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Abstract. Spectral unmixing aims at finding the spectrally pure constituent materials (also called
endmembers) and their respective fractional abundances in each pixel of the hyperspectral image
scene. One important issue in hyperspectral data unmixing is the initialization of endmembers.
Most unmixing methods initialize their endmembers by randomly selecting a specified number
of pixels from the data or by vertex component analysis, which limits their performance in
practice. We propose an endmember initialization method for hyperspectral data unmixing.
Our initial endmembers include some of the true endmembers, which improves the accuracy
of hyperpspectral unmixing effectively. The experimental results on both synthetic and real
hyperspectral data illustrate the superiority of the proposed method compared with other
state-of-the-art approaches. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)
[DOI: 10.1117/1.JRS.10.042009]
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1 Introduction

Owing to the limitation of spatial resolution together with microscopic material mixing and multi-
ple scattering, an observed pixel in a scene of hyperspectral imagery (HSI) may contain distinct
materials, resulting in the so-called mixed pixels. To some extent, the existence of mixed pixels will
restrict the exploitation, processing, and applications of HSI in practice. To alleviate this problem,
hyperspectral unmixing is often incorporated into the data processing chain. Technically, spectral
unmixing aims at decomposing the measured spectrum of each mixed pixel into a collection of
constituent spectral (endmembers) and a set of corresponding fractions (abundances).1

Conventional unmixing techniques based on a linear mixing model (LMM) can be classified
into two categories: the geometrical and statistical approaches.2 Classical geometrical kinds of
approaches further include pure pixel-based and minimum volume-based algorithms.
Specifically, the pure pixel-based algorithms, such as the well-known N-finder algorithm
(N-FINDR)3 and vertex component analysis (VCA),4 assume that there is at least one pure
pixel per endmember in the observed data. However, this requisite may not hold in many
real scenarios. The minimum volume-based algorithms (e.g., minimum volume simplex
analysis5 and minimum volume enclosing simplex6) tend to seek a mixing matrix W that min-
imizes the volume of the simplex defined by its columns. These geometrical methods start with
endmember extraction and then perform abundance estimation by decomposing the mixed pixels
with the nonconstrained or constrained least square methods.7 Nevertheless, the abundance
estimation is highly dependent on the accuracy of endmember extraction.
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The statistical kinds of approaches exploit the statistical properties of the data to simulta-
neously obtain the endmembers and their corresponding abundances. Two typical examples
are independent component analysis (ICA)8,9 and nonnegative matrix factorization (NMF).10

Specifically, ICA treats hyperspectral unmixing as a blind source separation problem and sup-
poses the spectral components to be mutually independent. But this assumption goes against the
abundance sum-to-one constraint (ASC), which degrades the performance of ICA in unmixing.
Alternatively, NMF decomposes hyperspectral data into two nonnegative matrices, respectively,
corresponding to the endmember matrix and the abundance matrix. The underlying nonnegative
constraint automatically ensures the nonnegativity of the estimated abundance fractions.
However, due to the nonconvexity of the objective function, NMF may find local minima as
the final result. To address this issue, various extensions have been proposed by imposing certain
constraints on NMF. These include the use of the smoothness constraint on both endmembers
and abundances,10 the minimum volume constraint,11 and the piecewise smoothness and sparse-
ness constraints.12

For most statistical-based unmixing approaches, proper initialization of endmembers can
help to avoid being trapped in local minima. Reference 13 investigated the impact of initializa-
tion on endmember extraction, showing that endmember extraction algorithms are sensitive to
initial endmembers and that a properly selected set of initial endmembers can improve the
searching process significantly. As we know, random initialization and VCA initialization
are among the most popular choices for endmember initialization.14 The latter provides a
more accurate initial point by utilizing VCA to identify the endmembers from the real-observed
HSI. In addition, N-FINDR results have been used as endmember initialization to decompose
mixed pixels in Ref. 15, which has proven to be effective. However, the accuracy of the extracted
endmembers by VCA and N-FINDR will be affected by many situations (e.g., the absence of
pure pixels/spectra or the HSI with a high mixture).

An improved version of NMF unmixing (NMFupk)16 employs known materials to formulate
the prior knowledge of spectral signatures. The spectral signatures of the known materials, which
are associated with the true endmembers, can be obtained from the spectral library and are
learned in advance by experiences. The more empirical evidence that is given, the more effective
unmixing results can be. However, in many real applications, very limited prior information is
available, which limits the performance of this method.

Sparse hyperspectral unmixing aims at finding an optimal set of endmembers in the spectral
library that can best model the mixed pixels in the scene.17 However, the noise in hyperspectral
data and the high mutual coherence of a spectral library may deteriorate its performance. In
practical applications, the endmembers estimated by sparse unmixing methods are more than
the true endmembers or are not true endmembers. Identifying true endmembers in the estimated
endmembers is very necessary and useful.

In this paper, we propose an initialization method for hyperspectral data unmixing [named
vertex component analysis and norm change (VCANC)]. Our proposed VCANC method ini-
tializes the endmembers from both real HSI and the spectral library. First, VCA14 is utilized to
extract the endmembers from the observed HSI. Simultaneously, we propose a method called
norm change (NC) to locate the endmembers from the spectral library by exploiting the change
of nuclear norm of the estimated sparse abundance matrix. Then we compare the spectra of
endmembers obtained by NC with those extracted from the observed HSI by VCA. Finally,
to obtain the initial endmembers for postspectral unmixing, we replace some extracted endmem-
bers obtained by VCA with the estimated ones by NC that are similar to each other. The main
contributions of the paper can be summarized as follows.

• We propose to evaluate the norm change of an abundance matrix for identifying the
endmembers from the spectral library. The initial abundance matrix obtained by
a sparse unmixing method is very sparse (i.e., many of its rows are zero vectors).
The main idea of locating endmembers from a spectral library is because the nuclear
norm of an abundance matrix is changed a lot when a row associated with the true
endmember is deleted, whereas it does not change noticeably after deleting any of
the other rows.

• In addition, the initial endmembers obtained by the proposed VCANC include not only
true endmembers (from the spectral library), but are also related to the real hyperspectral
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scene (by VCA), which overcomes both limitations of sparse unmixing and unsupervised
VCA.14 This way, our proposed initialization method enables better performances for the
hyperspectral data unmixing.

Numerical experiments on both synthetic and real data demonstrate the efficiency of the
proposed VCANC algorithm. This paper is organized as follows. In Sec. 2, we briefly review
LMM and NMF. In Sec. 3, we detail our proposed methods on both endmembers identification
from the spectral library (i.e., NC) and the final endmember initialization method (i.e., VCANC).
In Sec. 4, experimental results on simulated and real hyperspectral data are given. Finally, the
conclusions of the paper are drawn in Sec. 5.

2 Background

In this section, we will briefly introduce two basic concepts: LMM and NMF. The former lays a
solid foundation for linear spectral unmixing techniques, while the latter is utilized as an example
of statistical-based unmixing approaches to testify to the proposed endmember initialization
algorithm.

2.1 Linear Mixing Model

The proposed method is based on the LMM, where each pixel is described as a linear combi-
nation of endmembers with their associated abundances. Formally, the LMM was given by

EQ-TARGET;temp:intralink-;e001;116;470x ¼ Whþ n; (1)

where x ∈ RL×1 is an observation vector at a single pixel with L spectral bands.
W ¼ ½w1;w2; · · · ;wr� ∈ RL×r is the endmember reflectance matrix, having wj to represent
the spectral signature of the j-th endmember. h ¼ ½h1; h2; · · · ; hr� ∈ Rr×1 denotes the abun-
dance vector, which corresponds to the proportions of the endmembers in the mixed pixel,
moreover, n ∈ RL×1 is the noise vector. The abundance vector should satisfy ASC and the
abundance nonnegativity constraint. Considering the whole hyperspectral data, the LMM can
be presented in matrix form as follows:

EQ-TARGET;temp:intralink-;e002;116;355X ¼ WHþ N; (2)

where X ∈ RL×N , W ∈ RL×r, H ∈ Rr×N , and N ∈ RL×N are the hyperspectral data, endmem-
ber, abundance, and noise matrices, respectively.

2.2 Nonnegative Matrix Factorization

Up until now, NMF has been widely used for hyperspectral data unmixing.10–12,14–16 It aims at
decomposing the hyperspectral data into a nonnegative endmember and abundance matrices by
minimizing a cost function, i.e.,

EQ-TARGET;temp:intralink-;e003;116;227min
W;H

kX −WHk2F; subject to W;H ≥ 0; (3)

where the operator k · kF denotes the Frobenius norm. The iterative algorithm for NMF applied
to the problem in Eq. (3) alternates between the following two steps:

EQ-TARGET;temp:intralink-;e004;116;165W←W: � XHT:∕WHHT (4)

and

EQ-TARGET;temp:intralink-;e005;116;122H←H: �WTX:∕WTWH; (5)

where ð·ÞT denotes the matrix transpose, and :� and :∕ represent the element-wise multiplication
and element-wise division, respectively. With the nonnegative initialization, the updates of
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Eqs. (4) and (5) can keep the nonnegativity of W and H. Moreover, this algorithm has provable
convergence.18

3 Proposed Endmember Initialization Method for Hyperspectral Data
Unmixing

For most statistical-based unmixing methods (including NMF10 and its extensions11,12,14), proper
initialization can help to avoid being trapped in local minima. In Ref. 14, the impact of different
endmember initializations has been experimentally analyzed, showing that VCA initialization
will contribute to a better estimate of abundances than will random initialization, besides achiev-
ing a relatively smaller standard deviation. However, when the pixel purity assumption does not
hold in the observed scene, VCA fails to extract good approximations of true endmembers from
real HSI. As is known, it is certain to find one part or the whole set of true endmembers through
the sparse unmixing methods from the spectral library even though they suffer from some
limitations.17 Therefore, these true endmembers can be utilized in the endmember initialization.
Here, we propose an endmember initialization method which combines the extracted endmem-
bers by VCA with the true endmembers identified from the spectral library to provide a more
accurate initial point.

Since a mixed pixel in a hyperspectral scene is typically represented by very few endmem-
bers of the spectral library, the fractional abundance matrix is very sparse. Ideally, nonzero rows
in the abundance matrix correspond to the true endmembers. Nevertheless, due to inevitable
limitations of sparse unmixing, the number of spectra with nonzero abundance is much
more than that of true endmembers. Mathematically, to delete some linearly dependent row
does not noticeably change the rank of the abundance matrix. As such, we choose the nuclear
norm as a surrogate for the matrix rank19 and propose to utilize the nuclear norm change to
identify the true endmembers from the library by deleting the rows of the abundance matrix
one by one.

Suppose S0 ∈ Rp×N denotes the abundance matrix estimated by the sparse unmixing method
such as the CLSUnSAL,20 and Si ∈ Rðp−1Þ×N , i ¼ 1;2; : : : ; p and is the abundance matrix
obtained by deleting the i-th row from S0. For any matrix S ∈ Rp×N , its nuclear norm is calcu-
lated as follows:

EQ-TARGET;temp:intralink-;e006;116;356kSk� ¼
Xminðp;NÞ

i¼1

σi; (6)

where σi½0 ≤ i ≤ minðp;NÞ� are singular values of abundance matrix S and then we define δi as
the norm difference, i.e.,

EQ-TARGET;temp:intralink-;e007;116;280δi ¼ kS0k� − kSik�: (7)

When the i-th row of S0 belongs to the true endmember, δi will be a relatively large value. The
larger the δi, the higher the possibility that Si corresponds to the true endmember. So the
differences fδ1; δ2; · · · ; δpg can be sorted in descending order for ranking the possibility of dif-
ferent signatures. Therefore, we propose an endmember extraction method based on the change
of norm (NC), Fig. 1 shows the flowchart of our proposed NC method. Actually, there is more
than one signature corresponding to the same material in a spectral library. To ensure that every
estimated endmember in WNC is related to one material, we only reserve the endmember with
the largest δ per material. When there are r endmembers in WNC, the NC procedure ends.

Since the sparse unmixing methods suffer from the usually high mutual coherence of the
spectral library, and from the noise effect, the proposed NC will identify some false endmembers
as not being related to the real hyperspectral scene, i.e., not true endmembers. On the contrary,
VCA extracts endmembers from the observed HSI, although they are just approximations to pure
endmembers. To overcome these limitations, our proposed initialization method (VCANC)
combines the endmembers extracted by VCA from the real HSI and that located by NC
from the spectral library. Suppose we have r distinct materials in the hyperspectral scene (i.e.,
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r endmembers), let WVCA ¼ fwVCAðiÞ; i ¼ 1;2: : : ; rg denote the r endmembers from the real
hyperspectral data using VCA, and WNC ¼ fwNCðjÞ; j ¼ 1;2: : : ; rg represent the endmembers
estimated from the spectral library. Denoted by θði; jÞ, the similarity between the i-th endmem-
ber extracted using VCA and the j-th endmember estimated via NC

EQ-TARGET;temp:intralink-;e008;116;324θði; jÞ ¼ wVCAðiÞTwNCðjÞ
kwVCAðiÞk2kwNCðjÞk2

; i; j ∈ ½1; : : : ; r�: (8)

The larger θði; jÞ, the more similar wVCAðiÞ and wNCðjÞ. This means that the approximated
endmember from the real HSI is very similar to the pure endmember from the spectral library.
As such, the former can be replaced by the latter to ensure that some true endmembers (i.e., pure
spectra) are included in the initialization. Conversely, smaller θði; jÞ indicates the higher pos-
sibility that wNCðjÞmay not be related to the real hyperspectral scene, which is then not included
for initialization. After the similarity matrix θ is obtained, the matching procedure of WVCA and
WNC mainly consists of the following four steps.

• Step 1: For every row of θ, we keep the largest value and set others to zeros for the purpose
of selecting a signature having the largest similarity with each VCA endmember
from WNC.

• Step 2: To avoid matching multiple VCA endmembers with the same NC endmember, this
step retains the largest value for every column of θ and set others to be zeros such that
the matched pair with the largest similarity for every NC endmember is obtained.

• Step 3: To guarantee the similarity between the signatures of each matched pair, the thresh-
olding operator is further performed to θ, i.e.,

Fig. 1 The flow chart of the proposed NC.
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EQ-TARGET;temp:intralink-;e009;116;482θði; jÞ ¼
�
θði; jÞ; if θði; jÞ > th;
0; if θði; jÞ < th;

(9)

where th is the given threshold. As a result, the matched pair is kept if the similarity is
bigger than this threshold, otherwise, it is abandoned.

• Step 4: Finally, nonzero entries of θ are located for every matched pair. For example, if
θði; jÞ is not equal to zero, the i-th endmember in WVCA is matched with the j-th end-
member in WNC. Then we replace the matched endmember in WVCA using

EQ-TARGET;temp:intralink-;e010;116;386wVCAðiÞ ¼ wNCðjÞ: (10)

The algorithmic procedure of the proposed initialization method is formally stated in
Algorithm 1.

The obtained endmembers by Algorithm 1 are very much related to the real hyperspectral
scene and contain pure spectra, which can overcome both limitations of the VCA and current
sparse unmixing methods. In the proposed method, the computational cost has mainly come
from the sparse unmixing and norm computation. These two parts will increase the computa-
tional cost, but improve the performance of unmixing especially for the data in which there is
no pure pixel. When applying our initialization method to most statistical-based unmixing
approaches where the initialization is necessary, they can produce a better unmixing
performance.

4 Experimental Results

In this section, a series of experiments on both synthetic and real hyperspectral data are con-
ducted. The proposed method is compared to the following methods: (1) NMF with random
initialization (Random), (2) NMF with N-FINDR3 initialization (N-FINDR), and (3) NMF
with VCA initialization4 (VCA). In our VCANC method, CLSUnSAL20 is used to obtain
the initial abundance matrix. The initialization and stopping criterion for the CLSUnSAL
are given according to Ref. 20, for which the number of maximum iterations and the tolerance
error are set to 200 and 1e-6. The experimental results are quantitatively evaluated by spectral
angle distance (SAD) and root-mean-square error (RMSE).14,21 Specifically, the SAD is used to
measure the similarity of the k-th endmember signature Wk and its estimate Ŵk, given by

Algorithm 1 The proposed VCANC endmember initialization method.

Input:

The number of the endmembers r , the spectral library A ∈ RL×p ;

The observed HSI X ∈ RL×N ;

Output:

The initialization of endmember signature matrix W ¼ fwðiÞ; i ¼ 1;2: : : ; rg;

1: Estimate WNC ¼ fwNCðiÞ; i ¼ 1;2: : : ; rg by NC from the spectral library A according to the procedure in
Fig. 1;

2: Extract endmembers WVCA ¼ fwVCAðiÞ; i ¼ 1;2: : : ; rg from the observed HSI X ∈ RL×N by VCA;4

3: for i ¼ 1∶r

Compute θði ; jÞ, j ¼ 1;2; : : : ; r according to Eq. (7)

4: end for

5: Obtain W by the matching method introduced from Steps 1 to 4.
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EQ-TARGET;temp:intralink-;e011;116;735SADk ¼ arccos

�
WT

k Ŵk

kWkkkŴkk

�
: (11)

The RMSE quantifies the accuracy of the abundance estimation, which is calculated as
follows:

EQ-TARGET;temp:intralink-;e012;116;676RMSEk ¼
�
1

N
jHk − Ĥkj2

�1
2

; (12)

where Hk and Ĥk are the true abundance and the estimated abundance for the k-th endmember
signature. Generally speaking, the smaller SAD and the RMSE are, the more accurate the
estimation is. In our experiment, the maximum iteration number and the tolerance error of the
NMF-based unmixing method are set to 500 and 1e-4, respectively.

4.1 Experiments on Synthetic Data

4.1.1 Synthetic data creation

For quantitative comparison, experiments are first conducted on the simulated hyperspectral
images. To this end, we generate the samem ×m abundance map as that in Ref. 11: (1) r spectral
signatures (laboratory-measured absolute reflectances) are randomly selected from the
widely used the U.S. Geological Survey (USGS) digital spectral library as the endmembers.
These endmembers are associated the abundance map to synthesize an m ×m × L
(spatial × spatial × spectral) HS image; (2) for a given purity (e.g., 0.9), we discard the pixels
with abundance fractions larger than the purity and replace them with a mixture composed by all
endmembers with abundances of 1∕r; (3) The simulated HS image is degraded by zero-mean
Gaussian noise, with a certain SNR (signal-to-noise).

Specifically, we generate three simulated hyperspectral data sets in Table 1 to analyze the
robustness of different initialization methods on different noise levels (simulated data 1, named
SD1). and different number of endmembers (simulated data 2, named SD2). To compare with
NMFupk,16 simulated data 3 (SD3) is generated for which purity is set to 1.

4.1.2 Experiment 1 (the choice of threshold)

Threshold th, which is used to match WVCA with WNC, is very important for the VCANC ini-
tialization. In this experiment, the selection of the threshold is based on the similarity between
WNC andWVCA. The matching method is tested using different values of th: 0.900, 0.950, 0.980,
0.990, and 0.995. Table 2 shows the number of matched endmembers achieved by the matching
method with SD1 when SNR ¼ 15 dB. From Table 2, we can see that the numbers of matched
endmembers are very stable when the threshold changes from 0.900 to 0.990 and one endmem-
ber is lost when th is set to 0.995. In this table, we only report the results under the condition of
SNR ¼ 15 dB; a similar situation may occur with different noise levels when th is set to 0.995.
Therefore, we set the threshold to 0.990 in our experiments to guarantee the similarity between
WNC and WVCA and to match the true endmembers as much as possible.

Table 1 Simulated hyperspectral images.

Simulated data

Parameters

r Purity SNR m

SD1 5 0.8 From 15 to 45 dB,
step 5 dB

64

SD2 From 3 to 8, step 1 0.8 25 dB 64

SD3 5 1 25 dB 64

Note: r , the number of endmembers; m, the spatial size of hyperspectral image.
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4.1.3 Experiment 2 (robustness analysis to noise)

In this experiment, the NMF-based unmixing algorithm with four different initializations is per-
formed on SD1. Figure 2 demonstrates that all methods fail when more noise is added to the
simulated HS images (i.e., lower SNR) and the results are worst when using random initializa-
tion. RMSE values of the proposed VCANC method are slightly better than that of VCA and
N-FINDR at high noise levels, but the SAD values are obviously superior to that of the other
methods.

4.1.4 Experiment 3 (generalization to the number of endmembers)

This experiment evaluates the performances of the NMF-based unmixing method using four
different initializations with SD2. The experimental results are shown in Fig. 3. Overall, the
performances of all the initialization methods decay when the number of endmembers increases.
When adopting random initialization, the SAD and RMSE are worst compared with other ini-
tializations. However, the VCANC method produces the best results among all the unmixing
results as the number of endmembers increases. Especially for the SAD, VCANC is still obvi-
ously better than the other initializations.

From the results of experiments 2 and 3, we can conclude the following findings: (1) It is
better to avoid using random initialization for hyperspectral unmixing because the performance
is worst in each case; (2) VCA and N-FINDR fail to obtain accurate results when there are no
pure pixels in SD1 and SD2; (3) the endmembers estimated by VCANC are related to the
observed data and part of them are true endmembers, so VCANC can give more accurate initial
points than other initialization methods. In other words, VCANC can relax the requirement of
pure pixels in the VCAmethod and the influence of high mutual coherence of the spectral library
on sparse unmixing; and (4) VCANC initialization can contribute to a better estimation of
endmembers.

Table 2 The number of matched endmembers with different thresholds (nWNC
denote the number

of WNC).

nWNC

Threshold

0.900 0.950 0.980 0.990 0.995

4 3 3 3 3 2

15 20 25 30 35 40 45
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0
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0.1
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Fig. 2 Comparison of the algorithms with different noise levels of hyperspectral data (SD1).
(a) SAD and (b) RMSE.
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4.1.5 Experiment 4 (comparison with NMFupk)

In this experiment, we compare the performance of NMFupk and the NMF-based unmixing
method using the VCANC initialization with SD3. The experimental results are demonstrated
in Fig. 4. We can see that the performance of NMFupk is improved as the number of the known
endmembers increases. The performance of VCANC is nearly the same as that of NMFupk with
three known endmembers. It is well known that the known endmembers are not available in
many practical situations, so NMFupk is not applicable in real scenes, while VCANC is
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Fig. 4 Comparison of VCANC and NMFupk with different numbers of known endmembers (SD3).
(a) SAD and (b) RMSE.
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Fig. 3 Comparison of the algorithms with different numbers of endmembers (SD2). (a) SAD and
(b) RMSE.
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able to solve this problem by obtaining initial endmembers, which include the true endmembers
identified from the spectral library. It provides a more accurate initial point since it is closer to
the global optimization. The performance of NMF-based unmixing can be improved with the
VCANC initialization when there are no known endmembers.
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Fig. 6 Spectral variation alleviation. (a) SAD and (b) RMSE.

Fig. 7 Unmixing results for the Cuprite data set using VCANC. (a) Alunite. (b) Muscovite.
(c) Nortronite. (d) Kaolinite 1. (e) Buddingtonite. (f) Montmorillonite. (g) Desert varnish.
(h) Sphene. (i) Kaolinite 2. (j) Chalcedony.
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4.1.6 Experiment 5 (mutual coherence effect on the initialization)

This experiment aims at evaluating the stability of VCANC when the mutual coherence of the
spectral library changes. Three libraries are used in the experiment, among which the initial one
is the USGS spectral library whose mutual coherence is very close to 1. The other two libraries
are constructed through retaining a fixed number of signatures from the initial library. Spectral
signatures in one library are quite different where their spectral angles are larger than 7 deg, as
well as the other library whose spectral angle is no smaller than 4.44 deg, indicating that the
spectral signatures can be easily confused. In this experiment, WNC of SD1 is estimated using
these three spectral libraries when SNR is assigned to 15, 25, and 35 dB. Figure 5 shows the plots
of the unmixing results. We can see that the unmixing results will be slightly affected by mutual
coherence at different noise levels.

4.1.7 Experiment 6 (spectral variation alleviation)

Spectral variation which widely exists in hyperspectral data degrades the performance of hyper-
spectral analysis, such as endmember extraction in this paper. To alleviate the spectral variation,
a preprocessing step introduced in Ref. 22 is considered before VCANC, during which the
hyperspectral data is decomposed into a low-rank matrix corresponding to intrinsic spectral
features and a sparse matrix related to the spectral variation. Then VCANC only works on the
low-rank matrix. We compare the performance of the original VCANC with that of the VCANC
with preprocessing (Pre-VCANC) using SD1. The experimental results are demonstrated in
Fig. 6. We can see that the performance of VCANC is obviously improved by alleviating
the spectral variation, which is caused by the heavy noise in the simulated data.

4.2 Experiments on Real Hyperspectral Data

We apply the proposed method to unmix a real hyperspectral image captured by AVIRIS in June
1997 over Cuprite, Nevada. This data set has 224 bands, covering the wavelength range of 0.37
to 2.48 μm with a spectral resolution of 10 nm, which is very appropriate for evaluating the
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Fig. 8 Results on the AVIRIS Cuprite image: Comparison of the (solid line) USGS library spectra
with the (dotted line) signatures extracted by VCANC. (a) Alunite. (b) Muscovite. (c) Nortronite.
(d) Kaolinite 1. (e) Buddingtonite. (f) Montmorillonite. (g) Desert varnish. (h) Sphene. (i) Kaolinite 2.
(j) Chalcedony.
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performance of unmixing, because the minerals are normally highly mixed. Prior to unmixing,
the bands with low SNR and water vapor absorption (including bands 1–2, 104–113, 148–167,
and 221–224) are removed, leaving 188 bands. According to the previous analysis,23 12 types of
minerals are presented in this scene. It is worth mentioning that the variants of the same mineral
with slightly different spectra can be considered as the same endmember, hence, r is set to 10.
In addition, the threshold th is kept at 0.990.

Figure 7 illustrates the estimated abundances by the proposed method and Fig. 8 shows the
comparison between the extracted endmember signatures by the proposed method and their cor-
responding USGS library spectra. Table 3 shows the quantitative results of different methods in
terms of SAD. It is shown that the proposed method demonstrates better performances for a large
variety of the minerals compared to the other methods. This is because there are five endmem-
bers (Kaolinite 1, Chalcedony, Alunite, Buddingtonite, and Montmorillonite), which are found
by the proposed method during the initialization process. It is expected that accurate initializa-
tion gives an accurate initial point and reduces the SAD between the estimated endmember sig-
natures and the USGS library spectra.

5 Conclusion

In this paper, an initialization method for hyperspectral image unmixing has been proposed. The
proposed method determines the initial endmembers from both a real-observed hyperspectral
image and a spectral library by combining unsupervised VCA and a norm change method.
To locate the endmembers from the spectral library, we also propose the use of a nuclear
norm change of the abundance matrix. It is interesting to find that for the statistical-based unmix-
ing approaches, the more true endmembers that can be estimated in the initialization stage,
the better performance for postspectral unmixing. Our proposed method can find more true
endmembers in the initialization stage and enables a better performance for spectral unmixing
compared to current popular initialization methods. Experimental results on both simulated and
real hyperspectral images demonstrate that the proposed method outperforms other initialization
methods in hyperspectral unmixing.
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Table 3 SAD Comparison for the Cuprite data set.

Mineral VCANC NMFupk VCA N-FINDR

Alunite 0.0334 0 0.0976 0.1570

Muscovite 0.1338 0.1301 0.1306 0.1358

Nortronite 0.2887 0.2771 0.2815 0.1660

Kaolinite 1 0.0448 0 0.0989 0.0858

Buddingtonite 0.0511 0.1264 0.1096 0.0835

Desert varnish 0.2130 0.2305 0.2317 0.2110

Montmorillonite 0.0428 0.2004 0.2145 0.0867

Sphene 0.0606 0.0608 0.0797 0.0591

Kaolinite 2 0.1371 0.1383 0.1390 0.1358

Chalcedony 0.0311 0.1274 0.1541 0.1831

Note: The numbers in bold represent the best performance.
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