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ABSTRACT
Land surface water mapping is one of the most important remote-sensing
applications. However, water areas are spectrally similar and overlapped
with shadow, making accurate water extraction from remote-sensing
images still a challenging problem. This paper develops a novel water
index named as NDWI-MSI, combining a new normalized difference
water index (NDWI) and a recently developed morphological shadow
index (MSI), to delineate water bodies from eight-band WorldView-2
imagery. The newly available bands (e.g. coastal, yellow, red-edge, and
near-infrared 2) of WorldView-2 imagery provide more potential for
constructing new NDWIs derived from various band combinations.
Through our testing, a new NDWI is defined in this study. In addition,
MSI, a recently developed automatic shadow extraction index from high-
resolution imagery can be used to indicate shadow areas. The NDWI-MSI
is created by combining NDWI and MSI, which is able to highlight water
bodies and simultaneously suppress shadow areas. In experiments, it is
shown that the new water index can achieve better performance than
traditional NDWI, and even supervised classifiers, for example, maximum
likelihood classifier, and support vector machine.
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1. Introduction

Surface water is among the most active and natural earth resources and its changes in time and space
have a profound impact on natural systems and human societies (Famiglietti and Rodell 2013). How-
ever, water resources are undergoing great changes as a consequence of climate changes and human
activities. Therefore, the accurate retrieval and monitoring of surface water is thus crucial for
environmental research as well as for the management of terrestrial ecosystems. Mapping accurately
surface water (Carroll et al. 2009; Feng et al. 2015; Liao et al. 2014) and monitoring timely its
dynamic changes are topics of academic study in a wide range of scientific fields (Craglia et al. 2012).

Remote sensing, as a timely and rapid Earth Observation technique, has become an essential
source of information in surface water and other environmental research. Delineation of water
areas is one of the most important applications of remote sensing, which is significant to water
resource management, flood disaster assessment, and wetland monitoring. Various methods have
been developed to delineate surface water from optical remote-sensing images, which can be divided
into four common categories (Feyisa et al. 2014; Ji, Zhang, and Wylie 2009): (a) single-band thresh-
olding (Bryant and Rainey 2002; Jain et al. 2005), (b) multi-band spectral index (Feyisa et al. 2014;
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McFeeters 1996; Xu 2006), (c) thematic classification (Li and Narayanan 2003; Lira 2006), and (d)
linear unmixing (Rogers and Kearney 2004). Moreover, investigators have made efforts to improve
the accuracy of water extraction by incorporating these different types of methods (Jiang et al. 2014;
Sun et al. 2012). In general, the single-band thresholding method and spectral water index are com-
monly used for delineating water features due to these methods can be calculated simply and con-
veniently (Ryu, Won, and Min 2002).

The spectral water index is designed to highlight water features and suppress non-water infor-
mation, and thus can separate water from non-water by selecting an appropriate threshold value.
A simple two-band ratio method has been commonly used for water extraction from remote-sensing
images, such as normalized difference water index (NDWI) (McFeeters 1996), which utilizes the nor-
malized ratio of green and near-infrared (NIR) bands to delineate water features. To suppress the
noise from built-up areas, Xu (2006) introduced another water index named modified NDWI
(MNDWI) by replacing NIR band with shortwave-infrared (SWIR) band on the basis of NDWI.
However, the selection of an optimal threshold value for the two-band water indexes is a time-con-
suming task. Therefore, a multi-band water index named automated water extraction index (AWEI)
is introduced to provide robust water extraction accuracies with stable threshold values under var-
ious environmental conditions (Feyisa et al. 2014).

In recent years, availability of high-spatial resolution satellite images makes it possible to accu-
rately extract water areas. However, most of the high-spatial resolution remotely sensed images
have only four bands (blue, green, red, and NIR), and the SWIR channel used to compute
MNDWI or AWEI is not provided. In this context, WorldView-2, a new eight-band high-resolution
sensor, is able to provide additional spectral channels (e.g. coastal, yellow, red-edge, and NIR2),
where in particular the coastal band is sensitive to water areas (Puetz, Lee, and Olsen 2009) and
has the potential for water research and bathymetric studies. Consequently, the four new bands
are able to provide more potential to construct more effective water indexes compared to the tra-
ditional ones (Wolf 2012). In addition, image classification method is also used to extract water
area from high-resolution remote-sensing images. An iterative method by constructing adaptive seg-
mented buffers was developed to delineate water body from urban high-resolution imagery (Zhou
et al. 2012). An object-based rule set method combining spectral, geometric, and textural features
was employed to extract water body from WorldView-2 imagery and achieved satisfactory water
extraction results (Chen et al. 2013). However, the selection of an appropriate parameter for
image segmentation is a time-consuming task, which has an important impact on the object-oriented
water extraction result.

More importantly, although progresses have been achieved for water extraction, the confusion
between shadow and water, due to their similar spectral reflectance, is a pending problem for
both high-resolution images (Nath and Deb 2010; Luo et al. 2010; Zhou et al. 2012) and moderate-
and low-resolution images (Feyisa et al. 2014; Jiang et al. 2014; Li, Zhang, and Shen 2013). To our
knowledge, there is no existing water index proposed for high-resolution remote-sensing data, which
can extract water information and at the same time suppress the false alarm of shadow. Thus, the
objective of this paper is to develop a novel water index for WorldView-2 imagery by integrating
the optimized NDWI model by using the morphological shadow index (MSI; Huang and Zhang
2012), which is able to eliminate the shadow information.

The contributions of this study lie in two aspects: (1) to test the performances of different NDWI
models constructed by all possible combinations of WorldView-2 bands, and (2) to create a new
water index (NDWI-MSI) for WorldView-2 imagery, based on the optimized NDWI model and sha-
dow removal.

2. Study areas and data

The study areas are located in the three typical mega cities (i.e. Shenzhen, Hangzhou, andWuhan) of
China (Figure 1). The cities have abundant water resources including rivers, lakes, reservoirs, and
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ponds. The urban areas consist of complex urban features such as built-up areas, vegetation, bare
land, and shadow, which are suitable and challenging to test the performance and robustness of
the proposed water index.

In this study, three WorldView-2 images over the urban areas were used for water extraction to
test the robustness of the proposed method. The detailed parameters of the three images are provided
in Table 1. Figure 1 shows the images as well as the corresponding ground truth references of the
study areas. The ground truth maps were delineated manually based on careful visual interpretation
and a field campaign.

3. Methodology

3.1. Water indexes

NDWI (McFeeters 1996) has been widely used to delineate water areas from remote-sensing images.
NDWI is designed according to the difference of spectral response between green and NIR channels,

Figure 1. (a) Location of the study areas in China; (b), (c), and (d) are WorldView-2 false color images (8, 3, and 2) overlaid with
ground truth references covering Shenzhen, Hangzhou, and Wuhan, respectively.

Table 1. Parameters of the three WorldView-2 images.

Study area Acquisition date Wavelength (nm) Spatial resolution (m) Image size (pixel)

Shenzhen Hangzhou Wuhan 3 November 2010
Not available
26 April 2012

Coastal: 400–450
Blue: 450–510
Green: 510–580
Yellow: 585–625
Red: 630–690
Red-edge:
705–745

NIR1: 770–895
NIR2: 860–1040

2.0 6433 × 5409
2750 × 2454
4179 × 4369
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considering the strong absorption of NIR by water features and the high reflectance of NIR by veg-
etation and soil features (Xu 2006). Therefore, NDWI is defined as the normalized ratio of the rela-
tively high-reflective band (rh) and the low-reflective band (rl):

NDWI = rh − rl
rh + rl

. (1)

WorldView-2 imagery with eight spectral bands (especially newly added four bands) can provide
a new perspective for constructing different NDWIs. To maximize the potential of the eight-band
imagery, four ph bands (coastal, blue, green, and yellow) and three pl bands (red-edge, NIR1, and
NIR2), as well as their respective average values (avg1 (Equation (2)) and avg2 (Equation (3))),
are selected to compute the possible two-band combinations of water indexes for the WorldView-
2 image. Hence, 5 × 4 = 20 NDWI indexes as well as the sum of all NDWIs (NDWI_sum in Equation
(4)) can be computed from the WorldView-2 images (Table 2).

avg1 =
coastal + blue + green + yellow

4
, (2)

avg2 =
red - edge + NIR1 + NIR2

3
, (3)

NDWI sum =
∑n

i

NDWIi, (4)

where NDWIi indicates the ith NDWI and n is the number of water indexes.

3.2. Morphological Shadow Index

In this study, in order to efficiently suppress the false alarms of shadow areas, MSI (Huang and
Zhang 2012), a recently developed automatic shadow detector for high-resolution imagery, is applied
to enhance the traditional NDWI. MSI is constructed by describing the spectral-spatial properties of
shadow using a series of morphological operations. The calculation of MSI is based on the fact that
the relatively low spectral reflectance of shadows and the spatially adjacent buildings can lead to a
high local contrast of shadows. The calculation steps of the MSI are briefly described as follows.

Step 1. Calculation of brightness: the brightness image b is generated by recording the largest value
of each pixel in the available channels, since shadow is dark and has low response in all the spectral
bands.

Step 2. Black top-hat by reconstruction (BTH): It is defined as:

BTH(d, s) = wre
b (d, s)− b, (5)

where DMPBTH (d, s) = |BTH(d, (s+ Ds))− BTH(d, s)| is the closing-by-reconstruction filter, s
and d indicate the length and direction of a linear structuring element (SE), respectively.

Step 3. Differential morphological profiles (DMPs):

DMPBTH (d, s) = |BTH(d, (s+ Ds))− BTH(d, s)|, (6)

Table 2. All possible water indexes for WorldView-2 imagery.

Water indexes rh rl Num.

NDWIs Coastal, blue, green, yellow, avg1 Red-edge, NIR1, NIR2, avg2 20
NDWI_sum NDWI sum =

∑n

i
NDWIi 1
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where DMPBTH can be viewed as a shape spectrum (Huang and Zhang 2012) used to highlight the dark
structures in different scales (smin≤s≤ smax) and directions.Ds is the interval of the scales in the profiles.

Step 4. Calculation of the MSI:

MSI =
∑

d,s DMPBTH(d, S)

D× S
, (7)

where D and S indicate the number of directions and scales for the profiles, respectively. MSI is
defined as the mean of the DMPBTH profiles since shadow shows large BTH values in different scales
and directions. Consequently, shadow areas correspond to large MSI feature values. Readers can
refer to Huang and Zhang (2012) for details about MSI.

The directions (D = 4) of the linear SE were set to 0°, 45°, 90°, and 135° in this paper since our pre-
vious study showed that increase of value of D does not signify improvement of shadow detection
(Huang and Zhang 2012). The scale parameters (smin, smax, andDs) were set to (2, 52, and 5) according
to the spatial resolution (2 m) of images. However, it is actually difficult to choose a suitable value of s
for complex high-resolution urban scenes, since a low value is subject to omission of shadow (see the
box in Figure 2(b)) but a high value may lead to wrong extraction of small-area water bodies (see the
box in Figure 2(c)). Consequently, an appropriate strategy is to define a large value of smax and then
refine the result using shape (e.g. density) and texture features (e.g. homogeneity) to eliminate these

Figure 2. An example showing the results of MSI: (a) is an example image overlaid with reference, (b) and (c) are the MSI feature
images, with the sizes of SE (smin, smax, and Ds) set as (2, 22, and 5) and (2, 52, and 5), respectively, and (d) is the refined result of (c).
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wrongly detected objects from the MSI feature image (Figure 2(d)). It should be noted that homogen-
eity derived from the gray-level co-occurrence matrix is used to eliminate the small-area water bodies
by manually setting the threshold value as .1 considering the texture of water is more homogeneous
than shadow. The density feature is used to remove the elongated water bodies (e.g. rivers) using
the threshold value of .7 since elongated structures are related to lower density value.

3.3. The Proposed Water Index

We can find an optimized band combination for the NDWI defined in Equation (1), based on the
eight-band WorldView-2 imagery. Subsequently, the residual shadow can be further suppressed by
considering the shadow index introduced previously. As shown in Figure 3, in this study, a new water
index combining NDWI and MSI is proposed to accurately delineate water areas fromWorldView-2
imagery. The calculation procedure of the proposed water index consists of the following three steps:

(1) calculation of the optimized NDWI (NDWIoptimal), selected among all the possible band com-
binations of the eight-band WorldView-2 imagery;

(2) refined MSI for shadow extraction;
(3) calculation of the proposed water index for WorldView-2 (NDWIWV-2), by subtracting the sha-

dow components (MSI) from the optimized NDWI:

NDWIWV−2 = NDWIoptimal −MSI, (8)

where the values of NDWIoptimal and MSI are linearly scaled to [0, 1].

Figure 3. Graphical example of the proposed method.
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3.4. Supervised classification methods

To compare the performance of the new index with classification methods, two supervised classifiers
including maximum likelihood classifier (MLC) and support vector machine (SVM) were used for
water extraction in this study. A brief description of the two classifiers is given as follows.

MLC is a parametric classifier which is commonly used for classification of remotely sensed
images. The principle of MLC is based on the assumptions that the input data are Gaussian
(normally) distributed, and the distance between a pixel value and a scaled and variance/covari-
ance-corrected class mean is calculated to obtain the probability that the pixel belongs to one of poss-
ible classes (Strahler 1980). In contrast to other parametric classifiers, MLC has the advantage of
dealing with normally distributed data.

SVM is one of the most popular machine learning algorithms for supervised classification, which
is developed based on the statistical learning theory and structural risk minimization principle (Cha-
pelle, Haffner, and Vapnik 1999). SVM has a high generation performance and can be applicable to
process the high-dimensional data with small training sample set (Gotsis, Chamis, and Minnetyan
2004). SVM has been reported to achieve better performance than the traditional classification
methods (Huang, Davis, and Townshend 2002). However, the choice of the kernel and its parameters
has a significant impact on the output results of SVM. In this study, a grid-search technique using
fivefold cross-validation is employed to find the optimal kernel function parameters for SVM.

4. Result analysis and validation

The experiments were conducted on the three WorldView-2 images covering Shenzhen, Hangzhou,
andWuhan, respectively. The producer’s accuracy (PA), user’s accuracy (UA), and Kappa coefficient
calculated by confusion matrix were used to evaluate the accuracy of water extraction. The threshold
values for water indexes were selected by the receiver operator characteristics curves (Nettleman
1988), which were drawn with the true positive rate (TPR) on the y axis and the false positive
rate (FPR) along the x axis. TPR (also called sensitivity or recall) denotes the proportion of the actual
water pixels which have been correctly retrieved, while FPR (also called false alarm rate) is the pro-
portion of the actual non-water pixels that have been incorrectly classified as water (Fawcett 2006).
The both TPR and FPR values are distributed in [0, 1], which can be defined as Equations (9) and
(10), respectively. The goal of our experiments is to achieve the values of high TPR and low FPR. The
optimal threshold value can be selected as the tangential point of the curve, indicating a trade-off of
TPR and FPR.

TPR =
# of true detected water pixels

total # of water pixels
. (9)

FPR =
# of false detected water pixels
total # of non-water pixels

. (10)

Accuracy scores of various NDWIs constructed by different band combinations for Shenzhen
WorldView-2 imagery are shown in Table 3. It can be seen that the traditional NDWI (based on
green and NIR1 bands, NDWIgreen-NIR1) gives the Kappa coefficient of .559. The Kappa value of
the NDWI computed by coastal and NIR2 (NDWIcoastal-NIR2) is .669, which outperforms other
NDWIs in terms of the accuracy. Table 4 presents the accuracies of water extraction for Hangzhou
WorldView-2 data, and it can be seen that the NDWIcoastal-NIR2 as well as the NDWI constructed by
green and NIR2 (NDWIgreen-NIR2) achieved the highest values of Kappa in comparison with other
NDWIs. The accuracy results of Wuhan WorldView-2 data are demonstrated in Table 5, where
the NDWIgreen-NIR2 and NDWIcoastal-NIR2 obtained better accuracy performance than other NDWIs.

Moreover, in order to further validate the results, we compare the false alarm rate (FPR) of differ-
ent NDWIs when keeping the correctness rate (TPR) value equal to 90%. In this case, lower FPR
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values correspond to small false alarm and better performance. The results of the three study areas
are shown in Tables 6–8, respectively. From the tables, a similar phenomenon can be observed that
the NDWIcoastal-NIR2 and NDWIgreen-NIR2 achieved the best performance with the lowest FPR value.
Especially for Shenzhen WorldView-2 data, the NDWIcoastal-NIR2 reduced the FPR by 4.5% com-
pared to the NDWIgreen-NIR1. In addition, the average Kappa values and FPR values for each band
were also calculated, and the NIR2 band surpassed other bands in terms of their highest accuracies
and lowest FPR values, suggesting the NIR2 band plays an important role in the water extraction of
WorldView-2 imagery. Consequently, the NDWIcoastal-NIR2 or NDWIgreen-NIR2 can be selected as the
optimized NDWI (NDWIoptimal) for WorldView-2 imagery considering the both indexes have the
potential for enhancing the separability of water and non-water pixels.

Although the NDWIoptimal can achieve the highest water extraction accuracy among all the poss-
ible band combinations of WorldView-2 imagery, it fails to remove the false alarms caused by sha-
dow areas due to their high similarity to water in the spectral reflectance. After integrating the
shadow index in this study, quantitative accuracies of the experimental results are reported in Tables
9–11. For Shenzhen WorldView-2 data, compared to the NDWIoptimal, the NDWI-MSI increases the
PA and UA by 26.2% and 8.5%, respectively, by courtesy of the MSI index. Moreover, the Kappa
coefficient increases from .669 to .863, which indicates the proposed method is more effective for
discrimination between water and background, especially by reducing the commission errors of sha-
dow. This phenomenon can be supported by the accuracy results of Hangzhou and Wuhan World-
View-2 data (Tables 10 and 11), where the NDWI-MSI surpassed the optimal NDWI in terms of
accuracies.

In order to further validate the proposed water index, some state-of-the-art supervised classifi-
cation methods (e.g. MLC and SVM) were also carried out for the purpose of comparison. A
grid-search technique using fivefold cross-validation was used to seek the optimal parameters of
SVM with the RBF kernel. Specifically, 1000 water pixels and 1000 non-water pixels were randomly
generated from the ground truth reference for training the two supervised classifiers, and the rest of
samples were used for accuracy assessment. From the Table 9, it can be seen that the Kappa value of
the proposed method surpassed MLC and SVM by .36 and .16, respectively. The accuracy results of
Hangzhou and Wuhan (Tables 10 and 11) also show that the NDWI-MSI obtained better perform-
ance than the two classifiers. It should be kept in mind that MLC and SVM are performed on training
samples but the proposed water index does not need sample collection.

Table 3. Accuracy scores of various NDWIs for Shenzhen WorldView-2 data.

NDWIs

High-reflective band (rh)

Average KappaCoastal Blue Green Yellow avg1

Low-reflective band (pl) Red-edge .538 .448 .504 .429 .500 .484
NIR1 .586 .529 .559 .430 .538 .528
NIR2 .669 .606 .652 .549 .622 .620
avg2 .607 .549 .588 .491 .567 .560

Average Kappa .600 .533 .576 .475 .557
NDWI_sum Kappa coefficient = .564

Note: The bold value indicates the highest accuracy score.

Table 4. Accuracy scores of various NDWIs for Hangzhou WorldView-2 data.

NDWIs

High-reflective band (rh)

Average KappaCoastal Blue Green Yellow avg1

Low-reflective band (rl) Red-edge .942 .943 .933 .965 .948 .946
NIR1 .901 .935 .965 .960 .958 .944
NIR2 .966 .957 .966 .961 .960 .962
avg2 .943 .916 .965 .965 .960 .950

Average Kappa .938 .938 .957 .963 .957
NDWI_sum Kappa coefficient = .962

Note: The bold value indicates the highest accuracy score.
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Furthermore, the results of MLC and SVM were refined with the MSI feature (called MLC-MSI
and SVM-MSI), in order to suppress the false alarms caused by the shadow areas. Accordingly, the
MLC-MSI and SVM-MSI improved the water extraction accuracies compared to the original MLC
and SVM. This results shows that the MSI-based shadow removal is also essential for the supervised
water extraction. The NDWI-MSI achieved the comparable accuracies with SVM-MSI and MLC-
MSI.

The extracted water maps of Shenzhen WorldView-2 data are displayed for a visual inspection in
Figure 4. In order to show the detailed information, three representative areas were selected for com-
parison. It can be seen that some water bodies are omitted in the NDWIoptimal (b). Most of the errors
of MLC (d) and SVM (e) are related to the urban shadow. As observed in (c) and (f), the proposed
method and SVM-MSI achieved the most satisfactory water body maps, due to the removal of sha-
dow areas. The maps of water body extraction for Hangzhou and Wuhan (Figures 5 and 6) show
similar conclusions to the results of the Shenzhen data. It can be found that the high water extraction
accuracies achieved by the NDWI-MSI and SVM-MSI are consistent to the visual results (Figures 5
(c), (f) and 6(c), (f)), where the false alarms caused by shadow areas are less than other methods.

5. Discussions

In the study, various NDWIs constructed by possible band combinations of eight-band WorldView-
2 data were tested, and the optimal NDWI (NDWIcoastal-NIR2 or NDWIgreen-NIR2) was obtained
according to the accuracy results of water extraction from the three test data. To further validate
the reasonability of the results, the spectral response curves of various land cover classes in World-
View-2 imagery are presented in Figure 7, where it can be seen that water absorbs strongly energy at
NIR band and has a relatively high reflectance in coastal and green bands. Therefore, similar to the
principle of the traditional water indexes (McFeeters 1996; Xu 2006), the NDWIoptimal can be calcu-
lated by the normalized ratio of the high-reflectance band (coastal or green) and the low-reflectance
band to separate water pixels from non-water pixels. Moreover, the distributions of the reflectance
values (red-edge, NIR1, and NIR2) in the land cover types are presented in the following box plots
(Figure 8). It can be found that the overlap between water and non-water (indicated by dotted lines)
in the NIR2 band is smaller than that in the red-edge and NIR1 bands. In addition, the existing lit-
erature has reported that the coastal signature is the least absorbed by water in contrast to other

Table 5. Accuracy scores of various NDWIs for Wuhan WorldView-2 data.

NDWIs

High-reflective band (rh)

Average KappaCoastal Blue Green Yellow avg1

Low-reflective band (rl) Red-edge .776 .782 .852 .879 .826 .823
NIR1 .884 .899 .956 .935 .918 .918
NIR2 .969 .941 .975 .968 .962 .963
avg2 .884 .905 .960 .953 .930 .926

Average Kappa .878 .882 .936 .934 .909
NDWI_sum Kappa coefficient = .968

Note: The bold value indicates the highest accuracy score.

Table 6. FPR of various NDWIs when keeping the correctness rate (TPR) value equal to 90% for Shenzhen WorldView-2 data.

NDWIs

High-reflective band (rh)

Average FPR (%)Coastal (%) Blue (%) Green (%) Yellow (%) avg1 (%)

Low-reflective band (rl) Red-edge 10.2 14.8 14.8 43.0 15.0 19.6
NIR1 7.1 9.2 9.3 25.0 9.6 12.0
NIR2 4.8 6.1 5.9 13.5 6.0 7.3
avg2 6.5 8.6 8.2 24.3 8.6 11.2

Average FPR 7.2 9.7 9.6 26.5 9.8
NDWI_sum FPR = 8.4%

Note: The bold value indicates the lowest false alarm rate.
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bands (Anderson and Marchisio 2012), and it is expected to be useful for water research and bathy-
metric studies (Puetz, Lee, and Olsen 2009).

NDWIoptimal may still suffer from the effects of shadow noise despite its higher accuracies in com-
parison to other NDWIs. The index values of NDWIgreen-NIR1, NDWIgreen-NIR2, NDWIcoastal-NIR2,
and NDWI-MSI in the major land cover types are presented in Figure 9, respectively. As shown

Table 7. FPR of various NDWIs when keeping the correctness rate (TPR) value equal to 90% for Hangzhou WorldView-2 data.

NDWIs

High-reflective band (rh)

Average FPR (%)Coastal (%) Blue (%) Green (%) Yellow (%) avg1 (%)

Low-reflective band (rl) Red-edge 2.5 2.4 0.5 0.1 1.3 1.4
NIR1 1.2 0.7 0.1 0.2 0.2 0.5
NIR2 0.1 0.1 0.1 0.1 0.1 0.1
avg2 1.4 0.9 0.1 0.1 0.2 0.5

Average FPR 1.3 1.0 0.2 0.1 0.4
NDWI_sum FPR = 0.1%

Table 8. FPR of various NDWIs when keeping the correctness rate (TPR) value equal to 90% for Wuhan WorldView-2 data.

NDWIs

High-reflective band (rh)

Average FPR (%)Coastal (%) Blue (%) Green (%) Yellow (%) avg1 (%)

Low-reflective band (rl) Red-edge 6.4 6.1 3.7 2.8 4.8 4.8
NIR1 3.5 2.8 0.8 1.5 2.0 2.1
NIR2 0.7 1.4 0.6 0.7 0.8 0.8
avg2 3.5 2.9 0.8 1.0 2.1 2.1

Average FPR 3.5 3.3 1.5 1.5 2.4
NDWI_sum FPR = 0.8%

Note: The bold value indicates the lowest false alarm rate.

Table 10. The accuracies of water extraction for Hangzhou WorldView-2 data set.

Methods PA (%) UA (%) Kappa

NDWI 97.1 96.3 .966
NDWI-MSI 99.1 97.1 .977
MLC 98.1 89.3 .919
SVM 98.0 97.6 .972
MLC-MSI 98.1 98.2 .978
SVM-MSI 98.0 99.2 .982

Table 11. The accuracies of water extraction for Wuhan WorldView-2 data set.

Methods PA (%) UA (%) Kappa

NDWI 98.6 97.1 .975
NDWI-MSI 99.9 99.4 .996
MLC 96.1 93.8 .940
SVM 99.2 92.8 .951
MLC-MSI 96.1 99.9 .977
SVM-MSI 99.2 99.9 .995

Table 9. The accuracies of water extraction for Shenzhen WorldView-2 data set.

Methods PA (%) UA (%) Kappa

NDWI 59.4 79.5 .669
NDWI-MSI 85.6 88.0 .863
MLC 95.9 36.7 .503
SVM 92.7 58.4 .702
MLC-MSI 90.9 77.1 .827
SVM-MSI 88.3 88.9 .881
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Figure 4. Results of water extraction for Shenzhen WorldView-2 data set: (a) false color image (8, 3, and 2) overlaid with ground
truth reference; (b) NDWI; (c) proposed method; (d) MLC; (e) SVM; and (f) SVM-MSI.
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Figure 5. Results of water extraction for Hangzhou WorldView-2 data set: (a) false color image (8, 3, and 2) overlaid with ground
truth reference; (b) NDWI; (c) proposed method; (d) MLC; (e) SVM; and (f) SVM-MSI.
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in the figure, there are overlaps in the three NDWIs values between water and shadow (a–c), which
indicates the NDWIs cannot completely distinguish water from shadow pixels, especially for high-
resolution imagery. Therefore, MSI is introduced to the new water index, in order to eliminate the
false alarms caused by shadow (d).

Figure 6. Results of water extraction for Wuhan WorldView-2 data set: (a) false color image (8, 3, and 2) overlaid with ground truth
reference; (b) NDWI; (c) proposed method; (d) MLC; (e) SVM; and (f) SVM-MSI.
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In addition, selection of an appropriate threshold value for the water index has an important
impact on the water extraction results. The threshold values vary with the complicated environ-
mental conditions and various imaging conditions. In urban high-spatial resolution imagery, the
presence of shadow areas cast by buildings and trees is the primary noise source affecting the selec-
tion of threshold values. In this research, the MSI was introduced to suppress the effects of shadow,
and NDWI-MSI was constructed to maximize the separability of water and non-water features.
Therefore, a peak-valley method of histogram segmentation scheme (Julie et al. 2007) is used for
threshold selection of the new index.

In the experiments, the three WorldView-2 images with various urban environments and surface
water conditions were used to test the new water index, and satisfactory results of water extraction
were achieved in all the cases. However, it should be noted that the influence of seasonal variations or
biochemical property of water bodies on the reflectance response of surface water cannot be ignored,
which may affect the performance of the new water index and accuracies of water extraction.

6. Conclusions

In this paper, we proposed a novel water index for high-resolution WorldView-2 imagery combining
a new NDWI and MSI, which is able to delineate accurately water bodies and simultaneously sup-
press the false alarms caused by shadow areas. Firstly, in order to develop adequately the potential of
theWorldView-2 bands, various NDWIs were computed by possible combinations of the eight-band
data. The NDWI constructed by the normalized ratio of coastal-NIR2 or green-NIR2 bands outper-
formed other NDWIs in terms of the accuracies of water extraction. The commission errors of water

Figure 7. Spectral responses of various land cover classes in eight-band WorldView-2 imagery.

Figure 8. Reflectance distributions of various land cover classes. Each box plot shows the location of the 5th, 25th, 50th, 75th, and
95th percentiles using horizontal lines (boxes and whiskers).
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extraction are mainly related to shadow areas due to their similar spectral characteristics. Thus, MSI
was used to eliminate the noise caused by shadow. Three WorldView-2 data sets covering Shenzhen,
Hangzhou, and Wuhan were used to validate the effectiveness of the proposed method. The exper-
imental results revealed that the accuracy scores of the new index were higher than the original
NDWI, and the NDWI-MSI was able to effectively reduce false alarms in terms of the visual inspec-
tion. Moreover, compared with the supervised machine learning algorithms (e.g. MLC and SVM),
the NDWI-MSI achieved higher accuracy and also showed significant superiority. In general, the
proposed water index is an effective water extraction method, which can be applicable as a routine
tool for water body detection and monitoring for high-resolution images.
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