analysis, a 3-D change detection method pro-
posed in [19] adopted several geometric and texture difference
indicators using unsupervised self-organizing maps (SOM) in
the context of 3-D model updating: buildings of date 2 are
detected using morphological building detection algorithms,
and new buildings of date 2 are highlighted by excluding the
existing buildings of date 1.

Among the existing change detection methods using VHR
images and DSMs for building detection, most of them first
apply the robust interpretation of change indicators (CIs)
derived from the height and textural/spectral differences, and
then employ post-filtering techniques to eliminate unwanted
changes. The performance of the change detection largely relies
on the quality of the images and DSMs in the first place.
It is also crucial to exclude the unwanted changes (blunders
from DSMs and seasonal variation of the vegetation). The
post-filtering strategy sometimes is limited by the quality and
availability of the vegetation index, as well as the lack of
urban class information. Therefore, we propose to preclassify
the ground scene using the image and DSM, and then to apply
an object-based change detection method on the building class,
taking into account their height and textural differences, as well
as the shape discrepancies. The advantage of this idea lies in
the fact that, by knowing segments of the building classes, we
are able to consider the shape differences of buildings. These
building segments provide appropriate regions to robustly eval-
uate the height and texture difference. The features extracted
from image and DSM can be learned from the data itself, which
can reduce the dependence of the algorithm to some particular
indexes requiring high-quality spectral information such as nor-
malized difference vegetation index (NDVI) and shadow index.
Moreover, this idea can easily be extended for detecting the
change of different urban classes such as roads and trees.

A complicated workflow is proposed in this paper to detect
building changes. It utilizes the combined height and spectral
information of the scene and adopts supervised classification
as a means of providing building primitives under an object-
based framework. The shape differences of building segments
are considered in addition to the height and spectral differences,
leading to more robust performance of the algorithm and higher
detection accuracy.

This paper is organized as follows. Section II presents
the general workflow and methodological considerations.
Section III briefly introduces the preprocessing steps including
DSM generation and depth constrained image segmentation.
Section IV describes the supervised classification and building
segment merging. In Section V, the CI computation, consid-
ering height, spectral information, and shape are introduced.
Section VI demonstrates the results and analyzes the parame-
ter sensitivity. Section VII concludes this paper by discussing
the pros and cons of the proposed method.

II. GENERAL WORKFLOW

The development of DIM techniques and high-resolution
sensors with stereo capability increases the availability of 3-D

Fig. 1. Proposed workflow.

information. Our idea is to make use of the height informa-
tion to localize building segments more accurately for build-
ing change detection. The overall workflow of our proposed
method is shown in Fig. 1.

The DSMs of the stereo pairs were generated with hierarchi-
cal semi-global matching (H-SGM) [6], [20]. As the orientation
parameters of the images might contain systematic errors, a
3-D coregistration procedure is used to minimize the distance
between the DSMs [21] (least squares 3-D surface matching).
In our case, only the shift parameters are considered, as the
rotation and scale differences are not significant for the aerial
images [22]. To derive meaningful segments, the segmentation
procedure should consider the height information, especially
when the spectral/radiometric information is weak, like in the
case of scanned aerial photos. Therefore, the synergic mean-
shift segmentation is employed to derive finer segments, which
are used for the subsequent feature extraction and classification.

There are many techniques available for building detection,
which usually adopt prior knowledge such as building heights,
brightness, and NDVI [11], these methods rely on the quality of
the vegetation index and sometimes the types of buildings. We
propose to use supervised methods, as the prior information can
be learned from the images and DSMs, regardless of data types
(panchromatic, multispectral, normal RGB). By incorporating
the height information, it is possible to have improved clas-
sification results [23], thus to provide more reliable building
primitives for change detection. As building segments can be
extracted with a higher accuracy, we consider the shape infor-
mation (overlapping region) of the objects in addition to the
height and spectral differences to further enhance robustness of
the change detection. In the following sections, our proposed
framework will be introduced in detail.

III. DATA PREPROCESSING

The data used in this study are scanned aerial stereo pairs of a
part of the city of Zurich. Due to the character of analogue pho-
tographic recording, radiometric sampling and physical photo
fade, the scanned photos usually have higher noise level than
digital images. Therefore, a 3× 3 bilateral filter [24] is applied
to reduce its negative impact on the DIM, which smoothes the
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Fig. 2. Profile analysis of height differences of the DSMs. Upper left: an unchanged area; the red line denotes the analyzed profile; bottom left: height differences;
right: DSM comparison of the profile (m).

homogenous areas of the images and at the same time keeps
sharp edges.

A. DSM Generation and Coregistration

1) DSM Generation: As a basic geometric processing pro-
cedure, the interior orientation is established based on the
fiducial marks of scanned images. For DIM, the epipolar images
are generated using the exterior orientation parameters.

The semi-global matching (SGM) algorithm has been proved
to be one of the leading DIM methods, which is able to leverage
both the performance and efficiency [6]. In this study, we apply
a hierarchical SGM method for the generation of the DSM,
whose performance has been reported as being similar to the
classic SGM algorithm, but has less memory requirement and
computation load [20]. Given a pair of epipolar images, SGM
tries to minimize the following matching energy with multipath
dynamic programming [25]:

E(D) =
∑
p

C(p,Dp) +
∑

q∈Np

P1T [|Dp −Dq| = 1]

+
∑

q∈Np

P2T [|Dp −Dq| > 1] (1)

where the first term denotes the sum of the initial energy with
disparity D, and the second term and third term regularize the
smoothness disparity map. P1 and P2 are jump penalties, with
the first one for pixels with disparity jump of 1 pixel to the
neighboring pixels (Np) and the latter for more than 1 pixel.
P2 can be adaptively chosen to be smaller for edge pixels and
larger for pixels in the homogeneous area. With a nonparamet-
ric pixel-wise cost (Census) [26], these two parameters (P1 and
P2) can be fixed as constants, thus this method can be seen
as being parameter-less [27]. The hierarchical SGM adopts a
coarse-to-fine strategy that dynamically determines the dispar-
ity range computed from a higher level of the pyramids to the
bottom ones for finer search, which saves the computation times
and was reported to have similar performance as the classic
SGM algorithm.

2) Coregistration: The generated DSMs from both dates
usually have coregistration errors due to systematic errors such
as the control point measurement errors and modeling uncer-
tainties from geo-referencing. Coregistration methods based on
feature points and known orientation parameters [9] are able to
reduce the misalignment according to the measurement redun-
dancies, whereas such methods are related to the sensors, as
for different models, the method needs to be formulated in
a case-by-case fashion. Therefore, we apply the least squares
3-D (LS3D) coregistration [21] based on the direct minimiza-
tion of the squared sum of Euclidean distances of the 3-D
surfaces, being independent of sensor models. This method
estimates the parameters of a spatial similarity transformation
[rotation (ω, ϕ, κ), translation (x, y, z), and scale differences]
between 3-D surfaces. In our case, we only estimate the
translations, since the rotations and scale differences are not
significant. Fig. 2 shows an example of a small unchanged
area with their root-mean-square error (RMSE) of the height
differences.

B. DSM Constrained Segmentation

We use object-based analysis for change detection; there-
fore, it is important to have meaningful and reliable segments.
The image-based segmentation method groups pixels with
similar colors, while in our case, the height information is
available, which is used to further improve the performance
of the segmentation. We adopt the synergic mean-shift (MS)
segmentation [28], [29] to find segments that have both homo-
geneous color and height. The original formulation of the
method imposes a very large weight on the edges of the color
images for each iteration of MS process, so that the MS vec-
tor will not go beyond the edge pixels. In our formulation,
we apply the Canny magnitude [30] of the DSM as the edge
weight of the synergic MS segmentation, which restricts the
segmentation within height-jump free areas. Fig. 3 shows an
example of the synergic mean-shift segmentation constrained
by height using a gray scale image. It can be seen that the
ground and building annotated in Fig. 3(a) have very similar
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Fig. 3. Example of mean-shift segmentation: (a) the gray image; (b) classic
mean-shift segmentation; (c) synergic mean-shift segmentation; and (d) Canny
magnitude of the DSM as weight map.

gray values, and the classic mean-shift segmentation result links
them as a one segment [Fig. 3(b), marked in the red circle],
whereas the synergic mean-shift segmentation [in Fig. 3(c)]
separates them due to the constraints of the weight map from
the DSM.

The synergic mean-shift segmentation has an additional edge
strength parameter β compared to those of the classic mean-
shift segmentation (the spatial bandwidth Hs and the spectral
bandwidth Hr), which is used for adjusting the weight of the
edge maps. In our experiments, Hs = 7, Hr = 4, and β = 0.1
are set as constants due to empirical tests. The spatial parameter
Hs = 7 is an empirical value that usually works for most of the
images. Since the synergic mean-shift segmentation takes the
DSM as a constraint, Hr = 4 is set as a relative large value to
reduce the effect of over-segmentation.

IV. SUPERVISED CLASSIFICATION AND

BUILDING DETECTION

The proposed workflow adopts a supervised method for
object-based classification to derive building segments. Due to
the available DSM, the geometric features can be extracted
to improve the classification accuracy [23]. Shape features
extracted from the radiometric information can be used to
improve the separability of urban classes [31]. Some features
are linearly linked to the urban classes, such as building and
shadow indices [32], [33]. Therefore, we propose to use a
combined decision tree analysis with support vector machine
(SVM) (DT-SVM) for classifying the scene, aiming to exam-
ine useful indices in a hierarchical order. The basic idea is to
first separate the off-terrain pixels from the ground using a top-
hat by reconstruction of the DSM, and to detect shadows using
the shadow index based on morphological reconstruction [32].
The other classes at a finer level (e.g., buildings and trees) are
distinguished using the joint height and spectral information
via a binary SVM. We consider only four basic urban classes
“building,” “vegetation,” “ground,” and “shadow”. The follow-
ing sections describe the feature extraction and the proposed
DT-SVM classification.

A. Feature Extraction

The following features are extracted for each segment.
1) Mean value of the top-hat by reconstruction of DSM

(THDSM) as an indicator for above-terrain points

The top-hat by reconstruction is a morphological operation
that aims to find hat-shaped blobs. A top-hat by reconstruction
The

J of an image J is computed as

The
J = J −BRJ,ε(J,e) (2)

where ε(J, e) is the gray level morphology erosion, and e is the
structuring element. BRJ,I is the morphological image recon-
struction of J from I , where I is smaller than J pixel-wise
[34]. I is computed as the erosion of J with a disk-shaped
structuring element, and the radius of the disk is defined as
the maximal value of the buildings, as further increasing the
value will not necessarily improve the performance [33]. The
top-hat by reconstruction on the DSM effectively extracts the
hat-shaped blobs, which is a good indicator for above-terrain
points.

2) Mean value of the top-hat of inverse image (THIIM) for
shadow indicator

Shadows in an urban area are mainly casted by buildings and
trees. A major characteristic of the shadow is its high luminance
contrast to the surrounding area, thus the top-hat by reconstruc-
tion can be applied to the negative image of the luminance (in
CIELAB space [35]) to extract dark blobs as shadows. Since
these shadows usually create extended regions in one direction,
with the similar size as the buildings in the other direction, the
same radius as used in THDSM can be adopted for computing
THIIM.

3) Variance of DSM (VDSM) and variance of image lumi-
nance (VIM)

As the vegetation (usually trees or bushes) surfaces are usu-
ally rougher than the impervious surfaces (roads, grounds, and
building roofs) in terms of DSM and image radiometry, VDSM
and VIM are adopted to distinguish them.

4) Mean value of the color (MC)
The spectral information is the driving force for urban clas-

sification in most of the cases, and it is particular helpful to
distinguish vegetation from impervious surfaces.

5) Elongation (EL) and expansion (EP) of each segment
The EL and EP describe the geometric properties of the

segments, which are computed as follows:

EL =
MIN_LEN

MAJ_LEN
,

EP = sqrt
[
(MAJ_LEN)

2
+ (MIN_LEN)

2
]

(3)

where the “MAJ_LEN” refers to “major axis length” and
“MIN_LEN” refers to “minor axis length,” being those of
the fitted ellipse of the segment. EL describes the thinness of
the segments, and this can be used to discriminate the thin road
from building segments. EP indicates the lateral expansion of
segments, meaning how elongated the segments are, which is
effective to distinguish large segments from small ones. Since
our segmentation procedure in Section III-B tends to reduce
the over-segmented regions, these shape features are useful to
distinguish buildings from other land cover objects.

B. Combined Decision Tree and SVM Classification

The THDSM reveals a linear relationships to above-terrain
objects (buildings and trees) and THIIM to shadows [32], [33].
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Fig. 4. DT-SVM method for classification.

A decision tree-based classification is considered to determine
these two classes using the linear indicator, and then SVM
is used for finer classification. Fig. 4 shows the proposed
DT-SVM classification method.

Since heavy shadows casted onto buildings will cause match-
ing errors, the shadow segments are first extracted based on the
THIIM. The above-terrain segments (building and trees) and
ground segments (grass and imperious grounds) are then sepa-
rated using THDSM. For both of the groups (above-terrain and
ground segments), a binary SVM is used to provide finer classes
using the rest of the features (VIM, MC, EL, and EP) described
in Section VI-A. The Gaussian radial basis function (RBF) is
used as the kernel function for the SVM classification [36]. To
ensure equivalent contribution of the rest features, these fea-
tures are normalized across all the segments, thus the scaling
factor of RBF is set to 1.

The threshold of THDSM and THIIM can be learned by
computing the mean value of the given training samples. Since
the shadows are determined by truncating the shadow index
(THIIM), the training samples can be small and representative.
Only heavy shadows are selected in order to avoid removing
buildings under light shadows. The advantage of the DT-SVM
is that it allows the feature vector to be hierarchically exam-
ined, so that more important and informative components of
the feature will make more contributions.

C. Building Merging

It is possible that one actual building object may have
been divided into several segments (over-segmentation) during
the segmentation process. Neighboring segments with similar
height have high chances of belonging to the same building;
therefore, such building segments should be merged as building
objects. For our experiment, the neighboring segments whose
height differences are less than 1 m (2.5 pixels) that are merged
into one building segment using a fast eight-neighborhood con-
nectivity method [37]. The fast connectivity merging algorithm
considers the height differences of each pair of neighboring seg-
ments instead of all the connected segments; therefore, it is also
applicable to nonflat roofs (e.g., slant roofs and dome roofs), as
the neighboring segments of such roofs usually have a smooth
transition.

It should be noted that we tolerate misclassification of the
ground segments to the buildings, as the main purpose of the
supervised classification is to eliminate the vegetation, which is

the main disturbance for building change detection. Moreover,
the ground segments usually have large size and are less likely
to produce false positives. Therefore, the samples of the build-
ings should be sufficient to cover most of spectrums of the
building roofs, and the number of vegetation and road samples
can be very small.

V. OBJECT-BASED CHANGE DETECTION

The direct subtraction of DSM and color (or spectrum)
results in many uncertainties and noise. We perform the change
detection only on the building segments, and the advantage
mainly lies in three aspects: 1) as the quality of data may
vary between different dates, detecting building segments inde-
pendently for each date reduces errors induced by noises of
the data from the other date. 2) For data with poor qual-
ity, highly overlapping building objects (building segments
detected from two dates) could provide additional shape infor-
mation for the change evaluation. 3) The unwanted changes
(i.e., in vegetation) can be removed in the classification stage.

To implement the shape information, our proposed method
computes the CI for each building object in two steps: 1) initial
CI based on robust height and texture difference and 2) adap-
tive CI updating based on segment overlapping. The first step
computes an initial CI that indicates the change probability for
each building segment. Based on the initial CI, the shape infor-
mation (segment overlap between buildings detected from two
dates) is used to adaptively update the CI for overlapping and
nonoverlapping building segments.

A. Initial CI Computation

The initial CI is computed using the orthophotos and cor-
responding DSMs for each building object on each date. It
should be designed to exploit both the spectral/textural and
the height information while maintaining its robustness to the
DSM and spectral uncertainties. Due to the temporal varia-
tion of the luminance, simple Euclidean differences between
the color information from two dates may result in many false
positives. Therefore, for each segment, we compute the normal-
ized correlation coefficient (NCC) of its bounding box, as it is
robust against radiometric differences. NCC is usually sensitive
to misalignment between two image patches, which may occur
due to the matching errors. Tian et al. [38] proposed to reduce
the misalignment for DSM differencing by computing the min-
imal value of height differences over a small window. Based
on the same idea, we compute the maximum of the NCCs by
shifting the rectangular box with a 5× 5 window to robustly
compute the correlation between two patches.

The height differences are computed within each building
segment. We adopt a histogram-based robust height difference
as proposed in [19]: it first calculates the histogram of the
height difference of all the pixels within the segment, and then
excludes those values with frequent number less than 10% of
the total number of pixels in this segment. The mean value
is computed over the remaining pixels as the robust height
difference. Since the NCC is a normalized value, the height dif-
ference should also be normalized so as to be fused with NCC.
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The normalization of the height differences nhdif employs a
truncated form by computing the ratio of the height difference
hdif and a fixed base height mb for each segment

nhdif = hdif/mb. (4)

The CI can be written in a weighted form combing both
measures

C = ω ×NCC + (1− ω)nhdif. (5)

In our experiment, we take mb = 5, ω = 0.2. mb = 5 is
approximately two times of the RMSE of the height difference
after coregistration (as shown in Fig. 2), meaning that segments
with height difference larger than 5 m will have a very high
probability of change. Since the DSM of the high-resolution
data is more reliable, we set less weight to the NCC value,
determined as an empirical value.

B. Adaptive CI Updating Based on Segment Overlapping

The initial CI reveals the change probability based on the
height and texture differences. However, it might contain errors
due to the texture ambiguity and matching uncertainties, which
causes false positives. Most of the previous works focused on
robust methods to compute the CI, yet ignored the fact that
the shape coherence of the segments between two dates could
provide more information to reduce such uncertainties. For
example, if two building objects detected at each date have a
high overlap, they are likely to be the same objects, so the CI
should be lower to reduce their chance of having been changed.

The idea is to suppress the CI value for each segment when
there is a highly overlapping building segment from the other
date, and to increase the CI value when a building object at one
date could not find a correspondence at the other date. For build-
ing segments from two dates that are partially overlapping, they
may be a rebuilt area. Their common regions may reveal smaller
height differences than the nonoverlapped regions. In this case,
these building segments should be used to support each other
for more robust change evaluation. We propose an adaptive pro-
cess to update the CI of partially overlapping building segments
based on their correlation, as described below.

For a building segment A at one date and B at the other date,
we define the following values:

R(A,B) =
Area(Intersect(A,B))

Area(B)
(6)

M(A,B) = Min(R(A,B), R(B,A)) (7)

G(A,B) = Max(R(A,B), R(B,A)). (8)

According to the formulation of R(A,B),M(A,B), and
G(A,B), it can be easily proved that they are all within [0, 1].
Different values of M(A,B) and G(A,B) can indicate an
overlap status of these two segments: A high M(A,B) implies
that these two segments have a high agreement (correlation) in
their 2-D shapes, which indicates a high possibility that these
two segments are unchanged [Fig. 5(a)]. A low G(A,B) indi-
cates small overlaps, meaning a low correlation between these

Fig. 5. Abstractive examples of the segment interaction (red: segment A; green:
segment B). (a) High M(A,B); (b) low G(A,B); (c) low M(A,B) but high
G(A,B); and (d) both segments are partially overlapped.

two segments [Fig. 5(b)]. A high G(A,B) shows a high corre-
lation between two segments, as at least one segment is largely
covered by the other [Fig. 5(c)]. Fig. 5(d) shows a common case
of a rebuilt area, where buildings from different times are par-
tially overlapping. For highly correlating buildings such as in
Fig. 5(a), the CI values of both segments are similar, as they
indicate the same area of the difference. In the case of Fig. 5(c),
segment B is almost fully covered by A, and B gives no more
information for computing the CI of A. On the contrary, the CI
value of B is highly correlated to that of A, as the informa-
tion for computing the CI is from a part of A. For uncorrelated
segments shown in Fig. 5(b), both buildings are independent
and should not be used to support each other. For partially cor-
related buildings as shown in Fig. 5(d), their overlapping area
might have similar height, which reduces the CI value of each
segment, thus the nonoverlapping regions should be used to
support each other.

From an information point of view, either high correlation
or no correlation leads to little information [39]. Therefore,
the half-correlated building segments contain the highest joint
information to evaluate their change status. We adopt the
entropy metric [39] to measure such information by adap-
tively weighting the contribution of the overlapping building
segments to update the CI. Assuming the overlap measures
G(A,B) and M(A,B) of the two segments as information
sources, the joint information of their correlation can be defined
as their joint entropy, being

W (A,B) = H(G(A,B))H(M(A,B)). (9)

where H(X) = −∑
pi(X)log(pi(X)) is the entropy mea-

surement. G(A,B) and M(A,B) follow the Bernoulli distri-
bution

p1(G(A,B)) = G(A,B), p0(G(A,B)) = 1−G(A,B).
(10)

The distribution of M(A,B) can be similarly defined as (10).
As for the Bernoulli distributions, H(X) reaches its maximum
when p1(X) = p0(X) = 0.5. It is self-evident that W (A,B)
reaches its maximum when G(A,B) = M(A,B) = 0.5. This
means a segment B that creates 50% mutual overlap with A
(M(A,B) = 0.5, i.e., half correlated) should give its strongest
support for updating CI. Based on this fact, we use a 2-D
Gaussian function centered at (0.5, 0.5) as the weight for CI
updating

g(x, y) = e
−
[

(x−0.5)2+(y−0.5)2

2σ2

]
(11)
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Fig. 6. Change determination process considering the overlapping.

where x and y are G(A,B) and M(A,B), respectively, and
σ = 0.5. Let C(A) be the initial CI of segment A computed in
Section V-A, its updated values U(A) are given in (12), which
is shown at the bottom of the page, where N(A) denotes the
overlapped segments with A in the other date. To consider the
influence by the size of the segment, the area of the segment is
also incorporated when weighting different CIs.

The CI updating strategy is shown in Fig. 6. We define
T1(<1) and T2(>1) as the relaxing factor to suppress the
values of the CI for building objects that find highly over-
lapped segments (M(A,B) > 0.8) and to increase the CI of
those do not find corresponding building objects (G(A,B) <
0.2). In our experiment, T1 = 0.8, T2 = 1.2. We define a dual
threshold (Tlow, Thigh) after repetitive tests to classify each seg-
ment as “changed” (U > Thigh), “nonchange” (U < Tlow), and
“uncertain” (Tlow < U < Thigh).

Building segments with a “change” status from the earlier
date are demolished buildings, and those from the later dates
are new buildings. Overlapping building segments with differ-
ent statuses are promoted as “change” buildings if one of them
has a “change” status. In our experiment, the thresholds are:
Tlow = 0.4, Thigh = 0.5, which are selected by empirical tests.

The CI updating process can effectively suppress the false
positives induced by the matching errors, as well as leverag-
ing CIs of buildings with irregular overlaps with a weighting
scheme. Fig. 7 shows the CIs of the building segments in a small
area. It demonstrates that the updated CI is lower than that on
the nonchange buildings (as can be seen in the green circle),
while it is higher in the rebuilt area (within the red circle) due
to the adaptive support from other buildings.

VI. EXPERIMENT AND RESULT ANALYSIS

The scanned aerial images are used to validate our method,
since they are important resources to study the urban evolu-
tions over the past times. They are provided by SWISSTOPO
[40], together with orientation parameters, with an average
GSD (ground sampling distance) of 0.38 m. The generated
point clouds for each date are resampled to a regular grid DSM
with 0.4 m cell size, and orthophotos are generated based on

U(A) =
C(A) ∗ Area(A) +

∑
N(A) g(G(A,B),M(A,B)) ∗ Area(B) ∗ C(B)

Area(A) +
∑

N(A) g(G(A,B),M(A,B)) ∗ Area(B)
(12)

Fig. 7. Example of the computed CI. From left to right: image in the year 2002;
image in the year 2007; initial CI [computed with equation (5)]; updated CI.

Fig. 8. Data used for experiment. First row: images; second row: DSMs. Left
column: year 2002 (test area for experiment 1); middle column: year 2007 (test
area for experiment 2.); right column: year 1994 (test area for experiment 3).

the DSM. Due to the relatively low quality of the film and
noise produced during the scanning process, the images from
different dates have different radiometric quality and sharp-
ness, which limits the performance of algorithms using direct
color and DSM comparisons. Moreover, the old scanned photos
(before 2002) are in gray scale, which provides even less spec-
tral information. Therefore, it is challenging to perform change
detection analysis on such dataset. Three sites are selected
for our experiments, which include typical urban scenarios
such as residential area, mixtures of residential, and industrial
area. Two of them are selected from the year 2002 (in sum-
mer) and 2007 (in winter), and one from the years 1994 and
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Fig. 9. Change detection results of the experiments. Rows 1–3: Experiments 1–3. Color representation of the third and fourth column: red: demolished; green:
new; orange: uncertain changes.

2002, with the stereo pair in 1994 being in gray scale. The
reference data are manually sketched by careful inspection,
and both pixel-based and object-based measures are carried out
to assess the results of the proposed method. In our experi-
ment, true positives (TP), false positives (FP), false negatives
(FN), and true negatives (TN) are employed and the TP rate
(TPR), FP rate (FPR), FN rate (FNR), overall accuracy (OA),
and Kappa coefficient (KC) are calculated for evaluating the
change detection accuracy [(13), shown at the bottom of the
page], where GP , PD, and N are the numbers of positives
in the reference data, positives detected, and the total number
of pixels/objects. TPR examines the completeness of detected
changes, and FPR presents the wrongly detected changes.
KC denotes the total agreement between the detected results
and the reference change mask. Our proposed method uses

TPR =
TP

GP
,FPR =

FP

PD
,FNR =

FN

GP
,OA = (TP + TN)/N

KC =
OA−M

1−M
,M =

(TP + FP )× (TP + FN) + (FN + TN)× (FP + TN)

N ×N
(13)

a dual threshold for determining the “change,” “nonchange,”
and “uncertain changes,” and we only evaluate the “change,”
and “nonchange” results in our experiment, since the uncertain
changes should be identified by the operators.

Fig. 8 shows the examples of the data at these dates, which
are also the test areas of the three experiments. It can be seen
that there is a clear seasonal difference between the data in
2002 and 2007, where the leaves on the trees are sparser in the
image of 2007, and this can be observed clearer in the first two
images of Fig. 7. There is no near-infrared band for the color
images, and the weak spectral information may not be sufficient
to identify the vegetated area with the greenness index [9] of the
color images.

To validate the proposed method, three simple methods
are used for comparison: 1) DSM differencing (DSMDIF);
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TABLE I
STATISTICS OF THE TRAINING SAMPLES

TABLE II
CLASSIFICATION RESULTS FOR DIFFERENT METHODS

2) image differencing (IMGDIF); and (3) a region-based change
detection method (REGB) [12] that combines the height and
spectral/radiometric information. Thresholds are given to trun-
cate the differences as change masks in these three methods.
These methods usually deliver the change detection results for
all land cover classes. In order to compare them with the pro-
posed method, we only consider the area covered by building
class from our classification results. The thresholds of these
methods are tuned repetitively according the ground reference
change mask, and only the results that produce the optimal
KCs are used for the comparison.

A. Experiment

The experiment results are shown in Fig. 9. A first visual
comparison between the third and fourth row of Fig. 8 indicates
that most of the significant changes are detected, with only a
few uncertain changes. This implies that the final CI has good
separability between “change” and “nonchange.” The detected
building segments contain some ground segments, which are
usually determined as nonchange or uncertain change, as the
sizes of the ground segments are usually large to tolerate small
DSM errors. The image in the year 2002 is converted to gray

TABLE III
CHANGE DETECTION RESULTS

Ex, experiment; NCSRD: number of changed segments in the reference data.

scale in the third experiment to test our proposed method on
data with poor spectral quality.

B. Result Analysis

Since the supervised classification is a crucial step for deriv-
ing the building segments, it is essential to evaluate the classi-
fication accuracy. We manually marked most of the segments
with their class information on the test dataset, and less than
5% of them were randomly selected as training data, with the
rest of the segments used for classification accuracy assessment.
The statistics of training samples is shown in Table I. Besides
the DT-SVM classification approach, we have tested the multi-
class SVM [36] (MSVM) and the random forest (RF) approach
[41] for classification. For the MSVM classification, we adopt
the “one-against-all strategy” [42] with a “Gaussian radial basis
function” as the kernel (with scaling factor set as 1). 500 trees
are used for the RF training. All the features described in
Section IV-A are used in a vector-stack fashion, with each com-
ponent of the feature vector normalized to [0, 1] across all the
segments.

Table II shows the classification results. It can be seen that
there is no significant difference in terms of OA. The results
of the experiments 1 and 2 have achieved higher classification
accuracy, since color images contain more information. The
RF has overall a better performance in identifying the build-
ing area, and the DT-SVM has higher classification accuracy in
the vegetation class.

Table III shows the change detection results using differ-
ent classification method. The object-based evaluation does not
show significant differences, as the number of changed seg-
ments is small. The proposed method has achieved over 85%
TPR and an average of 60% of FPR, meaning that most of the
changed segments can be identified. Most of the false positives
are small in size, occurring at the wrongly classified vegetation
(trees) or places with matching errors, which can be further
filtered according to their size and shapes. In the pixel-based
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Fig. 10. Correlation between the number of training samples and the classification accuracy and change detection accuracy. Rows 1–3: Experiments 1–3. Columns
1–3: classification OA in date 1, classification OA in date 2 and change detection KC.

Fig. 11. Comparative study in test site 1 (red: demonished; green: new buidlings). First row: the computed change mask; second row: an enlarged area with rebuilt
buildings. The threshold of REGB (region-based method), DSMDIF (DSM differencing) and IMGDIF (image differencing) are optmized for the highest KC.

evaluation of the experiment 1, although the classification OA
of DT-SVM is lower than that of the RF, it delivers higher KC
in change detection, which is mainly due to its high TPR and
low FPR. In experiment 3, the classification OAs of all the

three methods are similar, however, the KC of MSVM in the
change detection results is lower than the other two, and this
means that the classification is not necessarily correlated to the
change detection results.
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TABLE IV
A COMPARISON OF THE CHANGE DETECTION RESULTS

To study the performance of proposed method more com-
prehensively, we have performed the experiments for several
times using different number of training samples, aiming to
evaluate its robustness and understand how the training sam-
ples affects the change detection results. Fig. 10 demonstrates
the relationship between the number of training samples and
the classification, as well as change detection accuracy. It can
be seen that in general, RF has higher performances in terms of
classification, while the MSVM delivers the lowest classifica-
tion OA. This is because each component of the feature vector
contributes equivalently for the MSVM classification, which
causes reduced classification accuracy due to the weak spectral
information. Although RF has obtained the best classification
performance for most of the experiments (first two columns
of Fig. 10), the change detection results using DT-SVM has
achieved the highest KC [as shown in Fig. 10 (the third col-
umn)]. As DT-SVM delineates the direct relationship between
the THDSM and the above-terrain objects, it has higher chances
to maintain the completeness of individual buildings. RF might
detect more buildings in the classification, but they might be
fragmental, which causes reduced accuracy in the change eval-
uation. Therefore, the high classification does not necessarily
lead to high change detection accuracy. Within a certain range
of classification accuracy, the completeness of the buildings
is more important. Moreover, Fig. 10 (the third column) also
shows that the change detection accuracy does not have con-
stant improvement with the increasing number of training
samples. It keeps stable for as long as the number of samples is
beyond 100 in our case, where change detection with DT-SVM
has obtained the highest KC.

Therefore, the proposed method using DT-SVM classifica-
tion is more robust and is able to work with small numbers
of training samples. The change detection results are mainly
affected by the missing buildings with large sizes during
the classification/building detection procedure, which leads to
false negatives. Consequently, the change detection accuracy
is not directly related to the classification accuracy of all the
buildings, but largely dependent on the performance of the
classification on the changed buildings with large sizes.

Fig. 11 shows the comparison between the proposed method
and three methods including REGB (region based method),
DSMDIF (DSM differencing), and IMGDIF (image differenc-
ing). An enlarged area (Fig. 11, second row) of the test site 1
shows a rebuilt region. It can be seen that the proposed method
has extracted more complete regions than the other methods, in
particular in the rebuilt area. Since both IMGDIF and REGB
include the color information as direct change measure, while
not specifying the building segments for each date, they are not

able to separate the changed object as “demolished” and “new.”
The DSMDIF takes the negative height difference (DSM2–
DSM1) as demolished region and the positive difference as
the newly built regions, while it cannot delineate the change
status of the overlapping regions (shown in Fig. 11, second
row). Table IV shows the statistics of the comparison over the
three test sites, where the TPR, TPR, and KC are used for
the evaluation. As the DSMDIF and IMGDIF are pixel-based
method, we only use the pixel-based evaluation for the com-
parison. It shows that among the tested methods, the proposed
method shows the highest KC agreement to the ground ref-
erence. The IMGDIF shows the worst results, and the REGB
performs better than DSMDIF. Although the parameters of the
three methods (RGB, DSMDIF, and IMGDIF) are tuned to meet
the best performance, it still shows lower accuracy than our
proposed method.

C. Parameters

There are several tunable parameters in the proposed method,
which are mainly from the change detection stage, since the
parameters of feature vector for classification and segmentation
(i.e., the radius for top hat by reconstruction, Hs, Hr, and β for
segmentation) are fixed according to the resolution and qual-
ity of the data, as well as the segmentation. The thresholds for
determining highly overlapped (M(A,B) > 0.8) and nonover-
lapped (G(A,B) > 0.2) segments are trivial and should be
adjusted according to the quality of segmentation. The basic
height value mb is closely related to the quality of DSMs and
RMSE of their coregistration, and the weight ω is related to the
quality of both spectral and height information. The relaxing
parameters T1 and T2 are related to the quality of the initial
CI. T1 should be decreased and T2 be increased when the ini-
tial indicators have lower quality. It is interesting to see how
T1 and T2 and the adaptive process affects the value of the
CI. To demonstrate the best achievable results of the proposed
method with different relaxing values (T1 and T2), we com-
pute the highest KC (hKC) by varying the thresholds (Tlow

and Thigh) within the range of the CI for different T1 and T2.
For this particular purpose, we define Tlow = Thigh for gen-
erating the change masks. The hKC for the updated CI are
shown in Fig. 12. The hKC of initial CI is shown as a con-
stant, since it does not change with T1 and T2. It can be seen
that the hKC is relatively robust with the value of T1 and T2,
and it reaches the peak when T1 = 0.7, T2 = 1.3 in our evalu-
ation. A clear difference of hKC can be observed between the
initial and updated CI. In all the parameter settings, the hKC
of the updated CI is approximately 0.07 higher than the ini-
tial CI, which demonstrates the effectiveness of our adaptive
CI updating approach. Tlow and Thigh controls the truncated
threshold for change mask generation. A building segment with
a CI value greater than 1 indicates strong evidences of being
as a changed segment, and a value within [0, 1] implies its
uncertainty representing as the probability. Since 0.5 is the
median value of the probability. Tlow and Thigh should be cen-
tered around this value, the larger difference between them, the
more segments will be categorized as uncertain segments for
operator’s decision.
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Fig. 12. hKC for the updated CI with different T1 and T2.

VII. CONCLUSION

In this paper, we have proposed a novel framework for 3-
D building change detection combining height, texture, and
shape information. The basic idea is to first classify the images
combining the height information to derive building segments,
and then these building segments are further refined to com-
pute the CI based on the height and texture differences. An
adaptive strategy is used to update the CI based on segment
overlapping. Our contributions of this paper are mainly three-
fold: 1) the synergic mean-shift segmentation constrained by
DSM; 2) a hierarchical decision tree analysis for classification;
and 3) adaptive CI update based on the information measure
with segment overlap.

The scanned aerial stereo images are used for experiments.
The results have demonstrated that our proposed method has
achieved high change detection accuracy even for images with
poor spectral information (i.e., images with weak color or
monochromatic images). The proposed workflow with the DT-
SVM classification method is more robust toward the number
of training samples, and it has achieved the highest change
detection accuracy with only small number of training sam-
ples. The adaptive CI updating strategy incorporates the shape
information of the building segments, which is more robust to
the matching uncertainties and spectral/radiometric ambiguity.
Three methods including 1) DSM differencing; 2) image dif-
ferencing; and 3) region-based method are compared to our
proposed method. The change detection results of the pro-
posed method have achieved the best performance among these
methods, and have demonstrated better capabilities of detecting
changes in the rebuilt areas.

The proposed method adopts a preclassification strategy to
derive building segments, and the change detection is toler-
ant toward misclassification of large ground segments to the
buildings. Most of the false positives occur at tree segments
that are misclassified as buildings, as well as small segments
induced by matching errors. Part of these false positives can
be eliminated by shape filters (e.g., size of the region, elonga-
tion, and convexity). The undetected buildings will not cause
change detection errors in the nonchange area. However, those
undetected buildings in the changed area will lead to large false
negatives, regardless of their high classification accuracy. It
raises an interesting observation that the higher classification
accuracy does not necessarily lead to higher KC in our pro-
posed change detection method, while it is more important that
the building detection procedure can obtain high completeness
in the changed area. Therefore, our future work will include the

height difference map as prior information of changes to cor-
rect the undetected buildings or incomplete building segments
in the classification stage, thus to further improve the robustness
of the proposed change detection method.
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