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Abstract—The new generation of Earth observation sensors
with high spatial resolution can provide detailed information for
change detection. The widely used methods for high-resolution
image change detection rely on textural/structural features. How-
ever, these spatial features always produce high-dimensional data
space since they are related to a series of parameters, e.g., window
sizes and directions. Machine learning methods are also commonly
employed, but their performances are subject to the quantity and
quality of the training samples, and hence, much effort should be
made to collect the high-quality samples. To address these prob-
lems, in this study, a novel multiindex automatic change detection
method is proposed for the high-resolution imagery. The notable
advantages of the proposed model include the following: 1) Com-
plicated urban scenes are represented by a set of low dimensional
but semantic information indexes, replacing the high-dimensional
but low-level features (e.g., textural and structural features), and
2) the change detection model is carried out automatically without
using training samples since the information indexes can directly
indicate the primitive urban classes. The multiindex representa-
tion refers to the enhanced vegetation index, the water index, and
the recently developed morphological building index. Experiments
were conducted on the multitemporal WorldView-2 images over
Shenzhen City (south of China) and Kuala Lumpur (the capital
of Malaysia), where promising results were achieved by the pro-
posed method. Moreover, the traditional methods based on the
state-of-the-art textural/morphological features were also imple-
mented for the purpose of comparison, which further validates the
advantages of our proposed model.

Index Terms—Building detection, change detection, high reso-
lution, morphological.

I. INTRODUCTION

D ETECTION of land cover/use changes is one of the most
fundamental and useful tasks for various applications

such as urban expansion, urban planning, damage assessment,
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deforestation, and urban landscape monitoring [1]. With the
rapid development of Earth observation techniques, it becomes
convenient to obtain remotely sensed imagery over a certain
area at different times. Thus, land cover/use changes can be
effectively detected and analyzed by processing the multitem-
poral remote sensing images [2].

In recent years, change detection using high-spatial-
resolution remote sensing images has received increasing inter-
est since detailed ground change information is now available.
However, a large intraclass variance and a small interclass
variance can lead to inaccuracy for the traditional spectral-
based and pixel-based image processing framework when
high-spatial-resolution imagery is used for change detection
[3]. In order to deal with this problem and improve the accuracy
of change detection from high-resolution data, researchers have
proposed to take spatial features into consideration for change
detection, e.g., the gray-level cooccurrence matrix [4], wavelet
transform [5], Markov random fields [6], morphological pro-
files [7], [8], and texton forest [9]. However, the spatial features
are always related to a series of parameters such as window
sizes, scales, and directions [10]. Therefore, traditional textural/
structural feature extraction always leads to a high-dimensional
feature space, which poses a series of problems when process-
ing large-size data, e.g., the generalization and robustness of the
methods, storage burden, computational cost, and processing
efficiency.

On the other hand, some researchers proposed to use the ma-
chine learning methods for change detection. Camps-Valls et al.
[11] introduced a multitemporal image classification and
change detection framework based on composite kernels.
Volpi et al. [8] adopted support vector machines in a supervised
manner for change detection. In particular, semisupervised ap-
proaches have received much interest since it can achieve accu-
rate results with limited training samples. Some representative
examples refer to semisupervised Gaussian processes [12], a
semisupervised multiple classifier system [13], and the modi-
fied self-organizing feature map neural network [14] for change
detection.

It should be noted that, in recent years, a large number
of remote sensing images can be acquired from hundreds of
Earth observation platforms [15]. In order to timely process
the big remote sensing data and rapidly transfer the data into
information and knowledge, it is necessary to develop auto-
matic techniques for image change detection. A few studies
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have recently addressed the automatic change detection meth-
ods, including studies on multilevel change vector analysis
[16], morphological filters with change vector analysis [7],
multitemporal morphological attribute profiles [17], pulse-
coupled neural networks [18], and hierarchical spectral change
analysis [19].

In this paper, we propose a novel multiindex method for au-
tomatic change detection from high-spatial-resolution remotely
sensed imagery over urban areas. The basic idea of the proposed
method is to represent complicated high-resolution scenes
by a set of low-dimensional semantic indexes that are used
to replace traditional high-dimensional but low-level features
(e.g., textural features and morphological profiles). Specifically,
urban primitives, e.g., buildings, vegetation, and water, are
automatically extracted by the morphological building index
(MBI) [20], [21], the enhanced vegetation index (EVI), and
the normalized difference water index (NDWI), respectively.
Change detection can be then conveniently carried out by
measuring the similarity between multitemporal multiindex
histograms, represented by the frequency and spatial arrange-
ment of the urban primitives. Moreover, the proposed method
not only can detect binary change information, but it also
indicates the types of changes, e.g., buildings, vegetation, and
water.

This paper is organized as follows. The multiindex model
for urban scene representation is introduced in Section II, fol-
lowed by the proposed multiindex automatic change detection
method in Section III. In Section IV, the data sets and the
experimental results are presented. Some discussions are made
in Section V. In Section VI, a comparative study is made
between the proposed model and the change detection based
on the state-of-the-art features. Section VII concludes this
paper.

II. MULTIINDEX URBAN REPRESENTATION

In this paper, three urban primitive indexes, i.e., MBI, EVI,
and NDWI, are used to represent a typical urban scene. Please
note that these three indexes provide information not only
for buildings, vegetation, and water but also for nonbuildings,
nonvegetation, and nonwater features, which actually enhances
the discrimination ability of distinguishing different urban
structures.

A. MBI

MBI is an effective method for automatic building detection.
It is able to represent spectral–spatial properties of buildings
(e.g., brightness, size, contrast, directionality, and shape) by a
set of morphological operators. It should be noted that buildings
are spectrally similar with the bright soil, and hence, the origi-
nal MBI algorithm [20] is improved in this study by introducing
a postprocessing step, aiming to reduce false alarms from the
urban bright soil. The modified MBI algorithm is described as
follows.

Step 1—Calculation of Brightness: The brightness is the
maximum value of the visible bands for each pixel, which is
used to represent the structures with high reflectance (e.g., can-

didate buildings). The visible bands are considered since they
have the most significant contributions to the spectral reflec-
tance of buildings [22].

Step 2—Top-Hat Morphological Profiles: Considering the
fact that buildings and their spatially adjacent shadows lead to
high local contrast, MBI is defined using differential morpholo-
gical profiles (DMPs) [23], [24] of the white top-hat by recon-
struction, i.e., DMPWTH, as follows:

DMPWTH = {DMPWTH(s, dir) : smin ≤ s ≤ smax, dir ∈ D}
(1)

DMPWTH(s, dir) = |WTH(s+Δs, dir)− WTH(s, dir)| (2)

where WTH(s, dir) represents the white top-hat of the bright-
ness image obtained in step 1 by using a linear structural
element (SE), with s and dir being the scale and the direction,
respectively. smin and smax indicate the range of the spatial size
of buildings, and Δs is the interval of the profiles. D is the set
of directions for the linear SE.

Step 3: MBI is calculated by

MBI =

∑
s,dir

DMPWTH(s, dir)

ND ×NS
(3)

where ND and NS denote the number of directions and scales
for the morphological profiles, respectively. Buildings corre-
spond to the areas with high MBI values, due to their large local
contrast in various directions and scales (please refer to [20]
and [21] for details).

Step 4—Postprocessing: As aforementioned, in order to re-
fine the result of the building detection, a postprocessing step
is proposed to suppress the false alarms of bright soil from the
original MBI. Spectral information plays a key role for identifi-
cation of soil [25]. It should be noted that bright soil in an urban
scene often has a yellow tone, corresponding to the urban con-
struction sites. Therefore, based on the WorldView-2 images
used in this study, a yellow soil index (YSI) can be defined
using the normalized difference of yellow (Y) and blue (B)
channels, i.e.,

YSI =
Y − B
Y + B

. (4)

The reason why the yellow (band4 ) and blue (band2) bands
are used to highlight the bright soil in urban areas is that soil
in a typical urban scene shows a reflectance peak in the yellow
channel but a relatively lower reflectance in the blue channel
(see Fig. 1). On the other hand, the buildings show contrary
reflectance properties to soil (i.e., reflectance peak in the blue
but relatively lower reflectance in the yellow). Therefore, it is
sensible to exploit the differences of reflectance between yellow
and blue channels to indicate the yellow soil and, at the same
time, suppress buildings in urban areas. Subsequently, the con-
nected components with high YSI scores and large area values
are identified as bright soil and removed from the MBI-based
building detection result. Fig. 1 provides a graphic example for
the improved MBI procedure, where the bright soil has been
effectively removed from the initial building extraction.
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Fig. 1. Building detection procedure.

Fig. 2. Multiindex urban representation: Red = Buildings, Green = Vegetation, Blue = Water, Black = Ground (e.g., soil and roads).

B. EVI

The vegetation information is automatically extracted by the
EVI [26], [27]. It was developed by enhancing the vegetation
signals through the difference between near-infrared (NIR) and
red (R) bands and, at the same time, reducing the aerosol effects
using blue (B) band. EVI is defined as

EVI = 2.5
NIR − R

NIR + 6R − 7.5B + 1
. (5)

C. NDWI

The NDWI [28] is adopted to detect the water bodies. It
highlights the water areas by maximizing the reflectance in
green (G) band and minimizing the low reflectance in near-
infrared (NIR) band, i.e.,

NDWI =
G − NIR
G + NIR

. (6)

The water information is further refined by imposing an area-
based threshold on the NDWI such that small noise and errors
(e.g., shadows) can be removed.

An example is shown in Fig. 2, where a complicated high-
resolution urban scene is represented by a set of information
indexes (MBI, EVI, and NDWI). Subsequently, an information
map can be obtained by simply applying a threshold to the
indexes. It is clear that the urban primitive structures, such as
buildings, shadow, vegetation, and ground, are effectively re-
presented. Please note that this processing is automatically
implemented without the need of collection of training samples.
The threshold values for the MBI were chosen according to our

previous study [21], and the threshold values for water and veg-
etation indexes were determined by following the suggestions
in [29] and [30].

III. AUTOMATIC CHANGE DETECTION

Based on the previous discussions, it can be stated that
multiple information indexes have the potential for achieving
automatic change detection from urban areas. Two examples for
the multiindex automatic change detection are shown in Fig. 3,
from which it is clearly seen that the structural changes in high-
resolution images can be effectively indicated by the informa-
tion indexes.

Here, a novel automatic change detection framework is pro-
posed based on the multiindex model. The processing chain
is demonstrated in Fig. 4. The notable characteristics of the
multiindex method include the following aspects.

1) The complicated urban scenes can be automatically and
effectively represented by a set of low-dimensional infor-
mation indexes.

2) The local histograms of these indexes are able to de-
scribe the frequency and spatial arrangement of the urban
primitives.

Consequently, the multitemporal multiindex representations
can be used to detect the structural changes of the urban scenes.
The proposed change detection method is described by the
following steps.

Step 1—Calculation of Information Indexes: Information
on buildings, vegetation, and water is obtained at the pixel
level based on the MBI, the EVI, and the NDWI, respectively;
and the corresponding postprocessing is then used to suppress
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Fig. 3. Urban scene description based on the multiindex model. The first row shows the examples for the changed and unchanged scenes, respectively. The
second row shows the corresponding information maps.

Fig. 4. Processing chain of the proposed multiindex change detection framework.

TABLE I
INFORMATION OF THE WORLDVIEW-2 IMAGES OVER SHENZHEN CITY USED IN THIS STUDY

the noise in the initial result, i.e., removing bright soil from
buildings and shadow from water bodies.

Step 2—Automatic Change Detection: The image is first
divided into a series of blocks with the size of N ×N (pixels)
for each one, which is viewed as the basic unit for the change
detection. This strategy is called “hot spot” detection [18], [31],
which is a commonly used approach for change detection from
high-resolution images. The decision for whether changes take

place in this block is made according to the degree of similarity
between the multitemporal multiindex histograms in the area.
In this paper, two approaches, block based and cell based, are
used to describe the multiindex distribution and measure the
similarity.

a) Block-based strategy: In this case, the scene is repre-
sented by the frequencies of the primitives in the multiindex his-
togram of the block. For the block histograms at times T1 and
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T2, a weighted distance is used to determine whether changes
occur in this area, i.e.,

WDist =
Dim∑

i=1

(Dist(i)× W(i)) (7)

Dist(i) = |H1(i)−H2(i)| (8)

W(i) =
Dist(i)

∑Dim
j=1 Dist(j)

(9)

where WDist is the weighted distance between the histograms
H1 and H2. Dim is the dimension of the histogram. H1(i) and
H2(i) represent the frequency of the ith bin in the histograms
H1 and H2, respectively. W(i) is expressed as the normalized
distance between H1(i) and H2(i), in order to further enlarge
the difference for the dissimilar bins.

The block strategy describes the frequency of the multiindex
primitives, but does not consider their spatial arrangement.
Thus, in the second strategy, each block is further divided into a
set of subblocks (called cells in the text), in order to depict the
spatial distribution of the primitives.

b) Cell-based strategy: As shown in Fig. 4, spatial
arrangement of the primitives can be considered by dividing
each block into n× n cells. This way, a cell is viewed as a basic
unit to calculate the frequencies of the information indexes. A
block is then represented by n× n histograms, each one repre-
senting the frequencies of the multiindex features in each cell.
Subsequently, the similarity measure between the bitemporal
histograms is calculated, in order to determine whether changes
occur in this block. In this case, the distance measure can be
extended from (7), i.e.,

WDistcell =
n×n∑

x=1

Dim∑

i=1

(Distx(i)× Wx(i)) (10)

Distx(i) = |Hx
1(i)− Hx

2(i)| (11)

Wx(i) =
Distx(i)

∑Dim
j=1 Distx(j)

(12)

where Hx
1(i) and Hx

2(i) represent the frequency of the ith bin in
the histogram for the xth cell (1 ≤ x ≤ n2).

Step 3—Types of Change: It should be noted that most of
the automatic change detection methods only indicate whether
changes take place in the block but cannot provide specific
information related to the types of changes. In this paper, how-
ever, based on the information indexes, it is possible to further
provide the change information corresponding to each block, by
investigating which information index is subject to significant
changes in terms of both frequency and spatial arrangement in
the block. This can be viewed as a by-product of the proposed
change detection method.

IV. DATA SETS AND RESULTS

A. Data Sets

The study area covers Shenzhen City, which is one of
the most developed cities in China. The area shows a typi-

Fig. 5. WorldView-2 images over Shenzhen City. The images with false color
composite (NIR-Green-Blue for RGB), acquired on November 3, 2010 and
March 25, 2012, are shown in (a) and (b), respectively, as well as their cor-
responding multiindex representations in (c) and (d) (red = buildings, green =
vegetation, and blue = water). (e) and (f) Ground truth for the binary change
detection and the types of change, respectively.

cal Chinese urban landscape and land cover change pattern,
e.g., the rapid urbanization and infrastructure construction.
WorldView-2 multispectral images, consisting of eight mul-
tispectral bands with 2-m spatial resolution over Shenzhen
City, are used in the experiments in order to test the change
detection methods. Information for the images over the study
area is provided in Table I. The bitemporal images, acquired on
November 3, 2010 and March 25, 2012, respectively, are shown
in Fig. 5(a) and (b), as well as the corresponding multiindex
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Fig. 6. Representative examples of the changed urban scenes and their block- and cell-based histograms. (a) Buildings. (b) Vegetation. (c) Water.
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Fig. 7. (a) and (b) ROC curves obtained by the proposed multiindex change detection models in the Shenzhen experiment. Some ROC points are associated to
the corresponding threshold values “T,” and in (b), the appropriate threshold values for the cell-based change detection are highlighted.

representations, displayed in Fig. 5(c) and (d). Fig. 5(e) and
(f) shows the reference maps for binary change detection and
the types of changes, respectively, which were manually gener-
ated based on a detailed field campaign and visual inspection.
Please note that the legends in Fig. 5(f) indicate the changed
classes in a block. For instance, “Building & Vegetation” means
that the dominant source of change in a block refers to both
buildings and vegetation.

Change information can be divided into seasonal changes
and structural changes. The seasonal changes are always related
to natural landscapes such as vegetation and water, whereas
the structural changes could correspond to both natural and
artificial objects. The changes in the study area are analyzed
as follows.

1) Buildings: An example for changes of buildings is pro-
vided in Fig. 6(a). It is shown that the buildings in the middle
of the block were removed, leading to a significant reduc-
tion of building components in both block- and cell-based
histograms.

2) Vegetation: Please note that the seasonal effect for the
vegetation can be ignored for the study area since the vegetation
cover in Shenzhen City mainly refers to the evergreen plants,
such as the South Asian tropical monsoon evergreen broad-
leaved tree species [32]. Consequently, the changes of vegeta-
tion in this study area are only related to the structural changes
caused by urban planning. A representative example is given in
Fig. 6(b), where the vegetation was removed for the purpose of
construction. The multitemporal changes are clearly reflected in
the cell-based histograms in cell (1,3), cell (2,3), and cell (3,3),
where a significant reduction of vegetation components can be
observed.

3) Water: The changes of water in the urban areas can be
related to both natural and artificial changes. An example for
the artificial changes of the water is shown in Fig. 6(c), where
a piece of soil land was changed into an artificial lake, leading

to a significant increment of water components in cell (1,1) and
cell (2,1).

B. Results for the WorldView-2 Shenzhen Data Set

As aforementioned, the proposed multiindex change detec-
tion can provide two products.

1) Binary result: Each block is identified as changed or un-
changed, which is the commonly used change detection
strategy for high-resolution images [18], [33];

2) Change types: Based on the multiindex representation
model, the proposed method can further indicate the types
of changes in the block, e.g., buildings, vegetation, or
water.

The quantitative accuracy for the binary change detection is
measured by the receiver operating characteristic (ROC) [34]
curves (see Fig. 7), where the vertical and horizontal axes,
respectively, represent the true positive rate (TPR, hit rate) and
the false positive rate (FPR, false alarm rate) calculated for all
possible threshold values. Please note that, in a ROC curve, the
point that is closest to the upper left corner is assumed to be
an appropriate threshold value [e.g., T = 0.103 for block-based
method and T = 0.200 for cell-based method, as marked in
Fig. 7(a)], corresponding to relatively high detection accuracy
and low false alarm. Furthermore, the area under the ROC
curve (AUC) is often used to measure the overall accuracy
of the detection method (a larger area corresponds to better
result). In addition, the Youden index [35], which is defined as
the difference between TPR and FPR (Youden index = TPR −
FPR), is used to further quantitatively measure the accuracy
of change detection. Larger values of the index correspond to
better accuracy. The relationship between the thresholds and
the Youden index is demonstrated in Fig. 7(b), which shows
that reasonable threshold values range from 0.15 to 0.25 for the
cell-based change detection.
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Fig. 8. Binary change detection results of the block/cell methods.

Fig. 9. ROC curves of change detection for (a) vegetation, (b) buildings, and (c) water.

Fig. 10. Pixel-based change detection for the purpose of comparison.
(a) 2010 image. (b) 2012 image. (c) Pixel-based change detection (change
vector analysis).

In this experiment, each block is separated into 3 × 3 cells
(n = 3). From the figures, we can obtain the following obser-
vations: The cell-based strategies provide much better results
than the block-based ones since the accuracy curves show that,
with the same FPR, the former can achieve much higher TPR
than the latter. This phenomenon can be attributed to the fact
that the cell-based strategy is able to simultaneously describe
the frequency and spatial distribution of the urban multiindex
primitives but the block-based strategy can only provide the
frequency information.

Fig. 11. Result of the object-based multiindex method.

The binary change detection results and the change intensity
maps are displayed in Fig. 8, where the binary results are
generated from the intensity maps by thresholding based on the
ROC curves.
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Fig. 12. Comparison of object-based and block- and cell-based change detection.

The accuracy for the change types is also assessed using
the ROC curves. Fig. 9(a)–(c) corresponds to the accuracy
curves for vegetation, buildings, and water, respectively. In
general, it can be seen that the change detection accuracy for
the vegetation and water is higher than the buildings by com-
paring their AUC values. This is understandable since EVI and
NDWI are based on physical principles (e.g., photosynthesis
for the vegetation), but MBI is based on the morphological
assumptions of buildings. From Fig. 9, it is not surprising that,
in all the cases (vegetation, buildings, water), the cell-based
scene representation is much better than the block-based one,
since the former takes the spatial arrangement of the multiindex
primitives into consideration.

V. DISCUSSION

Here, some important and interesting issues about the pro-
posed scene-based (i.e., block and cell) change detection are
discussed.

A. Comparison With the Pixel-Based Change Detection

The experimental results show that the cell-based multiindex
scene representation can achieve accurate change detection
from urban high-resolution images. An interesting example is
provided in Fig. 10, where no significant changes happen in
this scene. It should be kept in mind that the multitemporal
representation for remote sensing imagery is difficult and com-
plicated for the high-spatial-resolution images. For instance, a
building can be related to multiple imaging parameters, e.g.,
viewing angle, adjacent shadow, and the solar zenith angle. An
unchanged building could be incorrectly identified as changed
when these parameters are significantly different for multitem-
poral images. Consequently, the pixel-based change detection
methods always lead to a large number of false alarms, as
shown in Fig. 10(c). The result in Fig. 10(c) is obtained using
the pixel-based change vector analysis method with Otsu’s au-
tomatic threshold [36]. This example shows that the block- and
cell-based change detection is more appropriate for the high-
resolution image change detection, since it is able to tolerate
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Fig. 13. Cell-based histogram representation with different sizes (2 × 2, 3 × 3, 4 × 4, and 6 × 6).

the spatial differences resulting from the different imaging
parameters of the multitemporal data sets.

B. Comparison With the Object-Based Change Detection

The object-based multiindex method was implemented to
make a comparison with our block- and cell-based methods.
The object-based change detection is carried out according to
[16] and [37], with the multiple information indexes used as
features. The result of the object-based change detection is
displayed in Fig. 11.

Several examples are presented in Fig. 12 to further show the
difference between the object-based change detection and the
proposed block- and cell-based methods. It can be seen that a

lot of false alarms were identified by the object-based change
detection, due to the significant geometrical difference between
bitemporal images (e.g., viewing angles). However, on the other
hand, the scene was identified as an unchanged one by the
proposed methods since the difference between the bitemporal
histograms is small.

C. Influence of the Number of Cells

The key parameter for the cell-based method is the number
of cells (n× n) in each block. Fig. 13 shows a series of cell-
based multiindex scene representations with different values
of n (n = 2, 3, 4, 6). It can be clearly seen that the cell-based
histograms become more sensitive to the imaging parameters
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Fig. 14. ROC curves obtained by the cell-based multiindex change detection
method with different configurations of cells (2 × 2, 3 × 3, 4 × 4, 6 × 6, and
8 × 8).

(e.g., viewing angle, adjacent shadow, and the solar zenith
angle) when the value of n (number of the cells in a block)
increases. An extreme case is the pixel-based change detection
[see Fig. 10(c)], where a cell actually corresponds to a pixel in
the block. This way, the results are subject to a large number of
commission errors caused by the different imaging conditions
of the bitemporal images. In order to quantitatively show the
influence of the parameter n, the ROC curves with different
configurations of cells (2 × 2, 3 × 3, 4 × 4, 6 × 6, and 8 ×
8) are compared in Fig. 14. It can be found that the 3 × 3, 4 ×
4, 6 × 6, and 8 × 8 cells achieved similar and satisfactory re-
sults in terms of the ROC curves, outperforming the 2 × 2 and
block-based (1 × 1) approaches. On one hand, a large value
of n can describe the structural arrangement of primitives in
a scene more adequately. On the other hand, however, a large
value of n may lead to overrepresentation of an image scene,
which needs more complex computation but does not improve
the performance significantly. Thus, a 3 × 3 cell configuration
is employed in this research.

D. Observation of Errors

Although the proposed methods are effective in indicating
most of the changes taking place in the study area, it led
to a few errors due to the spatiotemporal complexity of the
multitemporal urban high-resolution scenes. In spite of this,
the errors are within a tolerant range since the change detec-
tion is carried out without collection of training samples and
human–computer interaction. Several cases of observations are
chosen for showing the errors of the proposed methods. Here,
the cell-based strategy with weighted distance is taken as an
example for the error analysis.

Case 1 [see Fig. 15(a)] is related to a commission error
caused by the effect of the viewing angles and the solar zenith
angles, which are significantly different between the 2010
and 2012 images. In particular, please pay attention to the

rectangular region, where the difference of the shadow led to
a structural change.

Case 2 corresponds to an omission error of buildings [see
Fig. 15(b)]. Focusing on the highlighted area, it can be seen that
a piece of bare land was changed into buildings. However, the
bare land was incorrectly identified as a building by the MBI
algorithm in the 2010 image. This case reveals that although
YSI is able to suppress most of the false alarms for the bright
soil, some errors still exist.

Case 3 is an interesting example of an omission error [see
Fig. 15(c)]. In the rectangular region, it can be observed that a
factory was newly built near the water body in 2012, leading to
degradation of the water quality in the region due to the sewage
discharge. Thus, the water was not detected by the NDWI
in 2012. This change is clearly shown in the multiindex fea-
tures. Unfortunately, it has not been identified by the proposed
method since the changed components were not identified as a
change by the threshold value selected. The threshold value is
marked in Fig. 7, which was selected considering the balance
between detection rate and false alarm rate.

E. Additional Data Set

In order to test the robustness of the proposed scene-
based change detection, another WorldView-2 data set over
Kuala Lumpur (capital of Malaysia) was added to evaluate our
proposed method. The bitemporal images and the ground truth
map and detection result are provided in Fig. 16. The imaging
parameters (i.e., satellite angle zenith and solar angle zenith)
of the Kuala Lumpur images are given in Table II. As shown in
the table, the imaging parameters of the Kuala Lumpur bitem-
poral images are significantly different, which pose a challenge
to the tolerance of the proposed method for the multitem-
poral geometrical differences. In spite of this, from the change
detection results in Fig. 17 and ROC curves shown in Fig. 18,
it can be seen that the proposed multiindex model can also
achieve satisfactory results with the additional data set.

F. Thresholding Strategies

The thresholding strategy is a key step for automatic change
detection to generate the change map. In the previous experi-
ments, the suitable threshold values [marked in Figs. 7(a) and
18(a)] were selected based on the ROC curves, corresponding
to a high detection rate and a low false alarm. In addition,
a suitable threshold value can be estimated by the following
strategies.

1) Suggested threshold values: The suitable values for the
cell-based change detection range from 0.15 to 0.25,
in terms of the two experiments in this study [see
Figs. 7(b) and 18(b)]. The best points for both experi-
ments are close to T = 0.2.

2) Automatic threshold: Automatic thresholding methods,
e.g., Otsu’s [36] and minimum cross entropy (MCE)
[38], can be applied to estimate the appropriate threshold
values. Their results are reported in Table III. It can be
found that the MCE is able to give a satisfactory result in
terms of the accuracy (Youden index).
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Fig. 15. Error analysis for the proposed method by taking the cell-based strategy with weighted distance measure as an example.

Fig. 16. WorldView-2 images over Kuala Lumpur city. The images acquired
on February 17, 2011 and June 27, 2014, are shown with false color composite
(NIR-Green-Blue for RGB) in (a) and (b), respectively. (c) Ground truth map
for binary change detection (white = changed, black = unchanged).

TABLE II
IMAGING PARAMETERS OF THE WORLDVIEW-2

IMAGES OVER KUALA LUMPUR

VI. COMPARISON BETWEEN MULTIINDEX

AND TRADITIONAL FEATURES

The proposed multiindex representation is a high-level im-
age description approach, i.e., an image scene is represented
using a set of information indexes, which can directly indicate
the basic urban classes (e.g., vegetation, water, buildings, and
ground). This concept is quite different from traditional meth-
ods, which are related to high-dimensional but low-level feature
representation (e.g., textures, morphology, and shape). Thus,
a comparative study between the proposed model and the tra-
ditional methods (i.e., textural/morphological features) is con-
ducted in order to show the superiority of the multiindex change
detection model from the feature representation point of view.

In the multifeature methods, a series of state-of-the-art spa-
tial features are used for the urban scene description and the
subsequent change detection. In order to guarantee a fair com-
parison, the comparative study is carried out similarly to the
proposed method. The change or no-change is determined ac-
cording to the similarity of the multifeature histograms between
the time T1 and T2. As shown in Fig. 19, the processing chain
refers to three steps: feature extraction, scene representation,
and change detection.

1) Feature Extraction: The spatial features considered for
comparison are briefly introduced as follows.

Occurrence statistics [39]: Two occurrence measures, i.e.,
local mean and variance, are computed on the basis of gray-
level values within a moving window centered on each pixel.

Cooccurrence statistics [40]: Gray-level cooccurrence ma-
trix (GLCM) is one of the most commonly used textural
features for remote sensing texture analysis. It defines a se-
ries of statistical features by recording the frequencies of two
neighboring pixels that occur in a certain distance and angle.
In this paper, according to [41] and [42], three widely used
textural measures, i.e., entropy (ENT), homogeneity (HOM),
and contrast (CON), are used in the comparative study to
describe the urban scenes.

In the experiment, three window sizes, i.e., 3 × 3, 7 × 7,
and 15 × 15, are chosen for computation of the occurrence
and cooccurrence textural measures, by considering the spatial
resolution and the sizes of the objects in the study area. In
addition, the directional effects of the cooccurrence textural fea-
tures are removed by taking the average value of the extracted
features over four directions (0◦, 45◦, 90◦, and 135◦). The offset
parameters of GLCM are defined as follows: 1 pixel shift for 3
× 3, 2 pixels for 7 × 7, and 4 pixels for 15 × 15, according to
the suggestions in [8].

Morphological attribute features: Recently, the morphologi-
cal attribute profiles (APs) [43] have received much attention
and proved to be effective for classification [43], [44] and
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Fig. 17. Change detection results and several examples: unchanged blocks (A, B, and C) and changed blocks (D, E, and F).

Fig. 18. (a) and (b) ROC curves achieved by the proposed multiindex change detection models in the Kuala Lumpur experiment. Some ROC points are associated
to the corresponding threshold values “T,” and in (b), the appropriate threshold values for the cell-based change detection are highlighted.

TABLE III
COMPARISON OF DIFFERENT THRESHOLDING STRATEGIES

FOR THE CELL-BASED CHANGE DETECTION

change detection [17] from high-resolution images. There-
fore, in this study, APs are considered for comparison. APs
are extended from the morphological profiles by replacing
the opening and closing operators with a series of morpho-
logical attributes in a multilevel way. Specifically, APs are
constructed based on the attribute thinning and thickening
operators. APs can be calculated with a series of scale-based
threshold values (λ). Four morphological attributes are con-
sidered in this paper, and their parameters are defined accord-
ing to [43]: 1) area of the regions (λa = [100 500 1000]);
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Fig. 19. Processing flow of the multifeature change detection for the purpose of comparison.

TABLE IV
COMPARISON OF THE CHANGE DETECTION RESULTS BETWEEN THE MULTIFEATURE METHODS AND THE PROPOSED MULTIINDEX METHODS

(DIM = DIMENSION OF THE HISTOGRAM, SPEC = SPECTRAL BANDS, OC = OCCURRENCE TEXTURES)

2) length of the diagonal of the bounding box (λd = [10 25 50
100]); 3) the first moment of inertia (λi = [0.2 0.3 0.4 0.5]);
and 4) standard deviation (λs = [20 30 40 50]).

2) Cell-Based Scene Representation: This step is similar to
the proposed multiindex change detection. An image is divided
into a series of blocks (N ×N pixels), and each block is
further separated into n× n cells (n = 3). Subsequently, the
histograms for the features are generated by quantizing the
features into ten bins (the quantization level) for each cell. In
a similar way, each block is represented by stacking the feature
histograms of all the cells within it.

3) Automatic Change Detection: The cell-based distance
Distcell =

∑n×n
x=1

∑Dim
i=1 Distx(i) is used here to measure the

similarity of the multitemporal and feature histograms and then
determine whether changes take place in the block. Please
note that the traditional feature representation is only able to
provide the information for change or no-change, but not able
to indicate which kind of land cover class changes in the area.

The accuracies of the multifeature and multiindex change de-
tection are compared in Table III, where various feature combi-
nations are tested. The table shows that the accuracies obtained
by the multifeature methods are not satisfactory. APs achieved
the best result among the traditional multifeature methods with
TPR = 0.3573 and AUC = 0.6998. However, with the same
FPR (FPR = 0.15), the proposed multiindex change detection
model can achieve significantly higher TPR (TPR=0.8299)
and AUC (AUC = 0.9341). A sensible explanation to this

phenomenon is that the proposed multiindex model can directly
represent the urban primitives with the information indexes
(e.g., buildings, vegetation, and water), but traditional methods
use low-level textural and morphological features, which is ac-
tually an indirect description of structures in the image scenes.
There is a semantic gap between the low-level features and the
high-level semantics for image understanding [45], [46]. The
proposed multiindex model is able to achieve image semantic
description by modeling the frequency and the distribution of a
set of basic urban primitives. Instead, traditional textural and
morphological features fail to describe the image semantics
directly. Moreover, another notable advantage of the multiindex
representation is that the histogram dimensionality (Dim) of
each block is much smaller than that for the traditional low-level
feature representation (see Table IV), and hence, the proposed
approach needs less storage space and computational cost.

VII. CONCLUSION

In this paper, an innovative change detection method based
on the multiindex image representation has been proposed for
high-resolution remote sensing imagery over urban scenes. The
proposed method is capable of achieving satisfactory change
detection accuracy with a set of low-dimensional but semantic
information indexes, e.g., MBI, EVI, and NDWI. Two specific
strategies are implemented for the proposed method. The first
one is a block-based approach, where the frequencies of the
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information indexes are considered for change detection. The
other is the cell-based one, where each block is further sepa-
rated into a series of cells. This way, not only the frequencies
but also the spatial arrangement of the information indexes in
the block can be exploited. In experiments, it was found that
the cell-based approach significantly outperformed the block-
based one for both binary and class-specific change detection.
This phenomenon reveals that the order or arrangement of the
primitives in a scene plays a key role for the scene-based image
interpretation.

A comparative study was conducted between the proposed
multiindex method and the traditional multifeature method for
automatic change detection. Some widely used and state-of-the-
art spatial features were considered, including GLCM textures
and morphological APs. The comparison demonstrates that the
proposed multiindex model can achieve significantly better per-
formance than the traditional multifeature methods, since the
former gave much higher correctness score with the same false
alarm rate. Results also showed the superiority of the proposed
multiindex representation for scene interpretation, compared
with the traditional high-dimensional and low-level features.
The information indexes can directly reflect the basic semantic
components of the imagery, and their spatial arrangement can
be used to model the configurations of the scenes. In addi-
tion, the proposed multiindex model can automatically indicate
which class the change in the area is related to. This is a by-
product of the proposed method. Instead, traditional automatic
change detection can only determine whether changes take
place in this region or not.

Additionally, the object-based multiindex method was con-
ducted to make the comparison with our proposed methods. It
can be seen that the object-based method may suffer from a
number of false alarms caused by the geometrical difference
between the bitemporal high-resolution images (e.g., different
viewing angles). However, this kind of false alarm can be
effectively suppressed by the proposed block/cell method, due
to the tolerance of the multiindex histograms to the geometrical
differences.

In future research, we plan to validate the proposed change
detection method in more urban areas with high-resolution im-
ages and attempt to implement the method as an applicable tool
for routine urban monitoring. In addition, the proposed mul-
tiindex model is essentially an effective scene representation
method, which has the potential for solving the semantic gap
between the low-level features and the high-level semantics.
Therefore, it can be further developed for processing other
scene-based image interpretation tasks, e.g., scene classification
[47]–[49], content-based image retrieval [50], and complex
pattern recognition [51]–[53].
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