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Abstract—We propose a semisupervised graph learning
(SEGL) method for feature extraction of hyperspectral remote
sensing imagery in this paper. The proposed SEGL method aims
to build a semisupervised graph that can maximize the class
discrimination and preserve the local neighborhood information
by combining labeled and unlabeled samples. In our semisuper-
vised graph, we connect labeled samples according to their label
information and unlabeled samples by their nearest neighborhood
information. By sorting the mean distance between a unlabeled
sample and labeled samples of each class, we connect the unla-
beled sample with all labeled samples belonging to its nearest
neighborhood class. Moreover, the proposed SEGL better models
the actual differences and similarities between samples, by setting
different weights to the edges of connected samples. Experimental
results on four real hyperspectral images (HSIs) demonstrate
the advantages of our method compared to some related feature
extraction methods.

Index Terms—Classification, feature extraction, graph, hyper-
spectral images (HSIs), semisupervised.

I. INTRODUCTION

W ITH advanced sensor technology, hyperspectral images
(HSIs), offering much richer spectral information than

regular RGB and multispectral images, are easily accessible
nowadays. However, the large number of spectral bands (hun-
dreds to thousands) implies the high dimensionality of HSI,
thus causes challenges to HSI analysis [1]. Conventional classi-
fication methods perform poorly due to the curse of dimension-
ality (i.e., the Hughes phenomenon [2]. One way to overcome
this problem is to adopt a proper feature extraction method
in the classification framework [3]. An effective and helpful
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feature extraction method can explore the intrinsic structure
of HSI, reduce the data redundancy, and decrease the opera-
tion complexity, which is useful for improving the classification
accuracy [4].

There are a number of existing approaches for feature
extraction of HSIs [5]–[7], ranging from unsupervised methods
to supervised ones. One of the best known unsupervised meth-
ods is principle component analysis (PCA) [8]. Some local
methods, which preserve the properties of local neighborhoods,
were also proposed to extract the features of HSIs [9], such
as neighborhood preserving embedding (NPE) [10], locality
preserving projection (LPP) [11], and linear local tangent
space alignment (LLTSA) [12]. By considering neighborhood
information around the data points, these local methods
can preserve local neighborhood information and detect the
manifold embedded in the high-dimensional feature space. As
supervised feature extraction methods, linear discriminant anal-
ysis (LDA) [13] and nonparametric weighted feature extraction
(NWFE) [14], are the two widely used methods, which extract
features by optimizing the fisher criterion. Many extensions
to these two methods have been proposed, such as modi-
fied Fisher’s LDA [15], cosine-based nonparametric feature
extraction [16], and double-nearest proportion feature
extraction [17].

However, in real-world applications, very limited labeled
samples are usually available, because manually labeling
datasets are time consuming and fairly expensive. On the other
hand, unlabeled samples could be available in large quanti-
ties at very low cost. For this reason, semisupervised learning
methods [18], which aim at improving classification by utiliz-
ing both unlabeled and limited labeled data, have aroused a
great deal of interest in the machine learning community [19],
and been successfully used in HSI classification [20]–[23]. For
the semisupervised classification, the representative methods
include transductive support vector machine (SVM) [21], [22],
and graph-based semisupervised classification methods [23],
[24]. For semisupervised feature extraction methods, Zhang
et al. [25] propose a semisupervised dimensionality reduc-
tion (SSDR) technique by utilizing the must- and cannot-link
constraints. Some semisupervised feature extraction methods
add a regularization term to preserve certain potential prop-
erties of the data, e.g., semisupervised discriminant analysis
(SDA) [26] adds a regularizer into the objective function of
LDA, it makes use of a limited number of labeled samples to
maximize the class discrimination and employs both labeled
and unlabeled samples to preserve the local properties of the
data. Some semisupervised feature extraction methods combine
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supervised methods with unsupervised ones using a tradeoff
parameter, such as semisupervised local fisher discriminant
analysis (SELF) [27]. Other semisupervised feature extrac-
tion methods are driven by certain graphs constructed by both
labeled and unlabeled data [28], [29], such as in the approach
of [28], two similarity matrices were built first, of which one
matrix based on labeled information and the other based on
local neighborhoods’ information, then these two matrices were
fused by a parameter. However, it may not be easy to specify the
optimal parameter values in these semisupervised methods, as
mentioned in [30].

Recently, Liao et al. [31] proposed a semisupervised local
discriminant analysis (SELD) for feature extraction of HSI
without parameters. Their method divided the dataset into two
sets: labeled and unlabeled sets, and employed the labeled sam-
ples through supervised method (LDA) only to maximize the
class discrimination and the unlabeled samples through unsu-
pervised local linear feature extraction methods (such as LPP,
NPE, and LLSTA) only to preserve the local neighborhood
information. However, the correlations between labeled and
unlabeled samples are not well exploited in SELD; furthermore,
in the supervised part (LDA), it tends to give undesired results
if samples in a class form several separate clusters (as multi-
modal) [32]. An improved semisupervised local discriminant
analysis (ISELD) method [33] was proposed in our previous
work, in which we added a similarity matrix to model the cor-
relations between labeled and unlabeled samples. However, the
similarities between samples are not well modeled, as ISELD
[33] sets the same edges to same class.

In this paper, we propose a novel semisupervised graph
leaning method (named SEGL) for feature extraction of hyper-
spectral imagery. Our proposed method aims to build a semisu-
pervised graph that can maximize the class discrimination
and preserve the local neighborhood information by com-
bining labeled and unlabeled samples. In our semisupervised
graph, we connect samples according to either label informa-
tion (labeled samples) or their k-nearest neighbors (unlabeled
samples). We connect a unlabeled sample with labeled samples
in a class by minimizing the mean distance of this unlabeled
samples to labeled samples of each class. The main contribu-
tions of this paper are: the proposed SEGL does not combine
supervised and unsupervised methods in a framework as SELD
[31] and ISELD [33], but proposed a novel framework to uti-
lize labeled and unlabeled samples in a semisupervised graph.
Moreover, the proposed SEGL method does not set the same
weights to the edges of the same class or samples within
their k-nearest neighbors, as [28], [31], [33], but employs
weighted edges (with weights corresponding to the distance
between samples). This way, we proposed a more general
framework to build a semisupervised graph, where the actual
differences and similarities between samples are better mod-
eled. The experimental results on four real hyperspectral remote
sensing images demonstrate that the proposed SEGL enables
better performances on classification.

The organization of this paper is as follows. In Section II,
the proposed semisupervised graph learning (SEGL) method
for feature extraction of HSI is analyzed in detail. Section III

presents the experimental results. Finally, the conclusion of this
paper is drawn in Section IV.

II. FEATURE EXTRACTION WITH THE PROPOSED SEGL

This section details our proposed SEGL method for feature
extraction of HSI. Let us define Xlabeled = {xLi

}ni=1, Y =
{yi}ni=1, yi ∈ {1, 2, . . . , C}, here xLi

denotes the ith sample
in the labeled samples set, yi is the label of xLi

, C is the
number of classes, Xunlabeled = {xUn+1

,xUn+2
, . . . ,xUn+m

},
xUj

denotes the jth sample in the unlabeled samples set, n is
the number of labeled training samples, and m is the number
of unlabeled training samples. Assume that the labeled sam-
ples set Xlabeled = {xL1

,xL2
, . . . ,xLn

}, are ordered accord-
ing to their labels yi, with the data matrix of the cth class
X(c) = {x(c)

1 ,x
(c)
2 , . . . ,x

(c)
nc }, where x

(c)
i is ith sample in cth

class. Then, the labeled set can be expressed as Xlabeled =
{X(1),X(2), . . . ,X(C)}.

We exploits the label information and local neighbor-
hood information through our proposed semisupervised
graph, and our proposed semisupervised graph is
defined as G = (X,A), X = {Xlabeled,Xunlabeled} =
{xL1

,xL2
, . . . ,xLn

,xUn+1
,xUn+2

, . . . ,xUn+m
} is a set of

nodes that are connected by a set of edges A. The edge
connecting nodes xi and xj , has an associated weight Aij . The
basic goal of our proposed method is to find a transformation
matrix W ∈ R

D×d, which can transfer the data xi in high-
dimensional feature space into low-dimensional sample zi in
a way of zi = WTxi. The transformation matrix W can be
optimized as follows:

arg min
W∈RD×d

⎛
⎝n+m∑

i,j=1

||WTxi −WTxj ||2Aij

⎞
⎠ . (1)

In many applications, labeled samples are typically used
to enhance class discrimination, but are always very limited.
Unlabeled samples, on the other hand, are much easier accessi-
ble. The idea behind semisupervised feature extraction methods
[31] and [33] is to infer class discrimination from labeled
samples, as well as the local neighborhood information from
unlabeled samples. Motivated by [31] and [33], we define our
proposed semisupervised graph to model different correlations
between samples as

A =

[
ALL ALU

AUL AUU

]
(2)

where A is the adjacency matrix, two nodes are adjacent if they
have connections (i.e., Aij �= 0), the adjacency matrix ALL is
a n× n matrix that models the correlations between labeled
samples, if two samples belong to the same class, we set an edge
between them. The adjacency matrix AUU , which is a m×m
matrix, models the correlations between unlabeled samples. We
connect two unlabeled samples, if two unlabeled samples are
within the k-nearest neighbors of each other, we define ALL

and AUU , respectively, as
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ALiLj
=

{
1, yi = yj

0, others
(3)

AUiUj
=

⎧⎪⎨
⎪⎩

1, xUj
∈ kNN (xUi

)

or xUi
∈ kNN (xUj

)

0, others

(4)

where kNN (xUi
) denotes a set of unlabeled samples that are

within the k nearest neighbors of xUi
.

The adjacency matrices ALU and AUL contain the connec-
tion between labeled and unlabeled samples, AUL = (ALU )T ,
as A is a symmetric matrix. Suppose the labeled sample
xLi

belong to class cj , the n×m adjacency matrix ALU is
defined as

ALiUj
=

{
1, xLi

∈ X(cj)

0, others
(5)

where cj represents the class that xUj
is closest to, and X(cj) is

a set including all labeled samples in class cj , cj ∈ {1, . . . , C}.
Here, we assume that the distribution of each class is
unimodal [34]

cj = argmin
c

mc(xUj
), c = 1, 2, . . . ,C (6)

where mc(xUj
) denotes the mean distance of an unlabeled sam-

ple xUj
to all labeled samples in class c, and we define it as

follows:

mc(xUj
) =

1

nc

nc∑
t=1

d
(
xUj

,x
(c)
t

)
(7)

where d(xi,xj) is the Euclidean distance between xi and xj .
xi and xj are closer to each other if d(xi,xj) is smaller.
Therefore, if mc(xUj

) is smaller, it means xUj
is more simi-

lar to labeled samples from class c and more likely to belong to
class c, we set edges between an unlabeled sample xUj

and all
labeled samples xLi

in class c.
In the above definition of adjacency matrix A, if two nodes

are connected, the weights of their edges are set to 1. If we
set same weights for samples with same label or within their
k-nearest neighbors, the connected nodes would make same
contribution to the definition of the optical projection matrix
(1) . The actual differences and similarities between samples are
not well modeled. Therefore, we set an weighted edge between
connected nodes by combing the affinity matrix F with adja-
cency matrix A, to make nearest connected samples be closest,
and far apart connected samples be far away when projecting
them into low-dimensional feature space. The final similarity
matrix A in our proposed semisupervised graph G = (X,A)
is defined as follows:

A = F�A (8)

where “�” denoting the element-wise multiplication and Fi,j

is the affinity between xi and xj . In this paper, we use the local
scaling heuristic [35] as the definition of affinity matrix F

Fi,j = exp

(
−‖xi − xj‖2

δiδj

)
. (9)

The parameter δi represents the local scaling around xi

defined by δi =
∥∥xi − xk

i

∥∥ and δj =
∥∥xj − xk

j

∥∥, where xk
i is

the kth nearest neighbor of xi. A heuristic choice of k = 7 was
shown to be useful through experiments [35]. Fi,j is large if xi

and xj are “close,” and Fi,j is small if xi and xj are “far apart.”
Fig. 1 shows the graph constructed by our proposed semisu-
pervised method. The graph was constructed by selecting five
labeled samples per class and 100 unlabeled samples randomly
from the University of Pavia dataset. Without F, the edges of all
connected samples are equally set to 1, as shown in Fig. 1(a).
However, in real applications, samples even from the same class
have spectral differences, as shown in Fig. 1(b), if we set all the
weights of the samples from the same labeled class to the same
value as SELD [31] did, the differences and similarities can-
not be well modeled. With our proposed semisupervised graph,
the differences and similarities are much better modeled, this
means two labeled samples xi and xj , if they are closer to each
other, their connection weight Aij would be larger. On the con-
trary, if they are far away from each other or mislinked, their
connection weight Aij would be smaller, thus can reduce the
negative influence of mislinking, as shown in Fig. 1(b).

In order to avoid degeneracy, we use the constraint as
follows:

WTXDXTW = I (10)

where D is a diagonal matrix with Di,i =
∑m+n

j=1 Ai,j and I
is the identity matrix, we can obtain the transformation matrix
W = (w1,w2, . . . ,wr), which is made up by r eigenvectors
associated with the least r eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λr of
the following generalized eigenvalue problem:

XLXTw = λXDXTw (11)

where L = D−A is a Laplacian matrix.

III. EXPERIMENTS

A. HSI Datasets

Four real hyperspectral datasets are used in our experiments:
University of Pavia, Pavia Center, Botswana, and Kennedy
Space Center. Table I shows the number of labeled samples
in each class for all the datasets. Note that the color in the cell
denotes different classes in the classification maps (Figs. 3 and
4). The datasets University of Pavia and Pavia Center are from
urban areas in the city of Pavia, Italy. The data were collected
by the ROSIS (reflective optics system imaging spectrometer)
sensor, with 115 spectral bands in the wavelength range from
0.43 to 0.86 µm, and a very fine spatial resolution of 1.3 m by
pixel.

University of Pavia (Upavia): The data with 610×340 pixels
were collected over the University of Pavia, Italy. It contains
103 spectral channels after removal of 12 noisy bands. The data
include nine land cover/use classes (see Table I).

Pavia Center (PCenter): The data with 1096×715 pixels
were collected over Pavia, Italy. It contains 102 spectral chan-
nels after removal of 13 noisy bands. Nine groundtruth classes
were considered in the experiments (see Table I).
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Fig. 1. Semisupervised graph. (a) Graph with same weights. (b) Proposed graph with different weights.

TABLE I
DATASETS USED IN THE EXPERIMENTS

Kennedy Space Center (KSC): The dataset was acquired by
NASA AVIRIS instrument over the KSC, Florida, in 1996 and
consists of 224 bands of 10-nm width with center wavelengths
from 0.4 to 2.5 µm. The data, acquired from an altitude of
approximately 20 km, have a spatial resolution of 18 m/pixel.
Several spectral bands were removed from the data due to
noise and water absorption phenomena, leaving a total of
176 bands to be used for the analysis. For classification pur-
poses, 13 classes representing the various land cover types
that occur in this environment were defined for the site (see
Table I). For more information, see website http://www.csr.
utexas.edu/hyperspectral/.

Botswana: The dataset was acquired over the Okavango
Delta, Botswana, in May 31, 2001 by the NASA EO-1 satel-
lite, with 30-m/pixel resolution over a 7.7-km strip in 242 bands
covering the 0.4–2.5 µm portion of the spectrum in 10-nm win-
dows. Uncalibrated and noisy bands that cover water absorption
features were removed, leaving a total of 145 radiance channels
to be used in the experiments. The data consist of observa-
tions from 14 identified classes intended to reflect the impact

of flooding on vegetation (see Table I). For more information,
see http://www.csr.utexas.edu/hyperspectral/.

B. Experimental Setup

The training set X is composed of labeled subset Xlabeled

and unlabeled subset Xunlabeled (such that X = Xlabeled ∪
Xunlabeled and Xlabeled ∪Xunlabeled = φ). In order to analyze
the influence of the size of labeled samples on classification
accuracy, a number of unlabeled samples u = 2000 were ran-
domly selected from the image parts with no labels to compose
Xunlabeled, and labeled subset Xlabeled was made of labeled
training samples which was randomly selected from the labeled
data with the samples size corresponding to different cases: 20,
40, and 80 samples per class, respectively. The training of the
classifiers was carried out using the labeled subset Xlabeled.
The remaining labeled samples were used as the test set. We
compare the classification accuracies using the proposed SEGL
method with results from the following methods: PCA [8]; LPP
[11]; NWFE [14]; and SDA [26], where the parameter α is
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optimized with fivefold cross validation within the given set
{0.1, 0.5, 2.5, 12.5, 62.5}; SELF [27], of which the parame-
ter β is chosen from {0, 0.1, 0.2, . . . , 0.9, 1} by fivefold cross
validation; SLPPCE [28]; SELD [31], and ISELD [33].

We used three common classifiers: 1-nearest neighbor
(1NN), support vector machines (SVMs), and random forest
(RF). The SVM classifier with RBF kernels has two parameters:
the penalty factor C and the RBF kernel widths γ, we optimized
C within the given set {10−1, 100, 101, 102, 103} and γ within
the given set {10−3, 10−2, 10−1, 100, 101} by fivefold cross
validation, the RF classifier with 200 trees. All classifiers were
evaluated against the test set. Meanwhile, we use overall classi-
fication accuracy (OA) to evaluate the feature extraction results.
The results were averaged over 10 runs on different number
of extracted features from 1 to 20, and the averaged OA was
recorded for each method. The number of nearest neighbors
was set to 8.

C. Results on Different Number of Labeled Training Samples
Tables II–IV display the classification accuracies of testing

data with different distinct labeled samples size: 20, 40, and
80 per class, respectively. The best averaged accuracy of each
dataset (in column) is highlighted in bold. From these tables,
we have the following findings.

1) The results confirm that most semisupervised feature
extraction methods can achieve better results in the
classification of HSIs, comparing the unsupervised or
supervised feature extraction methods. The classification
accuracy will be higher as the number of labeled training
samples increasing. Especially, for the proposed SELG
method, on the University of Pavia dataset, when the
labeled training size is small (20 labeled training sam-
ples per class), the best averaged OA is 79.40%, and if
we choose 80 labeled training samples from each class,
the best averaged OA reaches to 83.57%, which has more
than 4% improvements.

2) The semisupervised feature extraction methods SELD
[31], ISELD [33], and the proposed method SEGL, which
divide the samples into two sets (labeled and unlabeled)
first, infer class discrimination from labeled samples
and keep local neighborhood information from unlabeled
samples, perform better than other semisupervised meth-
ods (SELF [27] and SLPPCE [28]). Thus, suggests that
dividing the samples into two sets first and achieving dif-
ferent goals from different sets is an effective way in
semisupervised learning.

3) By connecting unlabeled and labeled samples in the
semisupervised graph and employing weighted edges
between samples, SEGL outperforms than other semisu-
pervised methods. Compared with SEGL method
SLPPCE, our proposed SEGL method has about 10%
improvements on the University of Pavia dataset, more
than 3% improvements on the KSC dataset.

4) SVM classifier is more efficient to deal with the datasets
KSC and Pavia Centre; however, 1NN classifier gets the
highest averaged accuracies in most cases for other two
datasets. When the preprocessing features were extracted

TABLE II
OA% (OPTIMAL NUMBER OF FEATURES) BY USING FEATURE

EXTRACTION APPROACHES WITH LABELED TRAINING SAMPLE SIZE 20

by unsupervised methods PCA and LPP, or supervised
methods NWFE, RF, and SVM classifier perform much
better than 1NN classifier. On the other hand, SVM clas-
sifier needs more time for classification than RF and 1NN
classifier from the experiments.

5) The proposed SEGL method gets best averaged OA on
the four datasets from all the results of experiments. In
Table II, the best averaged OA in University of Pavia and
KSC are 79.40% (SEGL with 1NN classifier) and 92.25%
(SEGL with SVM classifier), respectively, which have at
least 1% improvements than others. In Table III, just the
results of the proposed methods SEGL with 1NN clas-
sifier have reached above 81% in University of Pavia.
For the other three datasets, SEGL still have best results,
93.19%, 95.47%, and 97.29%, respectively. In Table IV,
SEGL with SVM classifier has the best results in KSC and
Pavia Center datasets, 95.37% and 97.64%, respectively.
SEGL with RF classifier gets the highest OA 97.13% in
Botswana dataset, and SEGL with 1NN classifier gets the
highest OA 83.57% in University of Pavia dataset.

Fig. 2 shows the averaged OA of different semisupervised
learning methods changing with the increasing number of
extracted features. It can be seen that the proposed SEGL with
SVM classifier has better performance than other methods for
University of Pavia and KSC datasets. With the number of
extracted features increasing, the OA of SEGL will improve
first and then keep stable or have a little decrease. The opti-
mal number of the features extracted by our proposed method
is 8 and 12 with SVM classifier for University of Pavia and
KSC, respectively. However, automatic selection of the optimal
number of features is still very challenging for most methods
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TABLE III
OA% (OPTIMAL NUMBER OF FEATURES) BY USING FEATURE

EXTRACTION APPROACHES WITH LABELED TRAINING SAMPLE SIZE 40

TABLE IV
OA% (OPTIMAL NUMBER OF FEATURES) BY USING FEATURE

EXTRACTION APPROACHES WITH LABELED TRAINING SAMPLE SIZE 80

[36]. It depends on the distribution of the datasets, the training
samples and the classifiers (see Tables II–IV). Many approaches
selected the optimal number of features according to the cumu-
lative variance [36]. However, these approaches do not always
work well, as was discussed in [36] and [37].

In order to compare the classification results visually, we
randomly select 40 labeled training samples per class from
University of Pavia and KSC datasets. With SVM classifier, the
best classification maps of each methods are shown in Figs. 3
and 4, respectively. It can be seen that the classification maps
of the proposed SEGL looks smooth on University of Pavia
dataset, and this is specially clear for classes Meadows and Soil.
In the classification maps of KSC, the proposed method SEGL
also yields a good classification result, and outperforms than
other feature extraction methods in the Water region near to the
coastline, also in the Salt marsh parts located in the center of
Water region.

D. Results on Different Number of Unlabeled Training Samples

This experiment investigates the influence of the unlabeled
sample size on the classification performances. The choice of
unlabeled samples is also a very important step in the semisu-
pervised methods. Large number of unlabeled training samples
increases computational complexity, while a small number of
unlabeled samples is not sufficient to exploit the local neighbor-
hood information. We choose 20 labeled training samples from
each class to compose the labeled subset Xlabeled, the number
of unlabeled subset Xunlabeled was evaluated from 500 to 5000
with a step 500. Fig. 5 shows the tendency of averaged OA with
the number of unlabeled training samples increasing, using sev-
eral different feature extraction methods with SVM classifier
for University of Pavia and KSC datasets. As can be seen, the
classification accuracy will improve first and then keep stable as
more and more unlabeled samples are used. The averaged OA
of the proposed SEGL method just improved about 2% when
the number of unlabeled training samples increased from 500 to
5000 on these two datasets. As on the KSC dataset, the averaged
OA of ISELD method just reached to 89% when only 500 unla-
beled training samples were chosen, while OA reaches 92.86%
by using 4500 unlabeled samples.

E. Results on Different Number of Nearest Neighbors

The number of nearest neighbors (k) is an important param-
eter in our proposed semisupervised graph. On the one hand,
when k is too small, the local information may not be properly
modeled. On the other hand, large k (with same unlabeled sam-
ples) will lead to mislabeling problems. To investigate the effect
of the number of nearest neighbors and unlabeled samples on
the classification accuracy, we take University of Pavia and KSC
datasets as examples in our experiments. Forty labeled training
samples were selected from each class with fivefold cross val-
idation to compose the labeled subset Xlabeled, the number of
unlabeled subset Xunlabeled was evaluated from 500 to 7000
with a step 500, the number of nearest neighbors was changed
from 4 to 30 with a step 2. Fig. 6 shows the surface of the OA as
a function of nearest neighbors (k) and unlabeled samples (u),
with SVM classifier. As can be seen, when u was set to 500, the
averaged OA increased at first and then decreased as the number
of nearest neighbors changed from 4 to 30. This indicates that
the increase of k, with a fixed number of u, will mislabel many
unlabeled samples, leading to poor classification performances.
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Fig. 2. Averaged OA (%) with the number of extracted features increasing for different semisupervised feature extraction method with SVM classifier. Forty
labeled training samples are chosen randomly from each class. (a) University of Pavia. (b) KSC.

Fig. 3. Classification maps of the different methods with SVM classifier for University of Pavia. Forty labeled samples per class were randomly selected from the
training set. (a) Groundtruth. (b) PCA. (c) LPP. (d) NWFE. (e) SDA. (f) SELF. (g) SLPPCE. (h) SELD. (i) ISELD. (j) Proposed SEGL.

When we keep k stable, the OA will first increase then fall down
as the number of unlabeled samples changes. This means if k
(or u) is set to a large value, it will increase the possibilities
of wrong linked, i.e., some unlabeled samples that belong to
different classes in reality would be connected, degrading the
performances of the proposed method. We can also see that
when the number of unlabeled samples is less than 2000, the
classification results are not stable as k changes. This is because
the distribution of nearest neighborhood unlabeled samples is

sparse, the change of k has a big effect on the averaged radius
(i.e., the averaged distance between a sample and its kth nearest
neighbors). Consequently, if k is fixed, the effect of k on classi-
fication decreases as the number of unlabeled data increases.
Therefore, in our proposed method, the number of nearest
neighbors (k) should be changed in accordance with the num-
ber of unlabeled samples (u). Furthermore, the results show that
selecting training samples with cross validation can improve the
classification performances of our proposed method.
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Fig. 4. Classification maps of the different methods with SVM classifier for KSC. Forty labeled samples per class were randomly selected from the training set.
(a) RGB with Groundtruth. (b) PCA and SELF. (c) LPP. (d) NWFE. (e) SLPPCE. (f) SELD. (g) ISELD. (h) Proposed SEGL.

Fig. 5. Averaged OA (%) with the number of unlabeled training samples increasing for different semisupervised feature extraction method with SVM classifier.
(a) University of Pavia. (b) KSC.

Fig. 6. OA (%) as a function of the number of nearest neighbors and unlabeled samples, with 40 labeled samples per class and 8 extracted features. (a) University
of Pavia. (b) KSC.
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Fig. 7. OA (%) as a function of the number of nearest neighbors and number of features, with 40 labeled samples per class and 2000 unlabeled samples.
(a) University of Pavia. (b) KSC.

Fig. 7 shows the surface of the OA as a function of near-
est neighbors and number of features, with SVM classifier. The
number of nearest neighbors was changed from 4 to 30 with
a step 2, the number of extracted feature was evaluated from
2 to 20 with a step 1. It could be noted from the results that
larger nearest neighbors (with a fixed number of the extracted
features) will increase the possibility of mislabeling, leading
to poor classification performances. What is more, the opti-
mal numbers of features will increase as the raise of nearest
neighbors.

IV. CONCLUSION

In this paper, we present a new feature extraction method
with SEGL, and applied it to the classification of HSIs. The
proposed method first divides the samples into labeled and
unlabeled sets, and we connected labeled samples according to
their label information and unlabeled samples by their k-nearest
neighbors. For the connection between labeled and unlabeled
samples, we sorted the mean distance from a unlabeled sample
to each class, and connected the unlabeled sample with labeled
samples belonging to the nearest class. Last but not least, the
proposed SEGL method sets the weighted edges to connected
samples by utilizing distance information between samples.
This way our proposed SEGL method better modeled the con-
nections between samples through a general semisupervised
graph. Comparing with some related feature extraction methods
on four hyperspectral data sets, our proposed SEGL has bet-
ter performance and higher classification accuracies. Recently,
many researchers have combined active learning with semisu-
pervised learning, such as [38]–[40]. In our future research
work, we will focus on integrating the active learning into our
proposed SEGL method, and unlabeled data sampling (e.g.,
searching nearest neighborhood samples within a fixed radius,
as well as investigating the relationship between the averaged
radius and unlabeled samples selection). What is more, in order
to better cope with the problems of multimodality, we will
explore more criterion to connect unlabled samples with labeled
samples instead of using the mean distance.
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