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Abstract

In computer vision and pattern recognition researches, the studied objects are

often characterized by multiple feature representations with high dimension-

ality, thus it is essential to encode that multiview feature into a unified and

discriminative embedding that is optimal for a given task. To address this chal-

lenge, this paper proposes an ensemble manifold regularized sparse low-rank

approximation (EMR-SLRA) algorithm for multiview feature embedding. The

EMR-SLRA algorithm is based on the framework of least-squares component

analysis, in particular, the low dimensional feature representation and the pro-

jection matrix are obtained by the low-rank approximation of the concatenated

multiview feature matrix. By considering the complementary property among

multiple features, EMR-SLRA simultaneously enforces the ensemble manifold

regularization on the output feature embedding. In order to further enhance its

robustness against the noise, the group sparsity is introduced into the objective

formulation to impose direct noise reduction on the input multiview feature ma-

trix. Since there is no closed-form solution for EMR-SLRA, this paper provides

an efficient EMR-SLRA optimization procedure to obtain the output feature

embedding. Experiments on the pattern recognition applications confirm the
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effectiveness of the EMR-SLRA algorithm compare with some other multiview

feature dimensionality reduction approaches.

Keywords: multiview, feature extraction, low-rank matrix approximation,

ensemble manifold regularization, group sparsity

1. Introduction

In many pattern recognition applications, e.g., human identification, image

annotation, hyperspectral data classification, the studied objects are often repre-

sented by different views of features [1]. For example, a person can be identified

by face (frontal or profile), palmprint and gait with information obtained from5

multiple sources, an image can be characterized by its color, shape and texture,

and a pixel in the hyperspectral data can be represented by both spatial and

spectral features. Each view of a feature summarizes a specific characteristic

of the studied object from different feature spaces, and features for different

views are complementary to one another [2]. Although such multiview feature10

provides more potential discriminative information to distinguish the patterns

of different classes, the feature vector of each view is usually lies in a high di-

mensional feature space and thus combining them together frequently leads to

the problem of ”curse of dimensionality” [3, 4, 5]. In fact, feature embedding is

critical for the final performance as it both reduces the required computational15

load as well as regularizes the learning problem onto a smaller subset of input

features. In this case, there is a need for the feature dimensionality reduction

(DR) technologies that can reduce the redundancy among features while pre-

serve the discriminative information that is important for the subsequent given

task (e.g., modeling, classification, visualization, and clustering).20

In the past decades, a large family of DR methods have been proposed in the

attempt to find an appropriate low dimensional subspace of the original high

dimensional feature space [6, 7]. Feature DR can be generally categorized into

supervised and unsupervised approaches. Practically, the supervised branch of-

ten requires a large amount of labeled data, which is an expensive and laborious25
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task and sometimes even infeasible. In contrast, the unlabeled data are cheap

and easy to obtain because a large amount of them can be easily collected from

the data set. Hence, this paper focuses on the unsupervised technique which

automatically learns the multiview feature embedding without any priori dis-

criminative information. The most representative unsupervised DR method is30

Principal Component Analysis (PCA) [8, 9], which maximizes the data vari-

ance in the projected linear subspace. Since the global linearity of the conven-

tional DR algorithms prohibits their effectiveness for nonlinear distributed data,

some manifold learning based DR algorithms have been proposed to overcome

this issue, as pioneered by the works of Locally Linear Embedding (LLE) [10],35

ISOMAP [11], Laplacian Eigenmaps (LE) [12], Hessian eigenmaps (HLLE) [13],

and Local Tangent Space Alignment (LTSA) [14]. All the aforementioned linear

and nonlinear DR algorithms can be unified to a graph embedding framework

[15] or a patch alignment framework [16]. In addition, the matrix factoriza-

tion based methods are also applied to data feature extraction and DR, e.g.,40

the Regularized Nonnegative Matrix Factorization [17], the Non-negative Patch

Alignment Framework [18], and the Regularized Low-Rank Matrix Approxima-

tion [19].

The traditional solution for multiview feature embedding is to concatenate

the feature vectors from different views together and then apply the feature DR45

algorithms directly on the concatenated vector. Since this strategy completely

ignores the diversity of multiple features, researchers have suggested to consider

different views in different ways to achieve a better feature embedding, such as

Distributed Spectral Embedding (DSE) [20] and Multiview Spectral Embedding

(MSE) [21]. Some more recently effort on the topic of multiview feature em-50

bedding including [22, 23, 24, 25, 26]. However, most of the existing multiview

feature embedding algorithms share at least one of the following problems: (1)

the multiview embedding of test samples can not be directly computed due to

the feature mapping is nonlinear and implicit, (2) the complementary property

of different views has not been optimally explored since each view actually has55

its specific statistical and physical meanings, and (3) the robustness of algorithm
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is limited because it ignores the fact that the input multiview feature matrix is

usually affected by noises from different views.

To address the issues illustrated above, in this paper, we propose an en-

semble manifold regularized sparse low-rank approximation (EMR-SLRA) algo-60

rithm for multiview feature embedding, based on the framework of least-squares

component analysis [4]. As illustrated in Fig. 1, the multiview feature is firstly

concatenated into a matrix, the low dimensional feature representation and the

projection matrix are obtained by the low-rank approximation of that multi-

view feature matrix. By considering the complementary property among the65

multiple features, EMR-SLRA simultaneously enforces the ensemble manifold

regularization on the output feature embedding. In order to further enhance its

robustness against the noise, the group sparsity is introduced into the objective

formulation to impose direct noise reduction on the input multiview feature

matrix. Furthermore, since there is no closed-form solution for EMR-SLRA, we70

propose an efficient EMR-SLRA optimization procedure to obtain the multiview

feature embedding. In summary, the main advantages of EMR-SLRA algorithm

for multiview feature embedding lie in the following:

Figure 1: Flowchart of the EMR-SLRA algorithm for multiview feature embedding.

• The least-squares component analysis framework is generalized to the mul-
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tiview version, by which the output feature representation of the original75

multiview data and the projection matrix can be simultaneously learned.

Such low-rank approximation of the multiview feature matrix provides an

straightforward approach to predict the embedding of test samples, thus

the out-of-sample problem can be avoided.

• The ensemble manifold regularization (EMR), which considers the comple-80

mentarity of different features by combining all the graphs in the multiple

feature spaces together, is enforced on EMR-SLRA to look for a phys-

ically meaningful embedding that is discriminative for subsequent given

task. It is worth noting that the coefficient for each view is automatically

optimized adapt to its contribution to the data embedding.85

• The group sparsity is introduced to control the error between the ideal

and input multiview feature matrices. Although this `2,1-norm fitting

constraint is only defined with respect to the ideal matrix, the effect of

noise reduction can be transferred to the projection matrix in the EMR-

SLRA algorithm. By this consideration, the robustness of algorithm can90

be guaranteed even if some views have severely corrupted by noise.

The remainder of this paper is organized as follows. In Section 2, we pro-

vide the objective formulation of EMR-SLRA in detail. Section 3 proposes the

efficient EMR-SLRA optimization procedure. Then, the experimental results of

EMR-SLRA compared with some other multiview feature DR approaches are95

reported in Section 4, followed by the conclusion in Section 5.

2. Ensemble Manifold Regularized Sparse Low-Rank Approximation

This section presents the EMR-SLRA algorithm in detail, which can be

divided into three parts, i.e., the multiview matrix low-rank approximation, the

ensemble manifold regularization, and the group sparsity constraint.100
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2.1. Multiview Matrix Low-Rank Approximation

The proposed EMR-SLRA algorithm is based on the least-squares compo-

nent analysis framework [4]. Suppose we have a data set X = {x1, x2, · · · , xN}

with N samples in the Rm dimensionality feature space (the data set has been

pre-centralized, i.e., 1
N

∑N
i=1 xi = 0), PCA seeks the optimal linear transfor-105

mation from Rm to Rd (d < m) by which the data is decorrelated while the

variance is maximized. In a least-squares point of view, denote the desires low

dimensional feature representation as Y = {y1, y2, · · · , yN}, PCA minimizes the

following reconstruction error by using the optimal orthogonal basis under the

least-squares framework:110

ε =

N∑
i=1

∥∥∥∥∥∥xi −
d∑
j=1

(xiej)ej

∥∥∥∥∥∥
2

, (1)

in which {ej}dj=1 is a subset of orthogonal basis of X in Rm.

If define P = [e1, e2, · · · , ed] ∈ Rm×d (PTP = I), thus we have Y = PTX.

Then, Eq. (1) has its matrix formulation:

ε =

N∑
i=1

∥∥xi − P (PTxi)
∥∥2 ,

⇒ε =
∥∥X − P (PTX)

∥∥2 . (2)

Therefore, the objective of PCA can be rewritten as follows:

arg min
P

∥∥X − P (PTX)
∥∥2 ,

s.t. PTP = I.

(3)

Now we tune to the case of multiview feature embedding. Suppose we have

observed V views for each sample, i.e., xi = {x(1)i ∈ Rm1 , · · · , x(V )
i ∈ RmV }.115

For the consideration of multiview feature concatenation, the new feature of

each sample is denoted by xi = [x
(1)
i , x

(2)
i , · · · , x(V )

i ]T ∈ Rm, m =
∑V
i=1mi,

and the multiview feature matrix is denoted by X = [X(1), X(2), · · · , X(V )]T ∈
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Rm×N . Followed by these definitions, the low-rank matrix approximation of the

multiview data can be simply unified into Eq. (4):120

arg min
U,Y

‖X − UY ‖2 ,

s.t. UTU = I,

(4)

in which Y = [y1, y2, · · · , yN ] ∈ Rd×N and U ∈ Rm×d are the multiview feature

embedding and the projection matrix to predict the rest of samples, respectively.

2.2. Ensemble Manifold Regularization

While the objective formulation in Eq. (4) achieves to unify the goal of

multiview feature embedding into a matrix low-rank approximation framework,125

the complementary property of different views has not been considered since

such feature concatenation deals with all the views equally. In fact, the different

views are obtained from different perspectives which have different physical

meanings and statistical properties, thus the desires low dimensional feature

embedding should be able to encode the correlation among different views by130

fully account for the complementary property. In EMR-SLRA, we employ the

ensemble manifold regularization [27] to regularize our matrix approximation to

fit the intrinsic and nonlinear structure of multiview data.

Based on the aforementioned notations, for the v-th view, we denote its

undirected graph as G(v) = {X(v),W (v)}, in which X(v) is the set of vertices135

(actually it is the feature matrix of the v-th view itself) and W (v) ∈ RN×N is

the relation matrix weighted by the heat kernels [28]:

W
(v)
ij =

e
(−‖x

(v)
i

−x
(v)
j ‖

2

t ), x
(v)
j ∈ N(x

(v)
i ) or x

(v)
i ∈ N(x

(v)
j )

0, else

(5)

in which N(x
(v)
i ) is the k -nearest-neighbors of sample x

(v)
i and t is the parameter

in Gaussian function.
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According to our previous patch alignment framework [16], the data manifold140

structure in the v-th feature space can be preserved as much as possible by the

following optimization:

arg min
Y

∑
i6=j

W
(v)
ij ‖yi − yj‖

2
= arg min

Y
tr(Y L(v)Y T). (6)

in which L(v) is the Laplacian matrix of the v-th view, i.e., L(v) = D(v) −W (v)

and D(v) is a diagonal matrix whose entries are column sums of W (v) [29].

Because of the complementary property of multiple views to each other,145

different views definitely have different contributions to the multiview feature

embedding. The ensemble manifold regularization suggests that the intrinsic

manifold can be learned by the optimal linear combination of the pregiven can-

didates. If we impose a set of nonnegative weights β = [β1, β2, · · · , βV ] (β > 0

and
∑V
v=1 βv = 1) on the optimization (6) over all views, the ensemble manifold150

regularization of the multiview data X is:

arg min
Y,β

V∑
v=1

(βv)
rtr(Y L(v)Y T),

s.t.

V∑
v=1

βv = 1, β > 0,

(7)

in which r is a scale parameter to control the weights of multiple features. It

is obvious that the larger weight βv makes more important contribution of v-th

view in the embedding Y . Note that both the weight vector and the feature

embedding are simultaneously optimized in Eq. (7), which indicates each feature155

has been regularized ro a particular role in the multiview feature embedding.

By combining Eqs. (4) and (7), we have:

arg min
U,Y,β

‖X − UY ‖2 + λ1

V∑
v=1

(βv)
rtr(Y L(v)Y T),

s.t. UTU = I,

V∑
v=1

βv = 1, β > 0.

(8)
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2.3. Group Sparsity Constraint

Generally, in computer vision and pattern recognition researches, the ob-

served data is more or less suffered from the noise which challenges the robust-160

ness of the recognition model. Furthermore, in the discussed multiview feature

learning task, the comprehensive noise of the multiview feature matrix is more

complicated than the single feature DR since the noises are from different views

with different distributions. Therefore, this noise can be transferred from the

observed matrix X to the low dimensional feature representation Y by the low-165

rank approximation (3) and then decrease the robustness of our multiview DR

algorithm. To address this issue, in EMR-SLRA algorithm, besides the two

low-rank factor matrices U and Y , we also introduce the ideal multiview fea-

ture matrix X̂ to alleviate the affect by noises from different views, as shown in

Fig. 1. Our main motivation here is to impose a direct noise reduction by the170

extra consideration of the error between ideal matrix X̂ and input matrix X.

Although this constraint is only defined with respect to X̂, the effect of noise

reduction can be transferred to U and Y in the EMR-SLRA algorithm. By this

consideration, the robustness of EMR-SLRA can be guaranteed even if some

views have severely corrupted by noise.175

In this paper, we focus on the `2,1-norm fitting constraint since it is robust

against to noise in the data [30, 31, 32]:

arg min
X̂

∥∥∥X̂ −X∥∥∥
2,1
. (9)

in which the `2,1-norm regularizer is defined as [31]:

‖X‖2,1 =
∑
i

√∑
j

X2
ij =

∑
i

‖xi,:‖2 (10)

By this way, we replace the input matrix X by the ideal one X̂ in Eqs. (4)180

and (8), and then put Eq. (9) into Eq. (8) to formulate the objective function
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of EMR-SLRA algorithm as follows:

arg min
U,X̂,Y,β

∥∥∥X̂ − UY ∥∥∥2 + λ1

V∑
v=1

(βv)
rtr(Y L(v)Y T) + λ2

∥∥∥X̂ −X∥∥∥
2,1
,

s.t. UTU = I,

V∑
v=1

βv = 1, β > 0,

(11)

in which λ1 and λ2 are parameters to control the ensemble manifold regulariza-

tion and the group sparsity constraint, respectively.

From Eq. (11), we further note that the proposed EMR-SLRA algorithm185

can also deal with the single feature based embedding as well, by the settings

of V = 1 and β = 1. Thus the proposed feature DR algorithm degrades to the

version of manifold regularized sparse low-rank approximation (MR-SLRA).

To apply our EMR-SLRA into practice, we have to concern the following key

problem: how to solve Eq. (11) efficiently. Since there is no closed-form solution190

for EMR-SLRA, we develop an efficient EMR-SLRA optimization procedure by

an iterative way, which is elaborated in the next section.

3. Efficient EMR-SLRA Optimization

The objective function of the EMR-SLRA in (11) is a multi-variable and

non-convex problem, and there is no known optimal solution which allows for195

the simultaneous optimization of all the variables. To overcome this problem, in

our developed optimization procedure, we iteratively optimize only one of the

variables (U , Y , β, and X̂) by fixing other three. By this way, we decompose

the objective function (11) into four sub optimizations as follows:

3.1. Optimize U by fixing Y , β, and X̂200

Then the objective function (11) is reduced to:

arg min
U

∥∥∥X̂ − UY ∥∥∥2 ,
s.t. UTU = Id.

(12)
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The Lagrangian function of (12) is:

L(U,Λ) =
∥∥∥X̂ − UY ∥∥∥2 + Λ(UTU − Id)

= tr(X̂TX̂) + tr(Y TY )− 2tr(UTX̂Y T) + Λ(UTU − Id),
(13)

in which Λ is the Lagrangian multiplier. The partial derivative of L(U,Λ) respect

to U is:

∂L

∂U
= 0 =⇒ −2X̂Y T + 2UΛ = 0

=⇒ U = X̂Y TΛ−1.

(14)

If we set Z = X̂Y T, thus U = ZΛ−1, by putting it into the constraint205

UTU = Id, then we have:

UTU = Id =⇒ Λ−1ZTZΛ−1 = Id

=⇒ Λ = (ZTZ)
1
2 .

(15)

We further denote the rank of matrix Z is rank(Z) = d, by performing the

SVD decomposition on Z, we have Z = GDV T. Thus U can be optimized by:

U = ZΛ−1 =⇒ U = Z(ZTZ)−
1
2

=⇒ U = Z(V DGTGDV T)−
1
2

=⇒ U = (GDV T)(V D−1V T)

=⇒ U = GV T.

(16)

3.2. Optimize Y by fixing U , β, and X̂

Then the objective function (11) reduces to:210

arg min
Y

∥∥∥X̂ − UY ∥∥∥2 + λ1

V∑
v=1

(βv)
rtr(Y L(v)Y T). (17)
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Denoting L =
∑V
v=1(βv)

rL(v), Eq. (17) reduces to:

arg min
Y

∥∥∥X̂ − UY ∥∥∥2 + λ1tr(Y LY T). (18)

By the derivative of the single-variable function F (Y ) =
∥∥∥X̂ − UY ∥∥∥2 +

λ1tr(Y LY T) respect to Y , we have:

dF (Y )

dY
= 0 =⇒ Y + λ1Y L− UTX̂ = 0

=⇒ Y = UTX̂Ψ−1,

(19)

in which Ψ = I + λ1L and I is an identity matrix.

3.3. Optimize β by fixing U , Y , and X̂215

Then the objective function (11) is reduced to:

arg min
β

V∑
v=1

(βv)
rtr(Y L(v)Y T),

s.t.

V∑
v=1

βv = 1, β > 0.

(20)

The Lagrangian function of (20) is:

L(βv, η) =

V∑
v=1

(βv)
rp(v) − η(

V∑
v=1

βv − 1), (21)

in which p(v) = tr(Y L(v)Y T) and η is the Lagrangian multiplier. The partial

derivative of L(βv, η) respect to βv is:

∂L(βv, η)

∂βv
= 0 =⇒ r(βv)

r−1p(v) − η = 0

=⇒ βv = (
η

rp(v)
)

1
r−1 .

(22)

Finally, by considering the constraint
∑V
v=1 βv = 1 into Eq. (22), we have:220

βv = (rp(v))
1

1−r /

V∑
v=1

(rp(v))
1

1−r . (23)
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3.4. Optimize X̂ by fixing U , Y , and β

Then the objective function (11) reduces to:

arg min
X̂

∥∥∥X̂ − UY ∥∥∥2 + λ2

∥∥∥X̂ −X∥∥∥
2,1
. (24)

Since the term of `2,1-norm is non-smooth, the problem in Eq. (24) can be

rewritten as follows, according to [31, 33].

arg min
X̂

∥∥∥X̂ − UY ∥∥∥2 + λ2tr{(X̂ −X)TŴ (X̂ −X)}, (25)

in which Ŵ is a diagonal matrix given by:225

Ŵ =


1

2‖(X̂−X)1,:‖
F

. . .

1

2‖(X̂−X)d,:‖
F

 . (26)

Finally, by the derivative of the single-variable function in Eq. (25), X̂ can

be optimized by:

X̂ = (Id + λ2Ŵ )(UY + λ2ŴX)−1. (27)

We summarize the proposed efficient EMR-SLRA optimization procedure as

in Algorithm 1.

4. Experiments230

In this section, we show some experimental results on the pattern recognition

applications to compare the EMR-SLRA algorithm with some other multiview

feature DR approaches. We focus our multiview feature embedding algorithm

on the challenging problems of the text-image retrieval, web image annotation,

and hyperspectral image classification. In the reminder of this section, we first235

provide a brief description of the aforementioned three public data sets and

their corresponding input multiple features, and then give the detailed experi-

mental settings of our algorithm and related comparison methods. Finally, we

13



Algorithm 1 Efficient EMR-SLRA Optimization Algorithm

Input: Multiview feature matrix X = [X1, X2, · · · , XV ] ∈ Rm×N , dimensionality of embed-

ded feature space d, regularization parameters λ1 and λ2, size of k -nearest-neighbors k,

scale parameter r, maximal iteration number Iter and threshold ξ.

Initialization

• Randomly initialize Y ∈ Rd×N ,

• Initialize X̂ = X + random(m,N),

• Initialize β = [1/V, 1/V, · · · , 1/V ],

• Initialize Ŵ by Eq. (26).

Repeat for t = 1 to Iter

• SVD decomposition Zt = X̂Y T
t , i.e., Zt = GtDtVt

• Update Ut+1 = GtV T
t

• Let Lt =
∑V

i=v(βv)rtL
(v), Ψt = I + λ1Lt, update Yt+1 = UT

t X̂tΨ
−1
t

• Let p
(v)
t = tr(YtL(v)Y T

t ), update (βv)t = (rp
(v)
t )

1
1−r /

∑V
i=1(rp

(v)
t )

1
1−r

• Update X̂t+1 = (Id + λ2Ŵt)(UtYt + λ2ŴtX)−1 and Ŵt+1 by Eq. (26)

• Calculate Objt+1 by Eq. (11), break iteration if |Objt+1 −Objt| < ξ

End

Output: Multiview feature embedding Y and projection matrix U

present the pattern recognition performance using the embedded feature and

the parameters analyses.240

4.1. Data set description

In this paper, we select three benchmark data sets for performance evaluation

of our EMR-SLRAalgorithm: the Wiki Text-Image data set 1 [34], the NUS-

WIDE-LITE data set 2[35], and the HYDICE hyperspectral data set 3[36].

The Wiki Text-Image data set was collected from the Wikipedia’s featured245

articles collection. At the time of collection (October 2009), it had 2669 ar-

ticles spread over 29 categories. By considered only 10 most populated ones

1http://www.svcl.ucsd.edu/projects/crossmodal/
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3https://engineering.purdue.edu/ biehl/MultiSpec/hyperspectral.html
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with at least 150 instances per class, the final corpus contain 2,866 multime-

dia instances, in which 2173 for training and 693 for testing, and each instance

contains a single image and at least 70 words. The detailed categories of Wiki250

Text-Image data set includes art, biology, geography, history, literature, media,

music, royalty, sport, and warfare. Some examples of these images are shown in

Fig. 2 and the median text length is about 200 words. Along with the data set,

the authors had supplied the 128-D SIFT histogram image features and 10-D

latent Dirichlet allocation model based text features, these two features serve255

as the input multiple features for the EMR-SLRA algorithm.

Figure 2: Example images in the Wiki Text-Image data set.

The NUS-WIDE-LITE data set is a subset of NUS-WIDE data set, which is

a real-world web image data set from Flickr created by National University of

Singapore. This smaller data set is composed of 28807 images for training and

28808 images for testing. Each of the image is combined with a 81-D label vector260

to indicate its relationship to all the 81 distinct concepts. In our experiment,

we only use the object images for performance evaluation. Since we deal with

the single label image annotation, we further remove the images with zero label

or more than one labels from the object image subset. Then, by discarding the

categories of scarce images, we have the following nine classes: birds, boats,265

flowers, rocks, sun, tower, toy, tree, and vehicle, in which 10600 images for
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training and 7094 images for testing. Five visual features already included in

the data set distribution serve as the input of EMR-SLRA algorithm: (1) 65-D

color histogram, (2) 226-D block-wise color moments, (3) 145-D color auto-

correlogram, (4) 74-D edge direction histogram, and (5) 129-D wavelet texture.270

The hyperspectral images (HSI) are captured by the special designed hyper-

spectral sensors in which each pixel has contiguous bands of spectra, as shown

in Fig. 3 refer to the hyperspectral digital imagery collection experiment (HY-

DICE) data cube we use for image classification. This data set was primarily

released by Purdue University, and then serves as the most standard HSI for DR275

and classification. This data set is an urban site from the mall in Washington,

DC, which has the size of 280 × 307 pixels. By delete the water absorption

bands, a total of 191 channels in the 0.4-2.4 µm region of the visible and in-

frared spectra are considered in the experiments. In HSI processing area, the

term classification is used to assign all the single pixels in the image to a set of280

classes, e.g., the roof, grass, tree, road, path, and shadow in the HYDICE data

set. The input three kind of features are extracted by the following approaches

[37, 38]: (1) 191-D spectral feature, by arranging a pixel’s digital number (DN)

in all of the spectral bands, (2) 60-D Gabor wavelet based texture feature over

the top principal component of HSI (scale=5, direction=12), and (3) 80-D ex-285

tended morphological profile [39] algorithm based morphological feature (scale

element as [0,2,4,6,8]).

Figure 3: HYDICE hyperspectral data set.

In all of the data sets, we use the aforementioned multiple features as the

input for DR algorithm, and then train the multi-class one versus one Support
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Vector Machine (SVM) [40, 41] using the selected training samples with the290

embedded feature. After that, we predict the labels of the test samples and

report the accuracy.

4.2. Experimental settings

To compare the effectiveness of the EMR-SLRA with the conventional fea-

ture DR methods for multiview feature embedding, we also show the perfor-295

mance of the following unsupervised methods: (1) the best performance of a

single view feature (Best); (2) directly stack the multiview feature without DR

(Stack); (3) Principal Component Analysis (PCA) [8, 9] of the multiview feature

matrix; (4) Locality Preserving Projection (LPP) [29] of the multiview feature

matrix; (5) Neighborhood Preserving Embedding (NPE) [42] of the multiview300

feature matrix, (6) Canonical Correlational Analysis (CCA) [43, 24], (7) Partial

Least Squares (PLS) [44, 24], (8) Bilinear Model (BLM) [45, 24], and (9) Mul-

tiview Spectral Embedding (MSE) [21]. Note that the algorithms CCA, PLS

and BLM were previously designed to deal with the data set that only has two

different views, although they can be generalized to the multiview version [24],305

we have to carefully tune too many coefficients. Therefore, we only perform

these three algorithms in the Wiki Text-Image data set which exactly has two

views.

The detailed parameters setting of the aforementioned algorithms are as fol-

lows. For all of the algorithms, we first normalize each of the single feature310

matrix to the range [0, 1] individually. In LPP, we set the k -nearest-neighbors

parameter as k=10 and the kernel parameter t=1, while in NPE, we also set

k=10. The three coefficients in CCA, PLS and BLM are set according to litera-

ture [24]. In MSE and EMR-SLRA, the heat kernel parameters are set followed

by LPP (k=10 and t=1), and the scale parameter r is fix to 10. The two315

regularization parameters λ1 and λ2 (Eq. (11)) are decided by using cross vali-

dation with the same range of [10−5, 10−4, · · · , 104]. Since the optimal subspace

dimensionality d is data dependent, we report the overall accuracy respect to d

in all the data sets and compare the detailed class accuracies by keep the same
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number of dimensionality for all the methods (i.e., 10 for Wiki Text-Image, 100320

for NUS-WIDE-LITE and 50 for HYDICE hyperspectral data set). Finally, in

the subsequent classification step, we use the embedded feature to train the

SVM with Gaussian radial basis function kernel, again, the parameters C and

γ in SVM are tuned by cross validation approach in the ranges of [1, 10, 50, 100]

and [0.1, 1.0, 10, 100], respectively.325

4.3. Performance on the three data sets

In this subsection, we report the performance of the EMR-SLRA algorithm

and comparison methods on the three public data sets, i.e., the Wiki Text-Image

data set, the NUS-WIDE-LITE data set, and the HYDICE hyperspectral data

set, respectively.330

4.3.1. Wiki Text-Image data set

In this subsection, we use the Wiki Text-Image data set to illustrate the

effectiveness of EMR-SLRA algorithm in comparing with its competitors in-

cluding the traditional multiview methods CCA, PLS and BLM. Table 1 shows

the number of training and test samples of each category in the Wiki Text-Image335

data set. In order to simulate a small-sample-size scenario in the classification

step, we randomly select 100 training samples per category to train the SVM

classifier. The test collection is left unchanged and all the performance accu-

racies are reported apply to this test collection. The experiments are repeated

ten times using the aforementioned independent training samples and fixed test340

samples, and then the average results are reported in Table 2 and Fig. 4.

Table 2 compares the classification accuracies of all categories and the over-

all accuracy (OA) and average accuracy (AA) use the best single view feature,

multiview feature stacking, and the top 10 most significant features produced

by eight DR algorithms. We observe that the proposed EMR-SLRA algorithm345

performs the highest OA and AA and obtains most of the top classification

accuracy values in the individual categories. Although EMR-SLRA does not

achieve the best accuracy value for several categories, the classification accu-
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Category training test

art 100/138 34

biology 100/272 88

geography 100/244 96

history 100/248 85

literature 100/202 65

media 100/178 58

music 100/186 51

royalty 100/144 41

sport 100/214 71

warfare 100/374 104

total 1000/2173 693

Table 1: Number of training and test samples in the Wiki Text-Image data set.

racy is almost close to the best one. In order to further investigate the effect of

subspace dimensionality d on the classification performance, Fig. 4 shows clas-350

sification OA with regard to the embedded feature dimensionality for all feature

embedding algorithms and two baseline algorithms. As shown in this figure,

the EMR-SLRA performs better than the other eight DR algorithms when d

is larger than 6. Moreover, EMR-SLRA performs at the best classification OA

when d is larger than 10 and achieves the relative stable and high level of OA355

record when the d is increased to a larger value, whereas the traditional meth-

ods such as LPP and NPE perform unsatisfactorily since they were basically

designed for DR of feature in a single feature space.
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Algorithm Best Stack PCA LPP NPE CCA PLS BLM MSE EMR-SLRA

art 0.3823 0.4117 0.3529 0.4411 0.4117 0.4705 0.3823 0.4117 0.4117 0.4411

biology 0.9090 0.8863 0.9090 0.9204 0.8977 0.8977 0.8863 0.8977 0.9204 0.9090

geography 0.6666 0.6770 0.7187 0.6666 0.6875 0.7187 0.7083 0.7185 0.6770 0.7708

history 0.4352 0.4235 0.5058 0.5411 0.5176 0.4941 0.4705 0.5764 0.4941 0.5058

literature 0.6769 0.5846 0.6461 0.6769 0.6769 0.6153 0.6923 0.6769 0.6461 0.6923

media 0.5344 0.4827 0.4310 0.3965 0.3448 0.2068 0.2413 0.1379 0.3101 0.5862

music 0.1372 0.5490 0.5882 0.6666 0.6274 0.7254 0.7450 0.8039 0.6666 0.5882

royalty 0.7073 0.6341 0.6585 0.6585 0.6097 0.6829 0.7073 0.6585 0.6829 0.6829

sport 0.8591 0.8450 0.8872 0.8732 0.8591 0.8873 0.8873 0.8732 0.8732 0.8873

warfare 0.7307 0.7596 0.7788 0.7788 0.7596 0.7211 0.7788 0.8079 0.7788 0.7596

OA 0.6378 0.6522 0.6810 0.6883 0.6695 0.6652 0.6767 0.6883 0.6738 0.7085

AA 0.6039 0.6253 0.6476 0.6620 0.6392 0.6420 0.6499 0.6562 0.6461 0.6823

Table 2: Category specific accuracies for various features in the Wiki Text-Image data set

(d=10).
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Figure 4: Classification OA with regard to the embedded feature dimensionality in the Wiki

Text-Image data set.

4.3.2. NUS-WIDE-LITE data set

In this subsection, we show the effectiveness of EMR-SLRA algorithm in360

real-world web image annotation use the NUS-WIDE-LITE data set. Similar to

the aforementioned Wiki Text-Image data set, we randomly select 200 samples

per category from the training database to feed into SVM, and all the test

samples are left unchanged for performance evaluation. The number of training
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and test samples are indicated in Table 3. Again, ten independent classification365

experiments are implemented and the the average results are reported in Table

4 and Fig. 5.

Since there are five different views in the NUS-WIDE-LITE data set, besides

CCA, PLS and BLM algorithms (which have too many coefficients to be care-

fully tuned when the number of views is larger than 2), another seven different370

feature representations based image classification accuracy values are listed in

Table. 4. Among them, the feature dimensionality of the best feature and stack

feature are 129 (the wavelet texture) and 639, respectively, while for the other

DR algorithms we fix the embedded feature dimensionality d to 100. It is obvi-

ous that the proposed EMR-SLRA algorithm achieves the best global OA and375

several of the top category specific accuracies, which is similar to the results

in the Wiki Text-Image data set. In addition, the classification OAs with an

increase in the number of feature d for all the DR approaches are compared in

Fig. 5. From this figure, we learn that the proposed multiview feature embed-

ding algorithm achieves the best OA when the value of d is larger than 20, and380

the optimal OA stabilizes when the embedded feature dimensionality increases

from 40 to 100. The results provided in Table. 4 and Fig. 5 confirm the similar

conclusion that EMR-SLRA outperforms the traditional feature DR algorithms

for multiview feature embedding.
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Figure 5: Classification OA with regard to the embedded feature dimensionality in the NUS-

WIDE-LITE data set.
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Category training test

birds 200/897 623

boats 200/798 508

flowers 200/2229 1523

rocks 200/1542 1059

sun 200/800 504

tower 200/633 443

toy 200/717 480

tree 200/1262 805

vehicle 200/1722 1149

total 1800/10600 7094

Table 3: Number of training and test samples in the NUS-WIDE-LITE data set.

Algorithm Best Stack PCA LPP NPE MSE EMR-SLRA

birds 0.2600 0.4943 0.4687 0.4269 0.3996 0.4526 0.4815

boats 0.3405 0.4603 0.4015 0.3622 0.3661 0.3917 0.4291

flowers 0.5778 0.6447 0.5877 0.5502 0.5219 0.6270 0.6704

rocks 0.4721 0.5278 0.6081 0.5835 0.5571 0.5561 0.6185

sun 0.5753 0.6309 0.6746 0.5992 0.6428 0.6289 0.6428

tower 0.4153 0.4492 0.4582 0.4537 0.4108 0.4898 0.4921

toy 0.1792 0.4333 0.4646 0.4083 0.4500 0.4833 0.4646

tree 0.4658 0.4496 0.4596 0.3776 0.4298 0.4770 0.4944

vehicle 0.5509 0.5535 0.5866 0.6336 0.6057 0.6022 0.6449

OA 0.4628 0.5365 0.5420 0.5126 0.5052 0.5451 0.5777

AA 0.4263 0.5160 0.5233 0.4883 0.4871 0.5232 0.5486

Table 4: Category specific accuracies for various features in the NUS-WIDE-LITE data set

(d=100).
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Category training test

roof 30 2576

grass 30 1980

tree 30 1772

road 30 1568

path 30 1174

shadow 30 1182

total 180 10253

Table 5: Number of training and test samples in the HYDICE hyperspectral data set.

4.3.3. HYDICE hyperspectral data set385

The pixel-based image classification task of HYDICE hyperspectral data set

is challenging because many pixels of the roof, road, and path are similar in

spectral domain (1st view) since they may be made of similar materials [46].

For each round of image classification, we randomly select 30 samples per class

for training, and all the rest samples in reference data are treated as test samples390

(Table 5). Then the average results of ten independent rounds of classification

are shown in Table 6 and Fig. 6. In the hyperspectral image classification

task, we usually use the kappa coefficient instead of AA to couple with OA

for performance evaluation [47]. The similar classification performance can be

observed from Table 6 and Fig. 6, in that the proposed EMR-SLRA based395

feature representation achieves the best performance by the OA and kappa in

the HYDICE hyperspectral data set. In summary, the classification performance

on the various of data sets in this subsection all demonstrate that the proposed

EMR-SLRA is an effective and robust multiview feature embedding algorithm.
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Algorithm Best Stack PCA LPP NPE MSE EMR-SLRA

roof 0.6832 0.7554 0.8839 0.8881 0.8652 0.9262 0.9475

grass 0.9989 0.9919 0.9974 0.9681 0.9959 0.9252 0.9833

tree 0.9599 0.9655 0.9644 0.8617 0.9102 0.9531 0.9633

road 0.9706 0.9770 0.9540 0.9241 0.8686 0.9171 0.9674

path 0.9088 0.9071 0.9335 0.9173 0.9403 0.9378 0.9710

shadow 0.9754 0.9864 0.9129 0.8732 0.9923 0.9814 0.9585

OA 0.8955 0.9153 0.9395 0.9061 0.9220 0.9369 0.9642

Kappa 0.8740 0.8975 0.9265 0.8859 0.9054 0.9233 0.9564

Table 6: Category specific accuracies for various features in the HYDICE hyperspectral data

set (d=50).
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Figure 6: Classification OA with regard to the embedded feature dimensionality in the HY-

DICE hyperspectral data set.

4.4. Parameters analyses400

Finally, we further provide some analyses of several key parameters and the

effect of ensemble manifold regularization in the proposed EMR-SLRA algo-

rithm, based on the Wiki Text-Image data set.

4.4.1. Regularization parameters λ1 and λ2

The two regularization parameters λ1 and λ2 in objective function (11) pro-405

vide the tradeoff between ensemble manifold regularization and group sparsity

constraint in EMR-SLRA. Theoretically, the large λ1 rises the effect of ensemble

manifold regularization but would causes a potential overfiting; the large λ2 em-
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phasizes the sparse level but might removes too many significant features, while

the small λ2 might keeps too many redundant and noisy features that would be410

introduced into low dimensional feature representation. In our experiments, we

search these parameters in the range of {10−5, 10−4, · · · , 104}. Fig. 7 shows

the classification OA with respect to λ1 and λ2 in the Wiki Text-Image data set,

in this experiment, we fix d=10. As it can be seen from this figure that we can

obtain a near-optimal performance of our proposed method by set a moderate415

λ1 value (e.g., from 10−1 to 101) and a larger λ2 value (e.g., from 101 to 102).
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Wiki Text-Image data set.

4.4.2. Convergence analysis

To solve the optimization problem of EMR-SLRA algorithm, we develop

an iterative procedure as in Algorithm 1. Figs. 8(a) to 8(c) show the objec-

tive function value of EMR-SLRA with various of parameter combinations in420

the Wiki Text-Image data set. From this figure, it is clear that the value of

the objective function monotonically decreases at each iteration, and it is also

observed that the objective function quickly deceases at the first few rounds of

iteration (always less than 10) and becomes stable within 40 iterations. We have

also observed the similar trend in the other two data sets, as well as with more425

parameter combinations. Thus, these results demonstrate that our proposed

optimization algorithm is effective and converges rapidly.
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Figure 8: Convergence report of the proposed algorithm in the Wiki Text-Image data set with

various of parameter combinations. (a) λ1 = 0.001, λ2 = 0.1; (b) λ1 = 0.01, λ2 = 1 and (c)

λ1 = 0.1, λ2 = 10.

4.4.3. Effect of the ensemble manifold regularization

In the EMR-SLRA algorithm, the ensemble manifold regularization term is

introduced to explore the complementary property of different views and helps430

to find an effective feature embedding for pattern classification. In order to

confirm the significant contribution of EMR in the EMR-SLRA algorithm, we

further compare the performance of our algorithm with its companion version

without EMR and show the accuracies of the Wiki Text-Image data set in Fig.

9. In this experiment, all the remained parameters are set as the same as we435

illustrated above. It is evident from this figure that the imposed EMR improves

the accuracies for 6/10 categories, and the overall accuracy and average accuracy

have also promoted from 0.6652 to 0.7085 and 0.6365 to 0.6823, respectively.
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Figure 9: Effect of the ensemble manifold regularization in the Wiki Text-Image data set.
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5. Conclusion

In this paper, to reduce the feature dimensionality of multiview data while440

learn the enhanced feature embedding, we propose the EMR-SLRA algorithm

for multiview feature dimensionality reduction. The proposed algorithm is based

on the framework of least-squares component analysis, by introducing the en-

semble manifold regularization and group sparsity constraint into our algorithm,

the complementary property among multiple features has been properly consid-445

ered and its robustness against the noise has been simultaneously promoted. In

order to efficiently solve the optimization of EMR-SLRA, we further develop an

iterative procedure to obtain the multiview feature embedding. The effective-

ness of the proposed method has been verified by the extensive experimental

results on the challenging problems of the text-image retrieval, web image an-450

notation, and hyperspectral image classification. We also investigate the free

parameters involved in our algorithm and conclude that these parameters are

easy to be tuned to achieve a near-optimal feature embedding. For future work,

the proposed method will be extended to more challenging tasks such as cross-

domain and cross-media pattern recognition.455

Acknowledgment

The authors would like to thank the handing editor and the anonymous re-

viewers for their careful reading and helpful remarks, which have contributed

in improving the quality of this paper. This paper is supported by the Na-

tional Natural Science Foundation of China under Grants 61401317, 61471274,460

91338202 and 91338111.

References

[1] J. Yu, D. Tao, Y. Rui, J. Cheng, Pairwise constraints based multiview

features fusion for scene classification, Pattern Recognit. 46 (2) (2012) 483–

496.465

27



[2] W. Liu, D. Tao, Multiview hessian regularization for image annotation,

IEEE Trans. Image Process. 22 (7) (2013) 2676–2687.

[3] I. A. Gheyas, L. S. Smith, Feature subset selection in large dimensionality

domains, Pattern Recognit. 43 (1) (2010) 5–13.

[4] F. D. la Torre, A least-squares framework for component analysis, IEEE470

Trans. Pattern Anal. Mach. Intell. 34 (6) (2012) 1041–1055.

[5] J. Ni, Q. Qiu, R. Chellappa, Subspace interpolation via dictionary learning

for unsupervised domain adaptation, in: CVPR, 2013, pp. 692–699.

[6] Y. Ma, P. Niyogi, G. Sapiro, R. Vidal, Dimensionality reduction via sub-

space and submanifold learning, IEEE Signal Process. Mag. 28 (2) (2011)475

14–15.

[7] X. Chen, S. Chen, H. Xue, X. Zhou, A unified dimensionality reduction

framework for semi-paired and semi-supervised multi-view data, Pattern

Recognit. 45 (5) (2012) 2005–2018.

[8] H. Hotelling, Analysis of a complex of statistical variables into principal480

components, Journal of Educational Psychology 24 (6) (1933) 417–441.

[9] I. T. Jolliffe, Principal Component Analysis, Springer, New York, USA,

2002.

[10] S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally

linear embedding, Science 290 (22) (2000) 2323–2326.485

[11] J. B. Tenenbaum, V. de Silva, J. C. Langford, A global geometric framework

for nonlinear dimensionality reduction, Science 290 (22) (2000) 2319–2323.

[12] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for em-

bedding and clustering, in: NIPS, Vol. 14, 2002, pp. 585–592.

[13] D. L. Donoho, C. Grimes, Hessian eigenmaps: Locally linear embedding490

techniques for high-dimensional data, PNAS 100 (10) (2003) 5591–5596.

28



[14] Z. Zhang, H. Zha, Principal manifolds and nonlinear dimension reduction

via local tangent space alignment, SIAM J. Sci. Comput. 26 (1) (2004)

313–338.

[15] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, S. Lin, Graph embedding495

and extensions: A general framework for dimensionality reduction, IEEE

Trans. Pattern Anal. Mach. Intell. 29 (1) (2007) 40–51.

[16] T. Zhang, D. Tao, X. Li, J. Yang, Patch alignment for dimensionality

reduction, IEEE Trans. Knowl. Data Eng. 21 (9) (2009) 1299–1313.

[17] D. Cai, X. He, J. Han, T. S. Huang, Graph regularized nonnegative matrix500

factorization for data representation, IEEE Trans. Pattern Anal. Mach.

Intell. 33 (8) (2011) 1548–1560.

[18] N. Guan, D. Tao, Z. Luo, B. Yuan, Non-negative patch alignment frame-

work, IEEE Trans. Neural Networks 22 (8) (2011) 1218–1230.

[19] Z. Zhang, K. Zhao, Low-rank matrix approximation with manifold regular-505

ization, IEEE Trans. Pattern Anal. Mach. Intell. 35 (7) (2013) 1717–1729.

[20] B. Long, P. S. Yu, Z. Zhang, A general model for multiple view unsupervised

learning, in: SDM, 2008, pp. 822–833.

[21] T. Xia, D. Tao, T. Mei, Y. Zhang, Multiview spectral embedding, IEEE

Trans. Syst. Man Cybern. Part B Cybern. 60 (6) (2010) 1438–1446.510

[22] D. Zhou, C. J. C. Burges, Spectral clustering and transductive learning

with multiple views, in: ICML, 2007, pp. 1159–1166.

[23] Z. Zhao, H. Liu, Multi-source feature selection via geometry-dependent

covariance analysis, J. Mach. Learn. Res. 4 (2008) 36–47.

[24] A. Sharma, A. Kumar, H. D. III, D. W. Jacobs, Generalized multiview515

analysis: A discriminative latent space, in: CVPR, 2012, pp. 2160–2167.

29



[25] Q. Qiu, V. M. Patel, P. Turagay, R. Chellappa, Domain adaptive dictionary

learning, in: ECCV, 2012, pp. 631–645.

[26] B. Lin, X. He, C. Zhang, M. Ji, Parallel vector field embedding, J. Mach.

Learn. Res. 14 (1) (2013) 2945–2977.520

[27] B. Geng, D. Tao, C. Xu, L. Yang, X.-S. Hua, Ensemble manifold regular-

ization, IEEE Trans. Pattern Anal. Mach. Intell. 34 (6) (2012) 1227–1233.

[28] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction and

data representation, Neural Comput. 15 (6) (2003) 1373–1396.

[29] X. He, P. Niyogi, Locality preserving projections, in: NIPS, Vol. 16, 2004,525

pp. 153–160.

[30] A. Argyriou, T. Evgeniou, M. Pontil, Multi-task feature learning, in: NIPS,

Vol. 19, 2007, pp. 41–48.

[31] F. Nie, H. Huang, X. Cai, C. H. Ding, Efficient and robust feature selection

via joint `2,1-norms minimization, in: NIPS, Vol. 23, 2010, pp. 1813–1821.530

[32] S. Xiang, F. Nie, G. Meng, C. Pan, C. Zhang, Discriminative least squares

regression for multiclass classification and feature selection, IEEE Trans.

Neural Netw. Learn. Syst. 23 (11) (2012) 1738–1754.

[33] H. Wang, F. Nie, H. Huang, Multi-view clustering and feature learning via

structured sparsity, in: ICML, 2013, pp. 352–360.535

[34] J. C. Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. R. Lanckriet, R. Levy,

N. Vasconcelos, On the role of correlation and abstraction in cross-modal

multimedia retrieval, IEEE Trans. Pattern Anal. Mach. Intell. 36 (3) (2014)

521–535.

[35] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, Y. Zheng, Nus-wide: a real-540

world web image database from national university of singapore, in: CIVR,

ACM, 2009, pp. 1–9.

30



[36] D. Landgrebe, Hyperspectral image data analysis, IEEE Signal Process.

Mag. 19 (1) (2002) 17–28.

[37] L. Zhang, L. Zhang, D. Tao, X. Huang, On combining multiple features545

for hyperspectral remote sensing image classification, IEEE Trans. Geosci.

Remote Sens. 50 (3) (2012) 879–893.

[38] L. Zhang, L. Zhang, D. Tao, X. Huang, A modified stochastic neighbor

embedding for multi-feature dimension reduction of remote sensing images,

ISPRS J. Photogramm. 83 (2013) 30–39.550

[39] J. A. Benediktsson, J. A. Palmason, J. R. Sveinsson, Classification of hyper-

spectral data from urban areas based on extended morphological profiles,

IEEE Trans. Geosci. Remote Sens. 43 (3) (2005) 480–491.

[40] V. N. Vapnik, An overview of statistical learning theory, IEEE Trans. Neu-

ral Networks 10 (5) (1999) 988–999.555

[41] C.-C. Chang, C.-J. Lin, Libsvm: A library for support vector machines,

ACM Trans. Intell. Syst. Technol. 2 (3) (2011) 27.

[42] X. He, D. Cai, S. Yan, H.-J. Zhang, Neighborhood preserving embedding,

in: ICCV, Vol. 2, 2005, pp. 1208–1213.

[43] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,560

Cambridge University Press, New York, NY, USA, 2004.

[44] A. Sharma, D. W. Jacobs, Bypassing synthesis: Pls for face recognition

with pose, low-resolution and sketch, in: CVPR, 2011, pp. 593–600.

[45] J. B. Tenenbaum, W. T. Freeman, Separating style and content with bilin-

ear models, Neural Comput. 12 (6) (2000) 1247–1283.565

[46] X. Huang, L. Zhang, An svm ensemble approach combining spectral, struc-

tural, and semantic features for the classification of high-resolution re-

motely sensed imagery, IEEE Trans. Geosci. Remote Sens. 51 (1) (2013)

257–272.

31



[47] L. Zhang, L. Zhang, D. Tao, X. Huang, Tensor discriminative locality570

alignment for hyperspectral image spectral-spatial feature extraction, IEEE

Trans. Geosci. Remote Sens. 51 (1) (2013) 242–256.

32


	Else_PR_5306.pdf
	Introduction
	Ensemble Manifold Regularized Sparse Low-Rank Approximation
	Multiview Matrix Low-Rank Approximation
	Ensemble Manifold Regularization
	Group Sparsity Constraint

	Efficient EMR-SLRA Optimization
	Optimize U by fixing Y, , and X"0362X
	Optimize Y by fixing U, , and X"0362X
	Optimize  by fixing U, Y, and X"0362X
	Optimize X"0362X by fixing U, Y, and 

	Experiments
	Data set description
	Experimental settings
	Performance on the three data sets
	Wiki Text-Image data set
	NUS-WIDE-LITE data set
	HYDICE hyperspectral data set

	Parameters analyses
	Regularization parameters 1 and 2
	Convergence analysis
	Effect of the ensemble manifold regularization 


	Conclusion




