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An Adaptive Mean-Shift Analysis Approach
for Object Extraction and Classification

From Urban Hyperspectral Imagery
Xin Huang and Liangpei Zhang

Abstract—In this paper, an adaptive mean-shift (MS) analysis
framework is proposed for object extraction and classification
of hyperspectral imagery over urban areas. The basic idea is
to apply an MS to obtain an object-oriented representation of
hyperspectral data and then use support vector machine to in-
terpret the feature set. In order to employ MS for hyperspec-
tral data effectively, a feature-extraction algorithm, nonnegative
matrix factorization, is utilized to reduce the high-dimensional
feature space. Furthermore, two bandwidth-selection algorithms
are proposed for the MS procedure. One is based on the local
structures, and the other exploits separability analysis. Exper-
iments are conducted on two hyperspectral data sets, the DC
Mall hyperspectral digital-imagery collection experiment and the
Purdue campus hyperspectral mapper images. We evaluate and
compare the proposed approach with the well-known commercial
software eCognition (object-based analysis approach) and an ef-
fective spectral/spatial classifier for hyperspectral data, namely,
the derivative of the morphological profile. Experimental results
show that the proposed MS-based analysis system is robust and
obviously outperforms the other methods.

Index Terms—Bandwidth selection, classification, high spatial
resolution, hyperspectral, mean shift (MS).

I. INTRODUCTION

R ECENTLY, the development and increasing use of images
with both high spatial and spectral resolutions (namely,

high spatial and spectral resolution (HSSR) imagery) have
received more attention for land-cover/land-use mapping. Such
HSSR data provide both detailed structural and spectral in-
formation; therefore, it should be useful for information ex-
traction and classification. The application of HSSR images
is a complex and challenging problem for the remote-sensing
community. The key processing technique is the exploitation
of the rich spectral and spatial features. Therefore, a joint
spectral/spatial classifier is needed for the classification of
this data, but few such approaches have been proposed [1].
Jackson and Landgrebe [2] presented an adaptive Bayesian
contextual classifier to utilize spatial interpixel-dependence
contexts, where the prior probabilities of the classes of each
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pixel and its spatial neighbors are modeled by the Markov
random field. In [3], Dundar and Landgrebe proposed a model-
based mixture supervised-classification approach, in which a
Gaussian mixture approach was used for accurate modeling of
complex spectral classes. The mixture model was estimated
using the expectation–maximization algorithm, and this ap-
proach was found substantially better than using only a sin-
gle Gaussian density function (e.g., the maximum-likelihood
classifier). Benediktsson et al. [1] proposed a mathematical
morphology approach, namely, the derivative of the morpho-
logical profile (DMP), for preprocessing of HSSR imagery. The
multiscale morphological profile is based on the repeated use
of openings and closings with a structuring element of increas-
ing size. The principal-component-analysis (PCA) transform is
used to reduce the dimension and produce characteristic im-
ages for hyperspectral data, and the multiscale morphological
features are then classified using the back-propagation (BP)
neural networks. More recently, Gamba et al. [25] presented an
improved very high resolution (VHR) urban-area mapping ap-
proach, where boundary and nonboundary pixels are separately
classified using a fuzzy ARTMAP neural network and Markov
random-field classifier, respectively. The labels in the boundary
regions are then finely tuned by enforcing some geometrical
constraints. A decision fusion is finally used to combine the
two mapping outputs.

In this paper, a mean-shift (MS)-based analysis framework
is proposed to extract spectral/spatial features from HSSR data.
In this approach, the MS [4], [5] is used to obtain an object-
oriented representation of hyperspectral imagery. Accordingly,
several issues should be addressed.

1) Dimension Reduction for Hyperspectral Feature Space:
On the one hand, it is necessary to reduce the computation
load for HSSR data when spectral and spatial information are
considered at the same time; on the other hand, the kernel
density estimation in the MS does not scale well with high
dimension of the space [5]. This is mostly due to the empty-
space phenomenon [6] by which most of the mass in a high-
dimensional space is concentrated in a small region of the
space. Therefore, dimension-reduction algorithms are used for
preprocessing of hyperspectral data and MS analysis. Several
feature-extraction approaches have been tested for hyperspec-
tral data: discriminant-analysis feature extraction [2], PCA
[1], and independent component analysis [7]. In this paper, a
relatively new feature-extraction algorithm, nonnegative matrix
factorization (NMF) [8], is used to reduce the HSSR data and
create characteristic images.
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2) Object-Based Classification: The object-based-
classification approaches can reduce the local spectral variation,
generalize the spectral information in a spatial neighbor, and
exaggerate the spectral distinction between spectrally similar
objects. It has proven to be an efficient solution for VHR
imagery [11], [12], [26]. Its basic idea is to group the spatially
adjacent pixels into spectrally homogeneous objects and then
conduct classification on objects as the minimum processing
unit. Kettig and Landgrebe [27], [28] proposed this idea and
developed the spectral–spatial classifier called extraction
and classification of homogeneous objects. More recently, a
commercial software eCognition [9] that exploits the object-
based classification technique has been studied extensively and
reported to be very effective for VHR data [10]–[12]. The key
technique of eCognition is the fractal net evolution approach
(FNEA) [9]. FNEA is a bottom-up region-merging approach
starting from a single pixel. The region-merging decision is
made with local homogeneity criteria. In an iterative way, at
each subsequent step, image objects are merged into larger
ones. FNEA can be regarded as a hierarchical segmentation
that divides the data based on proximity measure. The
hierarchical method tends to be computationally expensive,
and the definition of a meaningful stopping criterion for the
merging of the data is not straightforward [5]. Besides the
hierarchical method, the density estimation is another efficient
approach for feature-space clustering. MS is an elegant
method of probability density estimation, and it is utilized
for object-based classification in this paper. The rationale of
the density-estimation-based segmentation approach is that
the feature space can be regarded as the empirical probability
density function (PDF). Local maxima of the PDF correspond
to dense regions in the feature space, and their locations are
used to delineate the local structure of data. MS is a robust
feature-analysis technique for detail-preserving segmentation
and, hence, is a very potential tool for object-based feature
extraction and classification for high-resolution data.

3) Classifier: Support vector machine (SVM) has been re-
ported to be effective in classification of multisensor data [29]
and hyperdimensional object-based feature sets [10], [18]. It
is not constrained to prior assumptions on the distribution of
input data and is, hence, well suited for complex features. In
this paper, SVM is used to interpret the HSSR data sets with
MS-based object-oriented feature space.

The proposed framework is shown in Fig. 1. This paper aims
to propose a novel MS-based object extraction and classifica-
tion approach for HSSR imagery and to address some important
issues for this application, including dimension reduction and
adaptive bandwidth selection. The rest of this paper is organized
as follows. Section II details the proposed adaptive MS analysis
approach. Section III presents the MS-based object-oriented
classification algorithm. Section IV analyzes and compares the
experimental results. The last section concludes.

II. ADAPTIVE MS ANALYSIS APPROACH

A. MS Procedure

The MS is a nonparametric density-estimation technique,
and its theoretical framework is the Parzen window-based

Fig. 1. MS system for object extraction and classification.

kernel density estimation [4], [5]. Given n data points xi (i =
1, . . . , n) in d-dimensional space, the kernel density estimator
at point x can be written as

f̂h,K(x) =
ck,d

nhd
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where ck,d is a normalization constant, h is the bandwidth, and
k(·) is the kernel profile, that models how strongly the data
points are taken into account for the estimation. The key step
in the feature-space analysis is to find the local maxima of the
density f(x), i.e., the modes of the density, which are located
among the zeros of the gradient ∇f(x) = 0. The MS procedure
is an efficient way to locate these zeros without estimating the
density [5]. The density-gradient estimator can be obtained by
differentiating (1) and decomposing to two product terms

∇̂fh,K(x) =
2

h2c
f̂h,G(x) · mh,G(x) (2)

where the profile of kernel G is defined as g(x) = −k′(x), with
cg,d as its normalization parameter, and c is the normalization
constant c = cg,d/ck,d. In (2), the first term is the density
estimate at x with the kernel G
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and the second term is the MS

mh,G(x) =
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i=1 xi · g
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From (4), it can be found that the MS is the difference
between the weighted mean, using the kernel G for weights,
and x, the center of the kernel. According to (2), the MS can be
written as

mh,G(x) =
1
2
h2c

∇̂fh,K(x)

f̂h,G(x)
. (5)
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Equation (5) shows that the MS vector at point x with kernel
G is proportional to the normalized density-gradient estimate
obtained with kernel K, and it thus always points toward the
direction of maximum increase in the density. In other words,
the local mean is shifted toward the region in which the majority
of the points reside [5].

Remote-sensing imagery is typically represented as a spatial-
range joint feature space. The spatial domain denotes the
coordinates and locations for different pixels, and the range
domain represents the spectral signals for different channels.
The multivariate kernel is defined for joint density estimation

K(x) =
C

h2
sh

p
r

Π
u∈{s,r}

k

(∥∥∥∥xu

hu
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2
)

(6)

where C is a normalization parameter and hs and hr are
the kernel bandwidths for spatial and range subdomains. The
dimensionality of the joint domain is d = 2 + p (two for spa-
tial domain and p for spectral domain). Based on the earlier
statements, two issues should be addressed when MS analysis
is implemented on remotely sensed imagery. First, due to the
empty-space phenomenon by which most of the mass in a
high-dimensional space is concentrated in a small region of
the space [5], the density should be analyzed along lower
dimensionality. Second, since the MS feature-space analysis is
task-dependent, the kernel bandwidths should be determined by
different applications. Therefore, in this paper, the NMF algo-
rithm is employed for reducing the dimension of hyperspectral
features. On the other hand, two adaptive bandwidth-selection
approaches are proposed by exploiting the separability between
spectrally similar classes and the locally structural features.

B. Hyperspectral Dimension Reduction Using NMF

NMF is a parts-based learning algorithm and is an efficient
decomposition approach for statistical analysis of multivariate
data. This is in contrast to other methods, such as PCA and
vector quantization, which learn holistic, not parts-based, repre-
sentations [8]. NMF is distinguished from the other methods by
its use of nonnegativity constraints. These constraints lead to a
parts-based representation because they allow only additive, not
subtractive, combinations. Given a nonnegative matrix V , the
task of NMF is to find two matrices W and H with nonnegative
elements such that

V ≈ WH. (7)

One natural way to solve the NMF problem is to formulate an
optimization problem by minimizing the distance between V
and WH

minimize f(W,H) = ‖V − WH‖
subject to W ≥ 0 H ≥ 0. (8)

The constrained problem is resolved by an iterative learning
algorithm that preserves the nonnegative property of W and
H and also constrains the columns of W to sum to unity.
Presumably, the columns of W represent the latent variables,

i.e., physically meaningful nonnegative “parts” of the under-
lying data. The parts-based characteristic has found NMF a
wide range of applications in data analysis, dimensionality
reduction, and feature extraction [14]. In this paper, NMF is
used for preprocessing of MS analysis and feature extraction
from hyperspectral data. Detailed reviews of the algorithm can
be found in [8].

C. Adaptive Bandwidth Selection for MS Analysis

The major challenge for applying the MS algorithm
to remote sensing is that the bandwidths in the spa-
tial and spectral domains need to be adaptively deter-
mined. In [19], the spatial-domain bandwidth is set to hs =
max{4,min{height, width}/100}, and the spectral domain
window width is hr = 5. In [6], Fukunaga proposed that the
bandwidth-selection technique should be related to the stability
of the decomposition. The bandwidth is taken as the center
of the largest operating range over which the same number of
clusters are obtained. In [20], Comaniciu proposed a variable-
bandwidth technique that imposes a local structure on the
data to extract reliable scale information. The local bandwidth
is obtained by maximizing the magnitude of the normalized
MS vector. However, finally, since in most of the cases the
MS-based decomposition is task-dependent, the information
provided by a user or by a specific problem should be used to
control the kernel bandwidth. Therefore, in this paper, we pro-
pose two algorithms to adaptively select bandwidth parameters
for remote-sensing image classification and object recognition.
One is based on the separability in feature space, and the other
exploits local homogeneity.

1) Algorithm 1: Separability-Based Bandwidth Selection:

1) Define a set of bandwidths {hs(1), . . . , hs(t), . . . ,
hs(T )} and {hr(1), . . . , hr(t), . . . , hr(T )} for spatial
and range domains, respectively. Different MS-based fea-
tures are obtained using different bandwidth parameters.

2) The Jeffries–Matusita (JM) distance [21] is used to mea-
sure the separability of the feature space with different
bandwidths. The values of the JM distance indicate how
well the selected class pairs are statistically separate. A
high value indicates that the feature space can be well
separated, while a low value indicates that the feature
space is not well separated. The JM index was originally
designed for a two-class problem

Jij =
∫
x

[√
p(x/Ci) −

√
p(x/Cj)

]2

dx (9)

where p(x/Ci) and p(x/Cj) are the conditional PDFs of
feature vector x for classes Ci and Cj , respectively. In
this paper, a multiclass JM index is used to measure the
separability [22]

J =
C∑

i=1

C∑
j>i

√
p(Ci)p(Cj)J2

ij (10)
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where p(Ci) and p(Cj) are the a priori class proba-
bilities. It is worth noting that, in this paper, the JM
index is computed between the least separable class
pairs (spectrally similar classes). For the set of spatial
bandwidths, the corresponding JM indexes are written as
(J(1), . . . , J(t), . . . J(T )).

3) The optimal bandwidth values are automatically deter-
mined when the JM distances stably increase to high
values. This criterion is defined as

|J(t + 1) − J(t)| < ε
|J(t + 2) − J(t + 1)| < ε

〉
⇒ hs = hs(t) (11)

where ε is a small positive constant (in this paper, 0.015).
4) Repeat 2) and 3) for the range scales {hr(1), . . . , hr(t),

. . . , hr(T )} to select the suitable range bandwidth hr.

2) Algorithm 2: Local Homogeneity-Based Bandwidth
Selection: The basic idea of this algorithm is to search for the
latent modes in a homogeneous area. To this end, the pixel-
shape index (PSI) [23] is used to measure the spatial structures
and estimate the spatial bandwidth for each pixel. PSI is com-
puted pixel by pixel by searching along a predetermined num-
ber of equally spaced lines (direction lines) radiating from the
central pixel. It aims to examine the context of each pixel, and
its value represents the spatial dimensions of groups of spec-
trally similar connected pixels. D-direction lines can be deter-
mined for each pixel xi, and the direction-lines histogram is de-
fined as H(x) : {x ∈ I|[L1(x), . . . Ld(x), . . . LD(x)]}, where
Ld(x) is the length of the dth direction line. The PSI-based
bandwidth estimation can be modeled using an improved ver-
sion of (1)

f̂K(x) =
ck,d

n [h(x)]d

n∑
i=1

k

(∥∥∥∥x − xi

h(x)
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2
)

with

2h(x) + 1 = PSI(x) =
1
D

D∑
d=1

Ld(x) (12)

where h(x) denotes the bandwidth for each estimation point x.
In such way, the spatial scale is determined according to the av-
eraged diameter of the homogeneous region around the current
point. In (12), it should be noticed that PSI denotes the diameter
of the homogeneous region, and h(x) is the radius.

Comparing algorithms 1 and 2, the first one selects the
optimal parameters for the whole image according to class
separability, and the other one chooses the suitable parameter
for each estimation point according to local structure and
homogeneity.

III. MS-BASED CLASSIFICATION SYSTEM

MS is an efficient spatial-feature-extraction approach that is
capable of delineating arbitrarily shaped clusters due to its non-
parametric nature. It can exploit contextual homogeneity and
reduce spectral variation in a local area and, at the same time,
preserve edge and detailed information. This characteristic has

Fig. 2. Feature images and classification results for different algorithms.
(a) Texture test image and the result of spectral classification. (b) GLCM feature
image and its classification result. (c) OWT feature image and its classification
result. (d) FNEA segmentation image and its classification result. (e) MS
segmentation image and its classification result.

found MS a potential tool of spatial feature extraction and
segmentation/classification for high-resolution imagery. The
proposed MS-object-based classification algorithm consists of
the following steps.

1) Let x = {xb}B
b=1 (x ∈ I) be the input of dimensionally

reduced hyperspectral data with I representing the whole
image and B the number of spectral channels. Let y =
{yb}B

b=1 be the values at point x after the MS procedure.
2) Initialize j = 1 and y1 = x with j denoting the current

number of MS iterations (1 ≤ j ≤ c). Compute the MS



HUANG AND ZHANG: ADAPTIVE MS ANALYSIS APPROACH FOR OBJECT EXTRACTION AND CLASSIFICATION 4177

Fig. 3. HYDICE experiment 1 with NMF spectral features and test samples. (a) Image for test 1. (b) NMF feature image 1. (c) Test samples 1.

vector until convergence

mh,G(yj) = yj+1 − yj . (13)

The MS vector defines a path leading to stationary
points of the density (i.e., modes), and the kernel in the
MS procedure moves in the direction of the maximum
increase in the density gradient. The MS iterations are
large in low-density regions and small near local maxima.
We define y = yc, where yc represents the weighted mean
in the convergence point y

y = yc =

∑
xi∈S(yc)

xi · g
(∥∥∥yc−xi

h(yc)

∥∥∥2
)

∑
xi∈S(yc)

g

(∥∥∥yc−xi

h(yc)

∥∥∥2
) (14)

where S(yc) represents the set of points satisfying the
condition dist(xi, yc) < h(yc) with the function dist(·)
being the distance between two vectors.

3) The segmentation results are obtained by postprocessing
of the MS procedure. The modes at a distance less than
the kernel bandwidth are fused, the one corresponding
to the highest density being chosen (i.e., the significant
mode). Each image object is the set of points that con-
verge to the same significant mode.

4) Calculate the averaged values of pixels in each object at
band b: zb, and let Cl (1 ≤ l ≤ L) be an information class
in an image. Accordingly, x = {xb}B

b=1 and z = {zb}B
b=1

represent pixel-based and object-based feature vector for
each classification unit. The classification rule can be
written as follows:

Pixel-based classification :

x ∈ Cl ⇔ Cla(x) = Cl (15)

Object-based classification :

z ∈ Cl ⇔ Cla(z) = Cl (16)

where Cla(·) is the decision result using a classifier.

TABLE I
NUMBERS OF TRAINING AND TEST SAMPLES FOR

THE TEST IMAGE 1 IN THE DC DATA SET

An experiment of texture segmentation is provided in this pa-
per to demonstrate the performance of MS for high-resolution
remotely sensed imagery. A QuickBird true-color image of
Beijing with six different texture features is employed for this
test. Fig. 2(a) shows a mosaic of the six different land-cover
types, coded as C1 to C6 from left to right and then up to
bottom. C1, C2, and C3 are woodlands, water body, and bare
soil, respectively. C4 and C6 are different kinds of crops, and
C5 is grassland. C3 and C4 are spectrally similar, and C1, C5,
and C6 are similar. Five algorithms are used and compared for
recognition of the texture image: spectral classification, gray-
level cooccurrence matrix (GLCM) [15], overcomplete wavelet
transform (OWT) [16], FNEA segmentation [17], and the
MS-based approach. The results are shown in Fig. 2.

In Fig. 2, results (a), (b), and (c) are obtained by supervised
classification of the respective feature images, while results
(d) and (e) are computed using unsupervised segmentation
with six clusters. The spectral classifier in (a) shows obvious
misclassification because of similar spectral responses between
different classes, and pepper–salt effect can be observed due to
the pixel-based approach. GLCM and WT are commonly used
spatial-feature measures in remote sensing and have proven
to be efficient for texture recognition [18]. However, their
disadvantages are apparent when they are applied to high-
spatial-resolution images. The moving window sizes may not
favor all the land-cover types, and usually, they have blur effects
in border regions and cannot delineate accurate results at the
boundaries of different land-cover units. Much better results are
obtained in (d) and (e), although an unsupervised classification
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Fig. 4. (a) and (b) Relationship between the multiclass JM index and the spatial and range bandwidths, respectively. (c) and (d) Classification accuracies for
different spatial and range parameters, respectively. It should be noticed that the statistical results in (a) and (c) are obtained with different spatial bandwidths
while keeping hr = 16, and results in (b) and (d) are obtained with different range bandwidths while keeping hs = 5.

Fig. 5. PSI histogram for test area 1.

is utilized, which shows that the object-based method is a
better alternative to the traditional pixel-based methods for
high-resolution data. It is worth noting that MS-based method
achieves nearly perfect segmentation, and it accurately locates
edge pixels and homogeneous areas. This experiment shows the
potential of MS for object-based analysis.

IV. EXPERIMENTS, ANALYSIS, AND COMPARATIVE STUDY

The objective of the experiments is to apply MS analysis
to object extraction and classification for HSSR data and to
conduct a comparative study between the MS-based approach,
eCognition-based classification [9], and the multiscale DMP
algorithm [1].

A. Study Area

The experiments are conducted on two hyperspectral data
sets. One is the hyperspectral digital-imagery collection ex-

Fig. 6. (a)–(d) Classification maps obtained using spectral classification
(OA = 89.4%), DMP features (OA = 93.4%), FNEA approach (OA =
89.6%), and MS-based approach (OA = 97.2%), respectively. Some detailed
results are highlighted in black rectangles.

periment (HYDICE) airborne hyperspectral data flight over
the Mall in Washington, DC [24]. In the 0.4–2.4-μm region,
210 bands were collected of the visible and infrared spectrums.
The water-absorption bands were then deleted, resulting in
192 channels. This data set contains 1280 scan lines with
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307 pixels in each scan line. It totals approximately 150 MB.
The other is a flight over the West Lafayette campus of
Purdue University [24]. The hyperspectral data were collected
on September 30, 1999 with the airborne hyperspectral mapper
(HYMAP) system, providing image data in 126 spectral bands
in the visible and infrared channels (0.4–2.4 μm).

B. Experiments for Washington, DC, Data 1

Two subsets of the DC data are shown in Figs. 3(a) and 7(a).
The desired information classes are Roads, Grass, Water, Trails,
Trees, Shadow, and Roofs. The DC data set is a challenging
one to analyze for several reasons. First, classes are complex.
There is a large diversity in the materials used in construct-
ing rooftops, and consequently, no single spectral response is
representative of the class Roofs. Second, Roofs, Roads, and
Trails are spectrally similar in that they may be made of similar
materials. At the same time, Shadow and Water are quite similar
so that they cannot be discriminated effectively using spectral
signals. Third, the data were collected during the dry season;
most lawns are not well grown, and as a result, the classes Grass
and Trails are difficult to differentiate, since some areas of grass
are nearly bare soil, which is spectrally similar to the gravel of
Trails.

The first test data are shown in Fig. 3(a). The training and
test samples are listed in Table I, and the test regions are
shown in Fig. 3(c). Fig. 3(b) shows the 3-D NMF feature
image (B = 3), which is extracted from the 192-channel hy-
perspectral data. The least separable class pairs are selected
as follows: Trails–Roofs, Roads–Shadow, and Grass–Trees due
to their similar spectral responses. The optimal bandwidths are
determined as follows: hs = 5 and hr = 16 according to (11).
The multiclass JM indexes [(10)] as a function of different
spatial and range bandwidths are shown in Fig. 4.

From Fig. 4(a), it is shown that a small spatial window (e.g.,
hs = 2) leads to a low JM index. MS is a probability-density-
estimation approach, and hence, a very small window size
is not reasonable for statistical analysis. When hs increases,
the feature space becomes more separable, and the JM values
become stable with hs ≥ 5. It is worth noting that, when larger
window sizes are used for spatial bandwidths, the JM distance
fluctuates and does not improve much. Considering that more
convergence time is needed for a larger spatial bandwidth,
therefore, the parameter selection is a tradeoff between robust
estimator and computational load. The Algorithm 1 is an ef-
ficient approach to address this problem because it searches
for the optimal parameter by computing the JM indexes from
small bandwidths to large ones until the separability becomes
stable. Additionally, the variable bandwidth selection using
Algorithm 2 is shown in Fig. 5, where the PSI histogram for
the test image 1 is shown. It can be found that the most frequent
PSI values are between 10.0 and 11.2, corresponding to hs = 5.

Fig. 3(a) is classified with different parameters to test
the bandwidth-selection algorithms. The classification results
are evaluated using two statistical measures, overall accuracy
(OA) and Kappa coefficient, based on the confusion matrix.
Results are shown in Fig. 4(c) and (d) for different spa-
tial and range parameters, respectively. The experimental re-

TABLE II
CLASSIFICATION ACCURACIES FOR FNEA AND MS APPROACHES

WITH DIFFERENT NUMBERS OF OBJECTS

TABLE III
CLASS-SPECIFIC ACCURACIES FOR THE FOUR

CLASSIFICATION MAPS SHOWN IN FIG. 6

sults are interesting in that the bandwidths (hs = 5, hr = 16)
selected by Algorithm 1 achieve the highest accuracy (97.4%
for OA and 0.968 for Kappa). It can be seen that larger
bandwidths do not necessarily result in better results due to
the oversmoothed effects for larger windows. The figure also
shows that the multiclass JM index is effective in choosing
the appropriate parameters. On the other hand, the accuracies
for the PSI-based bandwidths (Algorithm 2) are 97.2% for OA
and 0.965 for Kappa. In spite of slightly lower accuracies, the
PSI approach succeeded in determining proper bandwidths for
each pixel based on locally structural information. The PSI
histogram for data set 1 is shown in Fig. 5, and its classification
map is shown in Fig. 6(d).

Four different features are compared in Fig. 6. Fig. 6(a)–(d)
is obtained using NMF-based spectral classification, 21-D DMP
features (including 18-D morphological profiles and three-band
NMF features), FNEA-based classification, and the proposed
MS-based approach. The dimensions of FNEA and MS fea-
tures are both three. All the features are classified using the
SVM classifier with the radial-basis-function (RBF) kernel
[13], which has been proven effective in a number of different
classification problems [10].

In Fig. 6, the MS-based classification obtained the best
results in both accuracies and visual interpretation. In these
maps, two spectrally similar class pairs, Roofs–Trails and
Grass–Trees, are focused on. From Fig. 6(a), it is shown that
the pixel classification results in obvious pepper and salt ef-
fects in homogeneous regions such as roads, grass lands, and
roofs. Furthermore, pixel-based method cannot discriminate
the spectrally similar classes. The DMP algorithm achieved
good results except for some misclassifications between Grass
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Fig. 7. HYDICE experiment 2 with NMF spectral features and test samples (the legend is the same as that in Fig. 3). (a) Image for test 2. (b) NMF feature image 2.
(c) Test samples 2.

and Trees because it integrates multiscale structural fea-
tures and multispectral information. It should be noticed
that the spectral classification, FNEA-based classification, and
MS-based approach only employ 3-D features, while the DMP
algorithm includes 21-D features. In order to evaluate FNEA
and MS approaches roundly, their classification accuracies with
different segmentation scales are compared in Table II.

From Table II, it is shown that the MS approach outper-
formed FNEA when images were segmented with similar
scales. Furthermore, the CPU time for segmentation of the MS
approach is comparable or less than that of FNEA. The MS
classification provides stable accuracies with OA higher than
93.5% and Kappa larger than 0.92. FNEA segmentation is a
hierarchical clustering technique that divides the data based on
homogeneity, while MS is a clustering approach according to
local maxima of the PDF. The experimental results for test
area 1 show the superiority of the MS approach for object-
based classification. This conclusion is also verified in the class-
specific accuracies of the maps shown in Fig. 6, which are
provided in Table III (AA denotes the averaged accuracies of
different classes).

C. Experiments for Washington, DC, Data 2

The other subset of HYDICE DC data are tested for the
proposed method and the comparative study. The test data 2
is shown in Fig. 7, and the training and test samples are listed
in Table IV. The spectrally similar class pairs in this test
area include Roads–Shadow, Water–Shadow, and Trails–Roofs,
and they are selected for the bandwidth estimation using
Algorithm 1. The relationships between the multiclass JM
distance and the bandwidth values are shown in Fig. 8(a) and
(b), respectively.

According to (11), the optimal bandwidths are set to hs = 4
and hr = 16. From Fig. 8, it is shown that the range bandwidths
influence the JM indexes and classification accuracies very
much but the spatial bandwidths do not. In Fig. 8(d), it is shown
that there is a sharp increase of OA from hr = 15 to hr = 16
(87.8%–98.4%) and then the accuracies become invariable, and
it is interesting to see that, in Fig. 8(b), there is also an obvious
increase of JM distance from hr = 15 to hr = 16 (1.25–1.35),
and then, the JM indexes become stable. The results from the

TABLE IV
NUMBERS OF TRAINING AND TEST SAMPLES FOR

THE TEST IMAGE 2 IN THE DC DATA SET

two data sets show that the multiclass-JM-index-based algo-
rithm can detect the suitable range of bandwidths. The JM index
is an efficient task-dependent approach for adaptive bandwidth
selection, since it considers the separability of spectrally similar
class pairs.

Fig. 9 shows the relationship between bandwidth and the
number of segmented objects for the two data sets. It can
be observed that the number of objects tends to be stable
when spatial bandwidth increases. This is because the spatial
bandwidth represents the local variations near a significant
mode (maxima of PDF), and its value determines the number
of potential modes. That is the reason why some bandwidth-
selection techniques are related to the stability of the decompo-
sition, and the bandwidth is taken as the center of range over
which the same number of clusters is obtained. In this paper,
we do not employ this strategy for bandwidth selection, since
the proposed JM measure is more effective for classification,
which is a task-dependent problem. From Fig. 9(c) and (d), we
can see a nearly linear descent of the number of objects with
increasing range bandwidths, and the two curves do not show
a stable tendency even when the number of objects decreases
from 11 000 to 2500. Therefore, the bandwidth in the range
domain cannot be determined according to the stability of the
decomposition. In this paper, we consider the range bandwidth
as a scale factor for classification and utilize the JM measure
for an adaptive estimation.

Again, the classification maps for the four different features
are compared. Fig. 10(a)–(d) are obtained using NMF-based
spectral classification, 21-D DMP features, FNEA approach,
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Fig. 8. (a) and (b) Relationship between the multiclass JM index and the spatial and range bandwidths, respectively. (c) and (d) Classification accuracies for
different spatial and range parameters, respectively. It should be noticed that the statistical results in (a) and (c) are obtained keeping hr = 16, and results in
(b) and (d) are obtained keeping hs = 4.

Fig. 9. (a) and (b) Spatial bandwidths as the function of the number of segmented objects for DC data sets 1 and 2, respectively. (c) and (d) Relationship between
the range bandwidths and the number of objects for data sets 1 and 2, respectively.

and the MS-based classification. SVM classifier with RBF ker-
nel is used for all the feature sets. It is worth noting that the PSI-
based bandwidth selection is used for the MS procedure, and
adaptive parameters are determined for each pixel, which leads
to 6558 objects. For a fair comparison, the FNEA algorithm is
implemented for segmentation with 6533 objects. From Fig. 10,
it can be observed that the spectral classification cannot dis-
criminate the spectrally similar classes such as Trails–Roofs and
Water–Shadow. The result of high-dimensional DMP features,
which combine spectral and structural information, obviously
improves the spectral method. Comparing the results of DMP

and MS, it can be found that the MS approach is more effective
in delineating the shape and structures and avoids pepper and
salt effects. Table V is provided to evaluate FNEA and MS
approaches, and their classification accuracies with different
numbers of objects are compared. The results in Fig. 10 and
Table V show that the MS is a more robust and efficient
approach for object-based analysis than FNEA.

The class-specific accuracies are shown in Table VI. It can
be seen that the proposed MS approach obtained the highest
accuracies for all the information classes. It concludes that the
MS-based approach can exploit the rich spectral and spatial
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Fig. 10. (a)–(d) Classification maps obtained using spectral classification
(OA = 85.7%), DMP features (OA = 95.8%), FNEA approach (OA =
87.6%), and MS-based classification (OA = 98.4%), respectively. Some
detailed results are highlighted in black rectangles.

TABLE V
CLASSIFICATION ACCURACIES FOR FNEA AND MS APPROACHES

WITH DIFFERENT NUMBERS OF OBJECTS IN TEST 2

TABLE VI
CLASS-SPECIFIC ACCURACIES FOR THE FOUR

CLASSIFICATION MAPS SHOWN IN FIG. 10

information in HSSR data at the same time, and it is suit-
able for different objects and classes with different scales and
sizes.

D. Experiments for Purdue Campus Data Set

Another HSSR data set of the HYMAP campus is tested
in order to verify that the algorithm performs well in a sta-
ble manner. Three-dimensional spectral features are extracted
from the original 126-bands HYMAP data [Fig. 11(a)], and
they are used for basis images of spatial feature extraction
and object-based classification. Four features are compared:
spectral feature, FNEA approach, combination of spectral and
spatial information [23], and the MS-based method. Table VII
provides the numbers of training and test samples, and Fig. 11
shows their classification maps. The class-specific accuracies
are listed in Table VIII. It should be noted that the numbers
of segmented objects are, respectively, 15 228 and 15 361 for
FNEA and MS approaches for a fair comparison.

From Fig. 11 and Table VIII, it can be found that the spectral
method cannot achieve a satisfactory classification, particularly
for some spectrally similar classes such as Roads and Roofs.
The purely spectral classification was improved when spatial
information is added in the feature space. The combination of
NMF images and PSI features obtained higher accuracies as
compared to the spectral approach. The improvements in AA
and OA are 7.8% and 9.0%, respectively. As for the object-
based method, MS outperformed FNEA for all the information
classes, and the respective improvements in AA and OA are
4.2% and 3.8%. In order to further compare the four algo-
rithms, we extract the road information from the four maps
shown in Fig. 11, and their results are shown in Fig. 12. The
road extraction is based on the classification map, and the
postprocessing includes centerline extraction and connected
component analysis (CCA). The road centerline is extracted
by performing a thinning algorithm on the binary road objects,
and CCA is then used to remove small branches shorter than
a user-defined threshold. The results in Fig. 12 show that the
MS-based approach obtained the most accurate road informa-
tion, and the roads shown in Fig. 12(d) appear more continuous
and regular, and most of the noise segments are deleted.

V. CONCLUSION

This paper proposed a novel MS system for urban mapping
using hyperspectral imagery with high spatial resolution. MS
is a robust feature-space-analysis approach that can effectively
locate the modes (local maxima of probability density) in the
image. In this paper, it is used for object extraction by consid-
ering its advantages to the hierarchical methods (e.g., FNEA).
In order to apply MS to hyperspectral image processing, the
NMF is first used to reduce the dimensionality of the data
and avoid the empty-space phenomenon by which most of the
mass in a high-dimensional space is concentrated in a small
region of the space. Density can then be analyzed within a
lower dimensional subspace. Another key technique for MS
is the adaptive bandwidth selection. In this paper, we pro-
posed two approaches to adaptively determine the bandwidth
parameters. The first is a task-dependent method that exploits
the separability of spectrally similar class pairs (multiclass JM
distance). The optimal bandwidth is selected when the JM index
becomes stable. The other algorithm aims to find the modes in
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Fig. 11. (a) Three-dimensional NMF features. (b) PSI feature image with light colors representing larger values and more homogeneity. The PSI image is
combined with NMF spectral features to produce the classification map in (d) (the algorithm in [23]), and it is also used for adaptive spatial bandwidths of MS
procedure in (f). (c)–(f) Classification results of spectral method (80.5%), combination of spectral and spatial features (89.5%), FNEA (90.6%), and MS-based
approach (94.4%), respectively.

TABLE VII
NUMBERS OF TRAINING AND TEST SAMPLES

FOR THE HYMAP CAMPUS DATA SET

locally homogeneous regions. The bandwidths are determined
using a PSI, which denotes the diameter of the homogeneous
areas.

TABLE VIII
CLASS-SPECIFIC ACCURACIES OF THE FOUR

CLASSIFICATION MAPS SHOWN IN FIG. 11

Three data sets are employed to test the proposed classi-
fication approach. The experiment on the texture image of
QuickBird showed that the MS can achieve perfect segmenta-
tion and locate edge pixels very accurately, compared to other
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Fig. 12. Road extraction results from the four maps shown in Fig. 11. (a)–(d) Road maps extracted from Fig. 11(c)–(f), respectively.

texture-analysis algorithms such as WT, GLCM, and FNEA
segmentation. In the HYDICE, DC experiment, we evaluated
the influence of different parameters for the MS procedure, and
experimental results showed that the JM index was efficient to
detect the optimal range of bandwidths and achieved a satis-
factory classification. A comparative study was made between
DMP [1], FNEA [17], integration of spectral and the spatial
information approach [23], and MS. The MS method obtained
the best results in both statistical accuracies and visual interpre-
tation. It is worth noting that the MS approach outperformed
FNEA, which is the embedded segmentation algorithm in the
eCognition software [17], in all the experiments. The result is
promising and verifies the potential of MS for object-oriented
classification. Moreover, the same conclusion is obtained with
the HYMAP campus data set.

Although the MS-based-analysis approach is with good re-
sults obtained, it is still an interesting problem whether the
multiscale or multilevel approach is a better solution for VHR
images. In the future, we also plan to study the relationship
between the dimensionality and MS procedure and make a com-
parison with other classifiers (e.g., Gaussian mixture model).
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