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Abstract—Due to the rapid urbanization of China, many vil-
lages in the urban fringe are enveloped by ever-expanding cities
and become so-called urban villages (UVs) with substandard living
conditions. Despite physical similarities to informal settlements in
other countries (e.g., slums in India), UVs have access to basic
public services, and more importantly, villagers own the land
legitimately. The resulting socio-economic impact on urban devel-
opment attracts increasing interest. However, the identification of
UVs in previous studies relies on fieldwork, leading to late and
incomplete analyses. In this paper, we present three scene-based
methods for detecting UVs using high-resolution remotely sensed
imagery based on a novel multi-index scene model and two pop-
ular scene models, i.e., bag-of-visual-words and supervised latent
Dirichlet allocation. In the experiments, our index-based approach
produced Kappa values around 0.82 and outperformed conven-
tional models both quantitatively and visually. Moreover, we per-
formed multitemporal classification to evaluate the transferability
of training samples across multitemporal images with respect to
three methods, and the index-based approach yielded best results
again. Finally, using the detection results, we conducted a sys-
tematic spatiotemporal analysis of UVs in Shenzhen and Wuhan,
two mega cities of China. At the city level, we observe the decline
of UVs in urban areas over the recent years. At the block level,
we characterize UVs quantitatively from physical and geometrical
perspectives and investigate the relationships between UVs and
other geographic features. In both levels, the comparison between
UVs in Shenzhen and Wuhan is made, and the variations within
and across cities are revealed.

Index Terms—China, scene-based classification, settlement, spa-
tiotemporal analysis, urbanization, urban village (UV).

I. INTRODUCTION

URBANIZATION in the developing world often leads to
the problem of informal settlements (e.g., slums and

shanty towns) [1] because of the growth of urban population
and unplanned development. As one of the developing countries
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with a rapid increase in urbanization, China suffers from the
wide spread of urban villages (UVs) in recent years. UVs,
which are also known as “chengzhongcun” or “villages in the
city” [2], are a special type of urban settlement resulting from
the complicated socio-economic development of China.

In the last 30 years, peri-UVs are progressively enveloped by
the expanding cities due to China’s rapid urbanization, in which
the residential areas of villages are left intact and the farmland
is used for urban development [3]. Original villagers still own
the residential areas collectively, but they are not allowed to
alienate the land. Meanwhile, the migration of large-scale rural
workers to cities creates a great demand for affordable housing
along with the fast economic growth [4], [5]. Then, villagers
build additional dwellings in the land and rent them to migrant
workers and the poor. The rent becomes the major source of
livelihood of landless villagers, and these areas become the so-
called UVs. However, the development of UVs is neither autho-
rized nor planned, resulting in small and crowded substandard
buildings, poor sanitary conditions, absent infrastructure, and
some social problems including crime and environmental pol-
lution. Many cities have launched the demolition and redevel-
opment of UVs recently [6], [7]. Therefore, an up-to-date map
of UVs is necessary for planners and policymakers; however, it
is usually incomplete or unavailable. In fact, information about
UVs, such as their changes, is basically collected by fieldwork,
which is extremely labor and time intensive.

High-resolution remotely sensed imagery has been acknowl-
edged as an important data source for urban mapping owing
to the advantages of objectiveness, low cost, and global cover-
age. Despite successful cases such as central business districts
(CBDs) [8], private gardens [9], and man-made structures [10],
no study is implemented for detecting UVs. In contrast to
these urban land cover/land use types, the mapping of UVs
is challenging indeed because unplanned development leads
to complex spectral and spatiotemporal patterns. For instance,
various materials used in the construction of informal buildings
result in a large variance of spectral reflectance.

On the other hand, some studies have been conducted for
the identification of other urban settlements, and they mainly
use the object-oriented method [11]. Hofmann [12] proposed
to create a hierarchical network of objects with multiresolution
segmentation. Then, objects of different levels are classified by
their physical properties. The refinement of settlement areas
is finally conducted by a rule-based classification. The similar
method is used in [13]–[15] for detecting informal settlements
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in Voi SE-Kenya, Delhi India, and Casablanca Morocco, re-
spectively. However, the segmentation of high-resolution im-
ages, particularly urban imagery, is still challenging, and the
results usually need to be adjusted or corrected interactively.
Moreover, the human-defined rules and the dependence of
training samples on the segmentation make the object-oriented
method lack flexibility and transferability.

Recent studies of scene classification, in which a scene is
an image block that belongs to some user-defined semantic
category and usually contains various objects, have exhibited
its potential for the semantic annotation and the identification
of complex man-made structures [16], [17]. Compared with
the object-oriented method, which mainly focuses on the local
properties of one object, the scene-based method has the advan-
tage in describing the relationships between objects as a whole;
thus, it is suitable for dealing with complex categories related to
various objects. The bag-of-visual-words (BOVW) model has
been well explored for land use classification [18]–[20]. Latent
Dirichlet allocation (LDA) [21], which is a popular model in
text analysis that finds latent topics in a document, has been
adapted for semantic annotation of satellite images [22], [23].
Vatsavai et al. [24] proposed an unsupervised semantic frame-
work based on LDA to identify nuclear power plants. However,
the performance of the scene-based method has not been eval-
uated for the detection of urban settlements including UVs.

Motivated by above facts, we conducted a systematic study
of scene-based methods for detecting UVs, where two well-
known models, namely, BOVW and supervised LDA (sLDA)
[25], were investigated, and a new index-based model was
proposed. These methods are briefed as follows: 1) BOVW
approach—Spectral and spectral–textural BOVW representa-
tions were learned for every scene using two low-level image
features, i.e., spectral statistics and Gabor texture [26]. Then,
we used two popular classifiers, i.e., support vector machine
(SVM) and random forest (RF), to categorize these represen-
tations into UVs and non-UVs. 2) sLDA approach—Based on
the BOVW representation, sLDA, which is a well-behaved
variant of LDA, was used to learn the topic representation
of scenes and infer the category of them. 3) Index-based
approach—Because previous studies are mainly based on low-
level features that hardly describe high-level categories, we
proposed a new scene model based on two semantic indexes,
i.e., morphological building index (MBI) [27] and NDVI. MBI
is a morphological approach for automatic building extraction
from high-resolution images. Scenes were modeled with the
indexes and classified by SVM and RF.

Moreover, because of the high correlations between mul-
titemporal images, it is possible to reuse previous training
samples for new images. Reuse is of importance due to the
high cost of representative training samples. Given the different
sources of training samples and images to be classified, some
studies [28] propose to perform model adaptation to samples. In
fact, transferable rules used in object-oriented approaches have
been quantitatively studied [29] and tested on different software
packages [30], whereas few scene-based studies focus on the
transferability of samples. Thus, we conducted multitemporal
classification to evaluate the transferability of training samples
with respect to the proposed methods.

TABLE I
DESCRIPTION OF SHENZHEN DATA SET

Another main focus of this paper is the spatiotemporal
analysis of UVs. As also the result of urbanization in the
developing world, urban expansion and informal settlements
have received much attention, where remotely sensed data play
an important role in the spatial analysis [31]–[35]. As far as
UVs are concerned, however, fieldwork remains the only way
to identify them in previous studies. This paper fills the gap
based on the proposed detection algorithms. We experimented
with the multitemporal high-resolution images of Shenzhen
and Wuhan, two representative mega cities of China. UVs
over the recent years were mapped based on the detection
results. Then, using the maps and the indexes, we conducted a
detailed spatiotemporal analysis from several aspects including
spatiotemporal distributions, physical and geometrical charac-
teristics, and relationships between UVs and other geographic
features (i.e., roads, parks, and commercial centers).

II. STUDY AREAS AND DATA

The urban areas of Shenzhen and Wuhan, two mega cities
in China, were chosen for this study, where the former is a
young immigrant city, and the latter is an enormous inland city.
They both undergo severe problems of UVs in recent decades,
but UVs in two cities have different development patterns
and appearances because of different economic and cultural
characteristics. For instance, buildings in Shenzhen’s UVs are
mostly over six storeys, whereas buildings less than three
storeys high are most common in Wuhan’s UVs. In addition, the
development of UVs in Shenzhen have been discussed in a few
studies [6], [36], [37] based on the fieldwork mainly conducted
by the local government; however, no study pays attention to
Wuhan’s UVs.

A. Shenzhen

Shenzhen, located in Guangdong province, was just a small
village on the Pearl River Delta before it became China’s first
special economic zone (SEZ) in 1979. Since then, Shenzhen has
experienced fast economic development and became one of the
biggest cities in China. During this period, Shenzhen’s popula-
tion increases from less than 100 000 in 1979 to over 10 million
in 2010 accompanied with huge migration all over the country,
and UVs rapidly spread across the city. Recently, it is estimated
that about half of Shenzhen’s population live in UVs [38].

Remotely sensed data from QuickBird and WorldView-2 sat-
ellites acquired during 2003–2012 were used (see Table I), which
has been radiometrically calibrated. QuickBird data have a spa-
tial resolution of 2.4 m with an image size of 5360× 4507 pixels,
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Fig. 1. Study area in Shenzhen. (a) WorldView-2 image acquired on 2012/03/05 and photographs of (b) formal settlements and (c) UVs are shown. (Source of
photographs: Tencent Maps).

Fig. 2. Study area in Wuhan. (a) GeoEye-1 image acquired on 2009/01/25 and photographs of (b) formal settlements and (c) UVs are shown. (Source of
photographs: Tencent Maps).

and WorldView-2 data have a spatial resolution of 2 m with
an image size of 6433 × 5409 pixels. All images are between
114◦3′E to 114◦9′E and 22◦30′N to 22◦37′N and cover about
91.84 km2 of SEZ including the Futian CBD (see Fig. 1).

B. Wuhan

Wuhan, the capital of Hubei province, is located in central
China. Wuhan is at the confluence of the Han and Yangtze
Rivers and is divided by rivers into three towns, i.e., Hankou,
Wuchang, and Hanyang. Unlike Shenzhen, Wuhan has been the
industrial, commercial, and cultural center of the Central China
for centuries despite the slower development than Shenzhen in

recent decades. According to the census data, Wuhan’s popu-
lation increases from 6.9 million in 1990 to about 9.8 million
in 2010, and, to date, it has exceeded 10 million. Owing to the
huge city scale, Wuhan is one of the cities with the most UVs
in China.

Remotely sensed data of Wuhan were acquired from the
GeoEye-1 satellite on 2009/01/25 and 2012/12/09 with a spatial
resolution of 2 m and four spectral bands (blue 450–510 nm,
green 510–580 nm, red 655–690 nm, and near infrared 780–
20 nm). Both images are within a rectangular bounding box
of 114◦17′E to 114◦22′E and 30◦27′N to 30◦33′N and have an
image size of 5550 × 4156 pixels. They cover about 92.26 km2

of Wuhan city (see Fig. 2).
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Fig. 3. Example scenes of UVs and non-UVs extracted from the (a) 2003 Shenzhen QuickBird image, the (b) 2007 Shenzhen QuickBird image, and the (c) 2009
Wuhan GeoEye-1 image. The locations of UVs and non-UVs are indicated by the green and yellow points, respectively, in Figs. 1 and 2.

III. DETECTION OF UVs

UVs are a special type of urban settlement in China. They
mostly originate from villages. They are surrounded by planned
urban areas and are usually adjacent to skyscrapers, highways,
and other modern urban infrastructures. Because of the absent
urban management, UVs are strongly settled and disorderly
developed. Compared with other urban areas, buildings in UVs
are much smaller. These buildings are densely distributed in
UVs and occupy most spaces. Accordingly, there is little vege-
tation and public space, which are the fundamental components
of planned urban areas. Except for these common features,
UVs in different cities usually have different appearance. Many
UVs in Wuhan are built with red bricks, which are never used
in Shenzhen’s UVs, and have red roofs. In addition, UVs in
Shenzhen usually have higher buildings and larger building
density than that in Wuhan.

Briefly, in the context of high-resolution imagery, observable
characteristics that distinguish UVs from formal residential
areas are mainly as follows. 1) Most spaces of UVs are occupied
by small buildings, leaving little for vegetation, streets, and bare
ground. 2) In contrast to formal residential areas, UVs tend
to have a disordered layout. Then, proportions of objects of
several major classes (i.e., buildings and vegetation) as well as
the spatial configuration are the key to detecting UVs.

In this paper, we carry out the detection at the scene level.
A scene, which refers to an image block here (see Fig. 3), is a
larger semantic entity than the object, hence a better representa-
tion of the UV that contains various objects. We chose 120 m ×
120 m as the scene size according to the scale of UVs in the
real world. For example, the resolution of Wuhan GeoEye-1
image in Fig. 3 is 2 m, and the scene size is 60 × 60 pixels
accordingly. Many studies find it useful to regard the scene as a
collection of visual words and propose various models for scene
classification, such as BOVW and sLDA [18], [19], [22]. We
also present a new scene model based on semantic indexes from
the object-oriented point of view. These models are described
in Section III-A.

The algorithm for detecting UVs is summarized in Fig. 5.
First, the large image is partitioned into scenes of size 120 m ×
120 m with an overlapping of 60 m. Because the UV does
not necessarily occupy most spaces of a scene, the overlapping
can decrease the omissions of UVs. Next, the representation of

each scene is calculated according to different scene models, in
which the proportions and the spatial configuration of objects
are implicitly encoded. Finally, these representations are classi-
fied into UVs and non-UVs.

A. Scene Representation

1) BOVW Model: The BOVW model stems from the idea
in text analysis that a document could be presented by word
frequencies without regard to their order. This way, we divided
the scene into overlapping patches, i.e., visual words. For each
patch, we computed the mean and variance of blue, green, red,
and near-infrared bands, which are the four common bands
of two data sets. The resulting 8-D feature vector describes
spectral information of the patch. Moreover, we used Gabor
filters to extract textural features as supplementary information.
A 2-D Gabor filter is defined as

G(x, y) =
1

2πσxσy
e
−π

(
x2

σ2
x
+ y2

σ2
y

)
ei(u0x+v0y) (1)

where σx, σy are scale parameters along x and y, and u0, v0
are spatial frequencies of the filter, which can be also expressed
in polar coordinates as radial frequency f and orientation θ.
Three visible bands of the patch were filtered with a set of
Gabor filters, where σx=σy={4, 6}, f={0.006, 0.02, 0.06},
and θ = {0, π/3, 2π/3}, resulting in a 54-dimensional feature
vector.

We quantified all spectral descriptors extracted from training
samples with K-means clustering. The cluster centers form a
dictionary. Any new spectral descriptor could be quantified by
simply assigning the label of the closest cluster center. Then,
the spectral representation of a scene is the frequencies of the
labeled spectral descriptors, i.e., a vector whose size is equal
to the size of the dictionary. Similarly, the Gabor representation
was created. Finally, a spectral–textural representation was con-
structed by stacking the spectral and the supplementary Gabor
feature vectors. These low-level features cannot effectively
reflect the semantic characteristics (e.g., building size), but
they can reflect the spectral and textural differences between
built-up areas in the UVs and that in other urban areas. We
used the spectral and the spectral–textural feature vectors for
classification separately.
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Fig. 4. MBI feature images corresponding to the scenes in Fig. 3.

2) sLDA Model: LDA [21] is a generative probabilistic
model for collections of discrete data such as text corpora.
It models a document as a mixture of latent topics, and the
proportion of topics is an intermediate semantic representation
of the document. Since the analogy between documents and
scenes has been made based on the BOVW model, given the
number of topics K, we can similarly use LDA to represent
a scene as a mixture of topics that indicate the proportions
of scene types. The generative process of LDA is briefed as
follows.

1) For each document d, a topic proportions θ is chosen ac-
cording to a Dirichlet distribution Dir(α) over K topics.

2) For each word position in the document, a topic z is cho-
sen from the multinomial distribution Multi(θ) first, and
then, a word w is generated according to the topic–word
distribution β.

The process above shows that LDA is an unsupervised model
and that the topics are not specifically learned for classification.
Since we are concerned with the category rather than the
topics of a scene, this paper uses sLDA, which is a variant of
LDA. Compared with LDA, sLDA adds a variable to denote
the category of each scene. Based on the variational method
described in [25], we could learn a model that fits the categories
of known scenes better than the unsupervised version. Then, the
learned model can be used to infer the categories of unknown
scenes. Similar to the classification in the BOVW approach,
the sLDA model was performed on both the spectral and the
spectral–textural vectors.

3) Index-Based Model: Conventional approaches use low-
level features to describe spectral and textural characteristics of
a scene, but a semantic gap exists between low-level features
and high-level categories as demonstrated in [23]. To fill the
gap, we have employed multiple features and some techniques
such as LDA in Section III-A1 and A2. Another way is to
use high-level features that straightforwardly indicate semantic
categories. They could enable an object-oriented way to model
a scene without the segmentation. For example, a connected
region associated with large NDVI values can be treated as a
vegetation object. Then, complex categories such as the UV
can be modeled with multiple high-level features in a human-
understandable manner.

TABLE II
COMPOSITION OF THE MBI REPRESENTATION THAT CHARACTERIZES

BUILDINGS IN A SCENE. HISTOGRAMS USE EQUAL-WIDTH

BINS ACCORDING TO THE RANGE OF CHARACTERISTICS

EXCEPT THE AREA HISTOGRAM IN WHICH THE

BREAKPOINTS ARE EMPIRICALLY CHOSEN

Considering that buildings are the primary land cover in
UVs and other settlements, we use the MBI [27], which is a
high-level feature for building extraction. The calculation of
MBI is briefed below. First, a brightness image is obtained by
keeping the maximum reflectance value across visible bands
for each pixel. Next, a linear structural element (SE) of size s
is constructed, and the top-hat by construction of the brightness
image is computed with the SE at multiple directions. Finally,
MBI of scale s is formulated as

MBI(s) =

∑
d (TH(d, s+Δs)− TH(d, s))

Nd
(2)

where Nd is the number of directions, and TH(d, s) represents
the top-hat by construction with the SE of size s at direction d.

According to the common building size in UVs, we com-
puted the MBI feature of the whole image at scales 5 and 7
with Δs = 2 and direction d = {0, π/4, π/2, 3π/4}. Fig. 4
presents MBI feature images of scenes in Fig. 3, which were
computed at scale 5. We treat each connected component
bi(i = 1, 2, . . . , N) in the MBI feature images as a building
object and found the minimum enclosing rectangle Bi. The
following characteristics of each object were computed: the
area of bi, the area ratio of bi to Bi, the aspect ratio of Bi,
and the orientation of Bi. Because the spatial characteristics
(e.g., size and arrangement) of buildings are different in UVs
and non-UVs, the statistics of these characteristics can be used
to distinguish them. Then, for each scene, a 34-dimensional
feature vector was constructed by stacking the histograms of
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Fig. 5. Flowchart of the proposed algorithm for detecting UVs.

these characteristics (see Table II), which describes both the
proportions and the spatial arrangement of buildings in a scene.
Finally, we obtained a 68-D feature by combining the MBI
feature vectors of two scales.

Apart from buildings, vegetation is another primary land
cover in urban settlements. Despite the small proportion of
vegetation in UVs, green coverage of formal residential areas
is usually high. NDVI, which is a widely used vegetation
index, was computed and transformed to binary form with an
empirical threshold. We computed areas of connected compo-
nents in the NDVI feature image. Other characteristics (e.g.,
orientation) were not considered since vegetation generally has
no recognizable spatial patterns. Then, a ten-bin histogram of
the area feature was computed for each scene and added to the
MBI representation as supplementary information, resulting in
a 78-D MBI-NDVI feature vector.

B. Experiments, Results, and Comparison

1) Experimental Settings: In the sLDA approach, as illus-
trated in Fig. 5, the spectral and spectral–textural vectors were
classified by the sLDA model with the topic representation
implicitly learned, which could be viewed as a classifier with
the number of topics as the parameter. In the BOVW and the
index-based approaches, we used two popular classifiers, i.e.,
SVM with the RBF kernel and RF, to classify the learned repre-
sentations. In the experiments, all the parameters of classifiers
were determined using cross validation.

Fig. 6. Classification performance of SVM, RF, and sLDA under different
dictionary sizes on the spectral representation of 2003 QuickBird scenes.

For each image in Shenzhen and Wuhan data sets, 12 train-
ing samples, i.e., six UVs and six non-UVs, were selected.
Fig. 3 shows training samples of the 2003 and 2007 Shenzhen
QuickBird images and the 2009 Wuhan GeoEye-1 image.
Within each data set, training samples are at the same locations
[see Fig. 3(a) and (b)]. Then, we partitioned each image into
overlapped scenes and selected all scenes of which more than
90% are occupied by UVs as positive testing samples, whose
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TABLE III
CLASSIFICATION ACCURACIES OF THE BOVW APPROACH

TABLE IV
CLASSIFICATION ACCURACIES OF THE SLDA APPROACH

numbers are about 190 and 90 for images in Shenzhen and
Wuhan data sets, respectively. Given the larger proportion of
non-UVs than UVs, for every image, we randomly chose 600
negative testing samples from scenes that have no overlapping
with UVs. Kappa was used for accuracy assessment since the
unbalanced number of positive and negative testing samples.

The construction of BOVW representation, which is used in
BOVW and sLDA approaches, depends on the dictionary size.
We learned dictionaries with size K = {100, 200, . . . , 800}
using K-means and repeated ten times with each size. Then,
for each size, feature vectors of scenes were generated and
classified ten times, and the average classification accuracy and
standard deviation was used as the final classification result. In
the range 100–800, as illustrated in Fig. 6, a significant relation
between the dictionary size and the classification accuracy was
not found. There is a reasonable explanation that visual words
that can distinguish UVs from non-UVs are a small part of
these dictionaries. Therefore, we give only the best accuracies
and omit corresponding dictionary sizes for simplicity in the
following sections.

2) Results: The results produced by the BOVW approach are
presented in Table III. Except for 2009 GeoEye-1, the optimal
Kappa values of all images exceeded 0.75—an encouraging
accuracy. Two representations produced comparable accuracies
for most images, and for the exceptions 2010 WorldView-2 and
2012 GeoEye-1, the spectral–textural representation produced
substantial improvements of 0.12 and 0.24, respectively, ow-
ing to the supplementary Gabor textural feature. In terms of
classifiers, RF behaved better than SVM in most cases and
cooperated better with the textural feature. After the textural
feature was added, RF yielded slightly lower accuracies for two

images, whereas SVM produced four lower Kappa values with
the maximum decrease of 0.06.

We applied the sLDA model to spectral and spectral–textural
vectors with the number of topics ranging from 10 to 30, and the
results are shown in Table IV. The accuracies of the Shenzhen
data set are acceptable, and the Kappa values of the Wuhan
data set were all less than 0.6 where even the additional textural
feature did not improve the results. The spectral representation
achieved the highest accuracy for every image with a slight
edge less than 0.02 over the spectral–textural representation.
Moreover, Table IV indicates that 10–15 topics are enough to
obtain Kappa values larger than 0.8, i.e., a good distinction
between UVs and non-UVs, if such an accuracy is reachable.
Although some results seemed to improve by further increasing
the number of topics, such as the accuracies of the 2010
QuickBird and 2012 GeoEye-1 images, they were too poor or
variable to be reliable.

The results produced by index-based models are shown in
Table V. With vegetation information, MBI-NDVI gave better
results than MBI on the Shenzhen data set, whereas such an
improvement was not observed in the 2009 GeoEye-1 image
of the Wuhan data set. It does not imply that the NDVI feature
should be responsible for the inconsistent performance, because
the accuracy also depends on the classifier. From the point of
view of RF, the results were indeed more or less improved by
the additional NDVI feature in all experiments, and the worst
Kappa value of the MBI and MBI-NDVI representations still
reached 0.75. On the other hand, the accuracy produced by
SVM was sensitive to the NDVI feature, such as the large
improvement of the 2007 QuickBird image and the surprising
decline of the 2009 GeoEye-1 image.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE V
CLASSIFICATION ACCURACIES OF THE INDEX-BASED APPROACH

Fig. 7. Comparison of the best accuracies produced by different scene
representations.

As shown in Tables III–V, the BOVW approach signifi-
cantly outperformed the sLDA approach, and the index-based
approach significantly outperformed the BOVW approach.
Moreover, except for the topic representation implicitly learned
in the sLDA model, there are four representations explicitly
constructed in the proposed approaches: spectral and spectral–
textural representations based on two low-level features,
namely, MBI and MBI-NDVI representations based on two
high-level features. For a comparison of them, we present their
best Kappa values for every image in Fig. 7. MBI-NDVI yielded
best results with an average of 0.82. MBI also performed well—
even the worst Kappa value was larger than 0.75, and the
spectral–textural representation had a similar performance for
all images except 2009 GeoEye-1. Moreover, as supplementary
information, both the Gabor texture and the NDVI feature
improved the results significantly.

Despite the randomness of testing samples, the same accura-
cies of different approaches do not imply the same classification
maps because of the small proportion of testing samples in all
scenes. Therefore, a visual assessment is necessary. In Fig. 8,
we present classification maps of the 2010 QuickBird image,
for which various approaches produced comparable Kappa
values (see Fig. 7). On the classification map, each place is
covered by at most four scenes because the overlapping of
two adjacent scenes is half of the scene size (see Fig. 5).
The more scenes covering the place classified as the UV, the
higher the possibility that the place belongs to the UV, and the
lighter the place displayed on the map. Moreover, the scale of
the classification map (i.e., the minimum differentiable unit)
is half of the scene size because of the overlapping, and the

polygons on the map can be viewed as the approximation of
ground truth under this scale. Clearly, maps produced by the
index-based approach are close to the reference map, and others
seem noisy due to the numerous commissions of UVs, which
is also illustrated by the comparison of enlarged rectangle
areas. Moreover, the omissions in maps were rare, ensuring the
practical use of these methods.

Finally, the computation times are shown in Table VI, which
were obtained on a 3.07-GHz computer with 6-G RAM. The
textural representation is computationally more expensive than
the spectral or the index representations due to the high di-
mensionality of textural features. The MBI representation is
most efficient in contrast with spectral, spectral–textural, and
MBI-NDVI representations. However, at the cost of a slight
increase in computational cost, the MBI-NDVI representation
obtained significantly better results than MBI representation by
adding vegetation features. As for classifiers, sLDA consumed
more time than SVM and RF since it is a generative model,
and the classification time is negligible compared with that for
constructing scene representations.

3) Effect of the Scene Size on the Result: The scene size in
previous experiments was 120 m, and the results look good.
To better understand the relationships between results and the
scene size, we carried out experiments with five scene sizes:
100, 110, 120, 130, and 140 m, where training scenes remained
the same locations as previous ones despite different sizes. The
best accuracies of four scene models are shown in Fig. 9. For
Shenzhen images [see Fig. 9(a) and (b)], the best accuracy
of each representation was basically achieved at 120 m; for
Wuhan images, it was basically achieved at 100 m. To further
illustrate the difference between the results, classification maps
of the 2009 Wuhan GeoEye-1 image under different scene sizes
are visualized in Fig. 10, which were produced by the MBI
representation and SVM. As shown in Fig. 9(c), the first three
maps have better accuracy than the other two maps. These three
maps have no significant difference visually despite different
scales, although the first map looks a little noisy. In the enlarged
rectangle areas, the UV at the bottom can be detected with
100–120-m scenes, whereas larger scenes omitted it due to its
small size.

4) Effect of Training Samples on the Result: In previous
experiments, six representative fixed training samples per class
were used for classification. Carefully selected samples can
guarantee the usability of results, whereas random samples can
make a fair comparison between different methods. Therefore,
different numbers of random training samples were evaluated
in our experiments. Particularly, we first selected about 15
training samples per class for each image, which included the
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Fig. 8. Comparison of classification maps of the 2010 Shenzhen QuickBird image.

TABLE VI
COMPUTATION TIMES IN SECONDS. (a) TOTAL TIME FOR CONSTRUCTING

SCENE REPRESENTATIONS. THE DICTIONARY SIZE OF BOVW
REPRESENTATIONS IS 400. (b) TOTAL TIME FOR CLASSIFYING

ALL SCENES (INCLUDING TRAINING TIME), WHICH IS

EVALUATED ON THE SPECTRAL REPRESENTATION

six existing samples. Then, 6, 9, and 12 samples per class
were randomly chosen from all training samples and used for
classification, which was repeated 15 times. Fig. 11 shows

the best average accuracy together with the standard deviation
for each representation, which was obtained from the results
produced by different dictionary sizes and classifiers.

Compared with the previous results, the randomness of train-
ing samples decreased the accuracies for almost all cases and
led to a larger accuracy variation on index-based results than
BOVW-based results. The number of training samples also
had a larger influence on the index-based results: Its increase
significantly decreased the accuracy variation and improved
the average accuracy. Overall, BOVW models are more de-
pendent on the quality than the number of training samples,
and, by contrast, index-based models need either representative
or enough training samples. Moreover, Fig. 11 indicates that
index-based models basically outperformed BOVW models
when training samples were adequate in quality (see yellow
bars) or in quantity (see red bars).

C. Multitemporal Classification

Here, we assess the transferability of training samples across
multitemporal images with respect to different scene models,
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Fig. 9. Best accuracies produced by four scene representations under different scene sizes.

which is not only an important task of pattern recognition but
also an essential step of the automated procedure for monitoring
UVs. For this aim, images were reclassified with previous train-
ing samples from the same sensor. Particularly, we classified the
2005, 2007, and 2010 QuickBird images using training samples
of the 2003 QuickBird, the 2012 WorldView-2 image using
training samples of 2010 WorldView-2, and the 2012 GeoEye-1
image using training samples of 2009 GeoEye-1.

All three models were evaluated. Because the topic repre-
sentation was implicitly learned inside the sLDA model, we
regarded sLDA model as a classifier based on the BOVW
representation. Then, SVM, RF, and sLDA were used to classify
the BOVW representations; SVM and RF were used to classify
the index-based representations. We found that SVM and RF
cooperated best with the BOVW model and the index-based
model, respectively, and the best accuracies are presented in
Table VII. The accuracies produced by the BOVW model were
all below 0.8, and they were still image dependent as the
original results in Table III. The textural feature to some extent
improved accuracies and alleviated the dependence on images.
By contrast, the index-based approach consistently yielded
results comparable to that in Table V, where MBI-NDVI still
outperformed MBI.

D. Discussions

UVs have different shapes and sizes across cities. The scene
size used for detecting UVs in different areas should be first
determined by the common size of UVs. Fig. 9 shows the
scene sizes achieving the best accuracies of 120 and 100 m
in Shenzhen and Wuhan, respectively, which reflects a larger
average size of UVs in Shenzhen than that in Wuhan. In fact, the
results were robust to the scene size quantitatively and visually
within a certain range. As indicated in Figs. 9 and 10, the size in
110–130 m and 100–120 m is appropriate for the UV detection
in Shenzhen and Wuhan, respectively. The desired scale of the
UV map is another factor to be considered for selecting scene
size. The map of finer scale tends to be noisy, whereas a coarser
map may omit small objects. Therefore, the postprocessing of
UVs may need maps of multiple scales.

In the experiments, scene-based methods have proven effec-
tive for the detection of UVs. In particular, the index-based
approach yielded satisfactory results in both accuracy assess-
ment and visual inspection. The success is mainly attributed to
the use of high-level features, which enable a straightforward
way to model complex scenes. As far as UVs are concerned,
we used MBI and NDVI to model a scene as the proportions
and the spatial configuration of building and vegetation objects.
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Fig. 10. Classification maps of the 2009 Wuhan GeoEye-1 image under different scene sizes.

MBI acted as a fundamental feature due to the important role of
buildings in urban settlements, which is verified by the fact that
the individual use of MBI with RF as the classifier produced
Kappa values with an average of 0.8. NDVI further increased
the accuracy significantly. Because of the large diversity of
vegetation in UVs, however, the NDVI feature may fail to
improve results, e.g., 2009 GeoEye-1 image. In this case, a
robust classifier such as RF would be helpful in eliminating the
impact of noise in the feature. Moreover, the power of semantic
indexes MBI and NDVI is also exhibited in the pixel-based
classification of high-resolution images [39].

On the other hand, only a few results produced by conven-
tional models, mostly the BOVW model, were comparable to
the index-based results. Although low-level features reliably
reflect color or textural characteristics of local patches, they
cannot describe and distinguish land covers (e.g., buildings and

vegetation) as accurately as semantic indexes (e.g., MBI and
NDVI) because different objects often have similar character-
istics in high-resolution images. Fortunately, the combination
of multiple features could improve the performance to some
extent (see Table III). However, the real problem, which should
be chiefly responsible for the vulnerable results, is we can
hardly adapt these general-purpose models, i.e., BOVW and
sLDA, to a specific task because the features they depend on
do not contain semantic information we can understand. Thus,
we cannot make full use of the prior knowledge. For example,
we could not encode the spatial relationship of buildings, which
would be useful for reducing the high commissions (see Fig. 8),
in the BOVW model since we had no idea about which words
are related to buildings.

Multitemporal classification further demonstrates the ad-
vantage of high-level features over low-level features in an
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Fig. 11. Best average accuracy together with the standard deviation produced by four representations with different numbers of random training samples.

TABLE VII
MULTITEMPORAL CLASSIFICATION ACCURACIES. FIRST ROW INDICATES THE SOURCE OF TRAINING SAMPLES

important aspect, i.e., transferability, because the transferability
of samples and models largely relies on that of features. By our
definition, high-level features intrinsically imply transferability
since they refer to things at the semantic level. They usually are
low dimensional and understandable, such as MBI and NDVI.
Although the capacity of high-level features is often limited
by their generalization, the indexes used in this paper have no
such problems, where MBI has been tested in original study
[27] as well as our experiments (see Fig. 4), and NDVI is
formulated based on the biophysical characteristics. By com-
parison, low-level features are usually high dimensional and
image dependent. Because of the inevitable differences between
multitemporal images caused by the illumination, sensor angle,
and shadows (see Fig. 3), low-level features are subject to
these nonsemantic changes, leading to an unpredictable impact
on results and weakening the transferability of samples and
models. Table VII shows that the textural feature was more
robust than the spectral feature to these image differences.

In addition to the feature and the model, the classifier is
another important part of the proposed method and also deter-
mines the accuracy. As two popular classifiers, SVM and RF
performed comparably, but RF was more robust than SVM to
the noisy Gabor or NDVI feature. Compared with SVM and RF,
the performance of sLDA was poor. By nature, sLDA/LDA is a
generative probabilistic model learning the topics of scenes, and
a drawback of generative models is they need an assumption
about the data distribution. When the model does not fit the data
well, the accuracy is usually lower than that of discriminative
classifiers such as SVM or RF.

Finally, the scene-based method may be faced with the
problem of mixed scenes when processing large images of com-
plicated urban landscapes. Many studies [19], [22], [40] just
ignore the scenes mixed with multiple classes when performing
the scene-based annotation or classification of large images,
because these scenes are beyond any model assuming the label
of a scene is unique. In this paper, the problem of mixed scenes
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Fig. 12. UV map of study area in Shenzhen.

is actually minor because there are only two classes and such
scenes are few. On the other hand, whether a mixed scene is
classified as the UV is determined by the proportion of UVs in
the scene. Because the index-based and the BOVW models both
use histograms as the final representation and histograms reflect
proportions of different classes in the scene, scenes with similar
class proportions have similar final representations. Since the
positive training samples are totally occupied by UVs, the
possibility that a mixed scene is classified as the UV decreases
with the proportion of the UV in the scene decreasing, which
explains why the interior of UVs tend to be lighter, whereas
boundaries of UVs and small UVs tend to be darker (see Fig. 8).

IV. SPATIOTEMPORAL ANALYSIS OF UVS

A practical analysis of UVs requires accurate maps. Because
the classification maps produced by the MBI-NDVI approach
are close to the ground truth (see Fig. 8), we just need to
make some minor modifications to them, such as the removal
of false alarms and the refinement of boundaries. Then, the
postprocessing maps of UVs over the recent years in Shenzhen
and Wuhan are presented in Figs. 12 and 13. Layers of road
networks, water bodies, and some facilities in 2012 are also
overlaid on the maps. The source of these layers includes the
acquired satellite images listed in Section II and online maps
(e.g., Google Earth and OpenStreetMap). These information
layers are used as ancillary data for the subsequent analysis of
UVs, and they have been validated by fieldwork. All figures

and statistics in the following analysis are derived from the
classification maps and the extracted feature images, and they
can be used for urban planning and policy making. It should
be noted that an administrative UV is often divided into several
disjoint parts in recent decades by the urban development (e.g.,
major roads shown in Figs. 12 and 13) and the redevelopment
led by the government. Because of the weak relations between
these parts, we call every isolated region in the maps as a UV
for the sake of simplicity in the following analysis.

UVs are a mirror of China’s urbanization, and researchers
from various fields have investigated the relationships between
UVs and urbanization, migration, and housing market from
the social or economic perspective [41]–[45]. Nonetheless, the
spatiotemporal data of UVs used in these studies all come from
the fieldwork, which usually spends much time and restricts
the research to several local areas or a single city. In fact, a
systematic geographic analysis of UVs, which would be useful
for both researchers and policymakers, has been lacking. In
Section III, we have shown the ability of remote sensing data to
detect UVs in an objective and large-scale manner. Now, using
the maps and semantic indexes (i.e., MBI and NDVI), we focus
on the following questions:

1) How UVs distribute spatially and temporally?
2) What parameters characterize UVs?
3) What relationships between UVs and other geographic

features could be found?
4) Are there similarities and differences between UVs across

cities?
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Fig. 13. UV map of study area in Wuhan.

A. Spatiotemporal Distribution

The total area of UVs in the study area of Shenzhen decreases
from 348.6 ha (2003) to 328.6 ha (2012). Particularly, there
were new UVs built in 2003–2005, which are in the outermost
urban areas and far from the CBD (see top right of Fig. 12).
At the same time, some UVs near the CBD were demolished.
During this period, in fact, the total area of UVs increases by
1.6%. Since 2005, no UVs have been built in the study area, and
7.8% of the UVs have been demolished, including UVs located
in the CBD and UVs at the bottom right of Fig. 12 where the
road network is dense. In the study area of Wuhan, up to 33.2%
of UVs have been demolished in 2009–2012, with the total area
decreasing from 332.3 to 222.1 ha. No UVs were built in this
period. Fig. 13 shows that the demolished UVs could be divided
into three parts: UVs beside the left river, UVs in the top center
where a new commercial center is built later, and UVs under
the commercial area near the center.

In both cities, there are considerable UVs in 2012, orange
regions in Figs. 12 and 13, although the proportion of UVs in
the whole study area, with respect to which Shenzhen (3.6%
in 2012) is higher than Wuhan (2.4% in 2012), is still low

compared with the built-up area. UVs in both cities do not have
a significant spatial pattern, but they tend to gather together.
Fig. 12 shows UVs mainly locate in the top-right area and the
elongated zone along the road beside the river, and Fig. 13
shows UVs largely distribute in the top left area and the right
area between two lakes. Clearly, the aggregation of UVs is not
spontaneous but is the result of demolition and redevelopment
led by the government in recent years.

B. Physical and Geometrical Characteristics

In general, UVs consist of three major land covers: buildings,
vegetation, and open spaces. Their coverage is a valuable
reference for urban planning. With NDVI indicating vegetation,
we can easily compute the vegetation coverage ratio (VCR)
of a UV. Nonetheless, the building coverage ratio could not
be estimated because the nonorthographic view together with
the limited resolution (2/2.4 m) makes it impracticable to
accurately distinguish buildings and narrow open spaces (e.g.,
roads) between buildings. At the same time, it should be noted
that buildings in UVs are usually small and disjoint because
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Fig. 14. Scatter plot of the number of buildings in randomly chosen UVs
and the number of building objects in corresponding MBI feature images. The
upper and the lower lines are fitted regression lines for Shenzhen and Wuhan,
respectively.

they are built by individuals and small constructions can make
full use of the land. Then, more buildings mean higher building
density. Therefore, we used the number of buildings per hectare
together with VCR to characterize UVs physically.

Estimating the number of buildings in urban environment via
building detection using the optical imagery is challenging [46],
[47], and reliable building detection usually needs multisource
data such as LiDAR data [48]. At the block level, however, it
is reasonable to hypothesize a linear relationship between the
number of buildings in a UV and the number of building objects
in the corresponding MBI feature image (see Fig. 4), although
MBI is not absolutely reliable to locate each single building.
To assess the hypothesis, we randomly chose eight UVs in
each study area, counted the buildings in these UVs according
to images with a higher spatial resolution from Google Earth,
and fitted a linear regression model (see Fig. 14). The resulting
R2 were both close to 1, implying a strong linear correlation.
The coarse resolution makes MBI incapable of indicating small
buildings, resulting in the fitted lines with a slope less than 1.
Finally, the numbers of buildings in other UVs were estimated
according to the regression equations.

We used MBI and NDVI extracted from the 2012 Shenzhen
WorldView-2 and 2009 Wuhan GeoEye-1 images to calculate
the two physical parameters, and the results are visualized in
Fig. 15. We first conducted a spatial autocorrelation analysis
on the two parameters with distances between UVs as the
spatial weights. The Moran’s I of building density and VCR in
Shenzhen is −0.0920 and 0.0631, respectively, implying weak
spatial dependence. In Wuhan, VCR (0.4761) has a significant
positive autocorrelation than the building density (−0.0008).
There is also a negative correlation between VCR and the
building density in Wuhan (−0.1648) compared with Shenzhen
(0.0501). On the other hand, variations of UVs across cities
are significantly revealed. Most UVs of Shenzhen have 20–30
buildings per hectare, which is higher than the average density
in Wuhan, i.e., 15–25 buildings per hectare [see Fig. 15(a)
and (b)]. Shenzhen’s UVs also have a higher VCR. 43.5%
of UVs in Shenzhen have a VCR larger than 0.05, whereas

the proportion of UVs with such a VCR in Wuhan is only
25.3% [see Fig. 15(c) and (d)]. With high building density
and high green coverage, there leaves little space for open
ground and roads in Shenzhen’s UVs where the gap between
adjacent buildings is usually just 1 m or less. Considering that
the numbers of floors of buildings in Shenzhen are much higher
than that in Wuhan, Shenzhen’s UVs undoubtedly have a higher
floor area ratio and population density than Wuhan’s.

In addition to physical parameters, we also computed geo-
metrical parameters (e.g., area and perimeter) of UVs using
the 2012 Shenzhen and 2009 Wuhan maps. The area of UVs
in Shenzhen and Wuhan ranges from 0.2 to 42 ha and from
0.4 to 30.7 ha, respectively, with an average of 4.8 and 3.6 ha.
Compared with planned urban areas, UVs tend to have more
complex shapes. To measure the shape complexity quantita-
tively, we calculated the shape index of UVs. The shape index
[49] of a square is 1, and it increases as the shape becomes more
irregular. Fig. 16 shows relationships between the area, the
shape index, and the building density and reveals the following
findings. 1) Large bubbles tend to be at the bottom, i.e., the
building density of UVs with a larger area tends to be lower.
2) Most large bubbles are at the right, i.e., large UVs generally
have complex shapes. 3) UVs of Shenzhen and Wuhan have
a similar distribution of the shape complexity. In both cities,
for instance, most of UVs are in the interval 1.0–1.5, and the
number of UVs falls as the shape index increases. 4) Moreover,
the blue bubbles look below the red ones, which intuitively
illustrates the higher density of UVs in Shenzhen.

C. Relationships With Other Facilities

Although most UVs have access to tap water and electricity
that are often absent in informal settlements of other countries,
many important public services (e.g., sewerage and sanitation
facilities) are still lacking. Since UVs are not isolated from
but indeed enclosed in urban areas, the accessibility to the
public transport system or hospitals, which can be measured by
the linear distance between UVs and these facilities, becomes
an important factor to be considered for not only the daily
life of inhabitants but also the housing market and the further
redevelopment toward formal residential areas.

Based on the 2012 Shenzhen and Wuhan maps of UVs,
we computed the linear distance from the central location of
UVs to the nearest main road, park, and commercial center.
The relationships are shown in Fig. 17. Because there are
many changes to Wuhan’s UVs in 2009–2012, we also took
UVs demolished in this period into account for a temporal
comparison. Obviously, most UVs are within 1 km from the
main road, suggesting the convenient transportation for workers
lived in UVs. By contrast, the distance of UVs from the park
and the commercial center in both cities has a large variation
except that almost all UVs in Shenzhen are within 2 km from
the park [see Fig. 17(a)] because Shenzhen is one of the
cities with the highest green coverage in China. Furthermore,
up to 15 UVs are within the 2-km circle of the park and the
commercial center in Shenzhen. By comparison, there were
only five such UVs in Wuhan in 2009, and three of them
were demolished by 2012, reflecting the strict attitude of the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 15. Building density maps of UVs in (a) Wuhan and (b) Shenzhen and vegetation coverage rate maps of UVs in (c) Wuhan and (d) Shenzhen.

Wuhan government toward UVs. Another important observa-
tion is that there are more UVs in the 2–4-km zone than other
intervals in both cities, to some degree suggesting the tradeoff
between the urban management and the convenient living of
UV inhabitants.

D. Discussions

The analysis exhibits the variations of UVs within and across
cities quantitatively. The variations root in the different socio-
economic factors. At the UV level, for example, the higher
building density of UVs in Shenzhen than Wuhan could be
attributed to the opening-up policy and the advantageous lo-

cation, with the help of which Shenzhen attracts more people in
the last 30 years than any other city including Wuhan. Within
cities, the variations of UVs are usually irregular because the
development of UVs is influenced by many factors [3], [38].
Taubenböck and Kraff [50] analyzed the physical parameters
of slums in Mumbai, India, and the results also reveal the
heterogeneity of slums within a city. For instance, there are
11, 21, and 26 buildings per hectare in three sample slums
of Mumbai, which are comparable to the density of UVs.
At the city level, viewing UVs as points regardless of their
characteristics, we find many UVs in Shenzhen are very close
to the prosperous areas (e.g., the CBD and commercial centers),
and such UVs are rare in Wuhan. It is mainly because Shenzhen
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Fig. 16. Relationships between the area, the shape index, and the building density of UVs in Shenzhen (red) and Wuhan (blue). Each bubble represents a UV,
whose size and coordinates indicate its area, shape index, and building density.

Fig. 17. Relationships between the distances to the nearest public facilities of UVs in (a) Shenzhen and (b) Wuhan. Blue and gray bubbles in (b) denote UVs in
2012 and UVs redeveloped in 2009–2012, respectively.

is a young city, and its urban areas and UVs are developed at
the same time. Thus, urban areas and UVs are intermingled
with each other. In Wuhan, the downtown areas actually formed
before the fast urban expansion of recent decades, and many
UVs close to these areas have been also demolished recently
(see Fig. 13).

Despite the large diversity of UVs, the similarities shared by
UVs (e.g., overcrowded buildings) overwhelm the variations in
the sense of distinguishing between UVs and other urban areas.
Indeed, it is according to these similarities that we proposed the
index-based model that yielded satisfactory results. Moreover,
due to these common characteristics and the resulting poor
living condition, the change of UVs to urbanized areas would
be inevitable and irreversible. As shown in Figs. 12 and 13,
UVs in the core urban areas have been decreasing recently.

Hao et al. [37] also observed the slight decline of UVs during
2004–2009 in Shenzhen. Such changes should be credited
to the redevelopment programs made by the government. In
2005, Shenzhen proposed The Master Plan of Urban Village
Redevelopment, aiming to redevelop 20% of UVs inside the
main city areas by 2010. In 2009, Wuhan planned to redevelop
all UVs within the second ring road by the end of 2011. In
contrast to the incomplete statistics of UVs in the study areas
(see Section IV-A), however, the aim set by the government
was just partly fulfilled. From the socio-economic perspec-
tive, many studies have discussed the factors influencing the
redevelopment, e.g., the high cost, the access to employment,
and the housing demand of huge inhabitants [3], [38]. In fact,
the redevelopment of informal settlements elsewhere also faces
considerable hindrances [50].



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Overall, due to the huge demand of migrant workers and
the poor for low-cost housing, UVs will exist in a long term,
particularly in the urban fringe. Moreover, UVs have been
evolving to adapt to the urban development and the govern-
ment administration, and some studies [36] also argue that
the value of UVs in urbanization should be recognized, and
the redevelopment should be carefully considered. For the
future management of UVs, we could see the great potential
of remotely sensed data in urban monitoring (e.g., an up-to-
date and large-scale detection at the UV level) due to high time
and spatial resolution. Beyond the detection, we can also use
remote sensing data to characterize UVs by computing VCR or
estimating the building density as shown in Section IV-B, where
semantic features (e.g., MBI and NDVI) would be more helpful
than low-level features.

V. CONCLUSION

The main purpose of this paper was to analyze the spa-
tiotemporal patterns of UVs. First, we proposed three scene-
based methods, including a novel index-based approach, for
detecting UVs. The index-based approach models UVs as
the proportions and the spatial configuration of building and
vegetation objects with MBI and NDVI and can integrate the
prior knowledge of UVs easily. Moreover, the multitemporal
classification was conducted to evaluate the transferability of
these methods. Second, the spatiotemporal changes of UVs
were systematically analyzed based on the detection results. We
demonstrated the variations of UVs within and across cities and
revealed their dependence on the socio-economic factors. We
also summarized the spatiotemporal changes of UVs over the
recent years and found the decline of UVs in two cities.

To our knowledge, this is the first study of UVs using
remotely sensed data, and it would be valuable for the fu-
ture redevelopment and management of UVs in Shenzhen,
Wuhan, and other cities of China. Moreover, this paper ex-
hibits the ability of the scene-based approach for the detection
of complex urban structures. In particular, the results indi-
cate the great potential of high-level features, e.g., MBI and
NDVI, for modeling and characterizing complex scenes. High-
level features will also play an important role in transferable
researches.

Urbanization in China is still rapidly increasing beyond the
mega cities, and new UVs may emerge in the urban fringe
along with the urban expansion. Given the diversity of UVs
across cities shown in this paper, UVs in cities with different
sizes should be considered in further research. In addition, due
to the limited ability of the optical imagery in urban mapping
(e.g., extraction of building heights and sizes), future research
could take into account multisource data such as LiDAR and
GIS data.
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