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Abstract—In hyperspectral remote sensing data mining, it is
important to take into account of both spectral and spatial
information, such as the spectral signature, texture feature, and
morphological property, to improve the performances, e.g., the
image classification accuracy. In a feature representation point
of view, a nature approach to handle this situation is to con-
catenate the spectral and spatial features into a single but high
dimensional vector and then apply a certain dimension reduc-
tion technique directly on that concatenated vector before feed
it into the subsequent classifier. However, multiple features from
various domains definitely have different physical meanings and
statistical properties, and thus such concatenation has not effi-
ciently explore the complementary properties among different
features, which should benefit for boost the feature discriminabil-
ity. Furthermore, it is also difficult to interpret the transformed
results of the concatenated vector. Consequently, finding a
physically meaningful consensus low dimensional feature rep-
resentation of original multiple features is still a challenging
task. In order to address these issues, we propose a novel fea-
ture learning framework, i.e., the simultaneous spectral-spatial
feature selection and extraction algorithm, for hyperspectral
images spectral-spatial feature representation and classification.
Specifically, the proposed method learns a latent low dimensional
subspace by projecting the spectral-spatial feature into a common
feature space, where the complementary information has been
effectively exploited, and simultaneously, only the most significant
original features have been transformed. Encouraging experi-
mental results on three public available hyperspectral remote
sensing datasets confirm that our proposed method is effective
and efficient.
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I. INTRODUCTION

OVER the past two decades, the significant advances in
the hyperspectral sensors have opened a new way to

earth observation in remote sensing [1], [2]. These sensors,
both space-borne and airborne, simultaneously capture the
radiance of materials in hundreds of narrow contiguous spec-
tral bands and result in cube like data. Such data, which is
composed of two spatial dimensions (width and height) and a
spectral dimension, provides both detailed spectral and struc-
tural information for the analysis and recognition of ground
materials. Therefore, hyperspectral images have been increas-
ingly applied in many areas including the precision agriculture,
military application and environmental management [3], [4].
Among these applications, hyperspectral image classification
is extremely important and has been attracted by many focuses
in recent years [5], [6].

Previously, most of the multi- and hyper- spectral image
classification methods were mainly developed in the spectral
domain, based on the idea of the spectral feature contains
enough information to infer the label of a pixel [3], [7], [8].
These feature vectors, which had considered to be fed into the
classifier, were represented by the independent spectral charac-
teristics of pixels but without taken into account of the spatial
relationship of their neighbor pixels.

Recently, some investigations had shown the limitations
of using only spectral feature and incorporate the spatial
information as well to further improve the classification accu-
racy [9]–[12]. In practice, the fact that the adjacent pixels are
related or corrected in real images is important for hyperspec-
tral images classification [13]–[17]. Tarabalka et al. [18] pro-
posed a spectral-spatial classification method by marker-based
segmentation techniques. However, in [18], the key was how
to select the markers which strongly depended on the result
of pixelwise classification. In addition, Huang and Zhang [19]
proposed an SVM-based multiclassifier model with semantic-
based postprocessing to ensemble combine spectral and spatial
features at both pixel and object levels. Zhong and Wang [20]
formulated a conditional random field to exploit the strong
dependencies across spatial and spectral neighbors for hyper-
spectral image classification. All the experimental results
had shown that the spectral and spatial methods mentioned
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above had significantly improved classification accuracy when
compared with the previous spectral-based techniques.

However, most of the aforementioned methods which had
employed different tactics to incorporate the spatial informa-
tion, could be regarded to address a particular postprocessing
step to boost the subsequent image classification performance.
In this paper, we exploit both the spectral and spatial infor-
mation from the perspective of feature representation, since
we believe that the efficient feature representation is the
key engine of the subsequent classification task [21], [22].
Different feature representations contain more or less differ-
ent information of the observed data, and the discriminability
of feature representation directly decides the upper boundary
of classification results [23]. As long as the feature repre-
sentation contains enough discriminative information what the
classification needs, we can get a satisfactory result. Recently,
to discover the spectral-spatial feature representation in the
remote sensing field, some works have emerged [24]–[27].
A simple and natural method to handle spectral and spa-
tial features is vector stacking, which concatenates different
kinds of features into a long vector, unfortunately, stacking
the spectral feature and spatial feature would produce a higher
dimensional feature vector [28]. The so called curse of dimen-
sionality [29], would occur when the number of available
training samples is limited [27], [30]. To deal with this issue,
Fauvel et al. [31] proposed an approach to fuse morpholog-
ical information and the original spectral data via reduction
of dimensionality. Additionally, Zhang et al. [32] proposed a
multiple features combining (MFC) approach for classifica-
tion. The experimental results demonstrated that appropriately
concatenate the spectral and spatial features could boost the
classification accuracy.

Nevertheless, the feature stacking strategy still suffers from
some problems when apply to hyperspectral image spectral-
spatial feature representation and classifications. First, it treats
different features equally and thus ignores the specifical prop-
erties of multiple features. Second, it fails to explore both
the consistent information of different features and the com-
plementary information among multiple features. Last but not
least, when some feature extraction techniques [e.g., the prin-
cipal component analysis (PCA)] are directly applied on the
stacked vectors, there is a major disadvantage that the learned
projection is a linear combination of all the original can-
didate features. Therefore, it is difficult to interpret which
feature in the original feature set plays an essential role in
the classification. In view of above problems, in this paper,
we study a new spectral-spatial feature learning method for
hyperspectral image classification, which termed simultane-
ous spectral-spatial feature selection and extraction (S3FSE),
motivated by the recent advance in manifold learning [33] and
structured sparse learning [34]. In particular, our proposed
method integrates the feature selection and feature extrac-
tion into a joint framework to perform hyperspectral image
spectral-spatial feature learning, by which the learned result
could be interpretable. In detail, the major contributions of
this paper are summarized as follows.

1) We propose a novel multiple features learning method
by integrating the merits of both feature selection and

feature extraction, which could discern the importance
of original feature set and alleviate the drawback of fea-
ture extraction that the transformed result is difficult to
interpret.

2) The advantage of manifold learning is incorporated into
our framework to capture the relation among multiple
features. Co-local geometric preserving (CoLGP) is pro-
posed to preserve the geometric properties of multiples
features. Meanwhile, a co-graph regularization is pro-
posed to exploit both the consistent information of
different features and the complementary information
among multiple features.

3) To avoid the problem of simultaneously optimize
the selection matrix and transformation matrix, the
�2,1-norm is exerted to co-regularize the different pro-
jection matrices to obtain row sparse. By projecting the
spectral-spatial feature into a common feature space,
the redundant features and noises have been discarded,
and only the significant original features have been
transformed.

The remainder of this paper is structured as follows. In
Section II, we present the objective function of the pro-
posed S3FSE method. In Section III, we provide the detailed
optimization steps of our proposed method. The experimen-
tal results on three public available hyperspectral datasets
are reported in Section IV, followed by the conclusions in
Section V.

II. PROPOSED METHOD

In this section, we describe the proposed method for hyper-
spectral image feature learning in detail. The proposed S3FSE
can be divided into three main components, as shown in Fig. 1.
In the first step, spectral and spatial features are extracted for
each pixel. Then, based on manifold learning and structure
sparse learning, the structure information of data is exploited.
Finally, a row sparse projection matrix is learned, which is able
to discard the redundant and noisy features and transform the
significant original features simultaneously.

A. Notations and Problem Definition

Before going to the detail of the proposed algorithm, we
first summarize some notations used throughout this paper. We
utilize uppercase letters to denote matrices, and bold lowercase
letter to denote vectors. For a matrix M ∈ R

a×b, its ith row and
jth column are denoted as mi and mj, respectively. Mij means
the (i, j)th entry of M. And the �r,p-norm of M is defined as
follows:

‖M‖r,p =
(∑u

i=1

(∑v
j=1

∣∣Mij
∣∣r

) p
r
) 1

p

. (1)

Let q = {q1, q2, . . . , q�} to be a set of pixels in the hyper-
spectral image, where � is the number of pixels. Assume that
the set of samples can be represented in V spectral and spatial
feature spaces, or with V heterogeneous feature representa-
tions (for convenience, following the perspective of multiview
learning [35], we call each type of feature representation as a
view in the next paragraphs). Let F = {F(1), F(2), . . . , F(V)}
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Fig. 1. Flowchart of the proposed approach.

to be the set such feature spaces and F(i) ∈ R
di be the feature

space for the ith view, where di denotes the dimensionality of
the ith feature space F(i). Denote D = {X(i) ∈ R

�×di}V
i=1 as

the set of views and in which X(i) is the feature matrix of the
ith view.

Problem 1 (Learning Objective): Given n training samples
Dtraining = {X(i) ∈ R

n×di}V
i=1 with their labels {zi}n

i=1 from
C classes, our objective is to learn a latent low dimensional
feature representation (denoted as Y ∈ R

n×d, in which d
is the dimensionality of the learned subspace) of the input
multiple features, which can achieve a better performance of
hyperspectral image classification.

B. Objective Function of S3FSE

In this paper, we propose an S3FSE algorithm to achieve
the aforementioned learning objective. S3FSE learns a shared
latent low dimensional subspace by project the spectral and
spatial features into a common space. To derive that common
low dimensional subspace for spectral and spatial features,
two important issues should be taken into account. One is the
common low dimensional representation should preserve the
local geometric structures in the original spectral and spatial
feature spaces, respectively. The other one is that the within-
class variation of the common low dimensional representation
should be minimized by taking advantage of the consistent
information and complementary information of the spectral
and spatial features. In S3FSE, we adopt manifold learning
and structure sparse learning techniques to obtain the goals
above. In the proposed algorithm, the graph Laplacian based
on the patch alignment framework [33] is used to character-
ize the local geometric structures of heterogeneous features. In
order to minimize the within class variation, S3FSE character-
izes the consensus data description for heterogeneous feature
representations by a co-graph regularization. Meanwhile, to
make the learned subspace interpretable, S3FSE inherits the

advantage of feature selection by a co-regularization of pro-
jection matrices. Consequently, there are mainly three parts in
the proposed objection function, which will be introduced in
sequence.

1) Co-Local Geometric Preserving: Motivated by the intu-
ition that nearby data points have similar geometric proper-
ties [36]–[38], we construct graph Laplacian to model the
local neighborhood relationships data points. Let G(v) =
{X(v), W(v)} to be a undirected weighted graph with vertex
set X(v) and weighed matrix W(v) ∈ R

n×n for the vth view.
Denote N(x(v)

i ) as the set of k-nearest-neighbors of x(v)
i by

the Euclidean distance metric, then each element w(v)
ij of the

weighted matrix W(v) is defined as follows:

w(v)
ij =

⎧⎪⎪⎨
⎪⎪⎩e

⎛
⎝−

∥∥∥x(v)
i −x(v)

j

∥∥∥2

t

⎞
⎠
, x(v)

j ∈ N
(

x(v)
i

)
or x(v)

i ∈ N
(

x(v)
j

)
0, otherwise.

(2)

Hence, the local geometrical structure of the vth view can
be considered by

min
Y

∑
i �=j

w(v)
ij

∥∥yi − yj
∥∥2 (3)

where yi and yj are the shared low dimensional representation
for samples i and j, respectively.

Based on the Laplacian Eigenmaps [39], (3) can be refor-
mulated to

min
Y

tr
(

YTL(v)Y
)
, s.t. YTY = I (4)

in which L(v) = D(v) − W(v) is the Laplacian matrix, and D(v)

is a diagonal matrix whose entries are column sums of W(v).



ZHANG et al.: S3FSE FOR HYPERSPECTRAL IMAGES 19

Therefore, for heterogenous features from all the V views,
we can obtain the following objective function of CoLGP:

min
Y

V∑
v=1

tr
(

YTL(v)Y
)

s.t. YTY = I. (5)

Due to the complementary property provide by heteroge-
nous features, the spectral and spatial features definitely have
different contributions to the shared latent low dimensional
subspace learning. In order to explore the different contribu-
tions of different features, we impose a set of non-negative
weights λ = {λ1, λ2, . . . , λV} on (5) to better preserve the
local geometric properties of different features and explore
the complementary property of multiple views at the same
time [40], [41], therefore, (5) can be further written as
following:

min
Y

V∑
v=1

λv tr
(

YTL(v)Y
)

s.t. YTY = I. (6)

Let P = [P(1), P(2), . . . , P(V)]T ∈ R

∑V
v=1 dv×d to be the

projection matrix, where P(v) ∈ R
dv×d is the projection

matrix of vth view. Considering the different contributions of
heterogeneous features, we have

Y =
V∑

v=1

μvX(v)P(v) (7)

where μ1, μ2, . . . , μV > 0. Obviously, μv = √
λv. Then,

by combining (6) and (7), we can reformulate (6) to the
following form:

min
P

V∑
v=1

λv tr
(

P(v)T
X(v)T

L(v)X(v)P(v)
)

= tr
(

P
T

H1P
)

s.t. P
T

XTXP = I (8)

where

P =
[√

λ1P(1),
√

λ2P(2), . . . ,
√

λVP(V)
]T

(9)

and

H1 =

⎛
⎜⎜⎝

X(1)T
L(1)X(1)

. . .

X(V)T
L(V)X(V)

⎞
⎟⎟⎠. (10)

As a result, the first part of the objective function is

arg min
P

tr
(

P
T

H1P
)

s.t. P
T

XTXP = I. (11)

2) Co-Graph Regularization: Following the perspective of
the multiview learning, on the one hand, heterogeneous fea-
tures should have different strengths to explore the intrinsic
data structure since they have provided complementary infor-
mation among each other. On the other hand, features from
different views should also supply the consistency information
by sharing the same semantic label space [42]. In the proposed
S3FSE, the problem of exploring the provided complementary

information and consistency information from spectral and
spatial features can be interpreted to seek a consensus data
representation in the shared low dimensional subspace, where
the variation of within-class is minimized while the variation
of between class is maximized.

Definition 1: Give a set of data representation from hetero-
geneous features D = {X(v) ∈ R

n×dv}V
v=1 and the projection

matrix to the shared common low dimensional subspace P =
{P(v)}V

v=1. Denote X(v) = [x(v)
1 , x(v)

2 , . . . , x(v)
n ]T ∈ R

n×dv as the
matrix representation of vth view. Then, the Euclidean distance
in the low dimensional subspace between data points i and j
from view s and t is defined as follows [43]:

d2
(

x(s)
i , x(t)

j

)
=

∥∥∥∥P
(s)T

x(s)
i − P

(t)T
x(t)

j

∥∥∥∥
2

2
. (12)

For the consensus data description, correspondence pairs
in the common low dimensional subspace should be as near
as possible. That is to say, the distance between within-
class data points should be as small as possible. In light
of (12), all views of data points have been embedded
into the common low dimensional subspace. Denote O =
[X(1)P

(1)
, X(2)P

(2)
, . . . , X(V)P

(V)
]T ∈ R

nV×d, (nV = ∑V
v=1 n)

as all views of samples in the common low dimensional sub-
space, we construct a joint Laplacian graph on the O to explore
the consensus data description [43]. Let G = {O, W} to be a
joint undirected weighted graph with vertex set O and weighed
matrix W ∈ R

nV×nV , in which wij measures the similarity
between the data points i and j on O. According to the label
information, W is defined as

wij =
{

1, (i, j) ∈ c, i �= j

0, otherwise
(13)

where c indicates the cth class. Consequently, the consen-
sus data description in the low dimensional subspace can be
exploited by

min
O

nV∑
i �=j

wij
∥∥Oi,: − Oj,:

∥∥2
. (14)

Similar to (4) above, (14) can be reduced to

min
O

tr
(OTLO)

(15)

where L is defined as L = D−W and D is a nV ×nV diagonal
matrix with dii = ∑nV

j=1 wij.
If we further denote

L =
⎛
⎜⎝

L11 · · · L1V
...

. . .
...

LV1 · · · LVV

⎞
⎟⎠. (16)

Then (15) can be rewritten as

min
P

V∑
s=1

V∑
t=1

tr

(
P

(s)T
X(s)T

LstX(t)P
(t)

)

= tr
(

P
T

H2P
)

(17)
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where

H2 =

⎛
⎜⎜⎝

X(1)T
L(11)X(1) · · · X(1)T

L(1V)X(V)

...
. . .

...

X(V)T
L(V1)X(1) · · · X(V)T

L(VV)X(V)

⎞
⎟⎟⎠. (18)

Therefore, we have the following second term of the
proposed S3FSE algorithm:

arg min
P

tr
(

P
T

H2P
)
. (19)

3) Projection Matrices Co-Regularization: In practice, not
all features are important and useful for our classification
task, since some of them may be redundant and even noisy.
However, one major drawback of the existed feature extraction
methods is that the learned projection is a linear combina-
tion of all the available features. More often, it is uneasy to
interpret the transformed result. Motivated by the characteristic
of feature selection which selects a subset of most represen-
tative features from the candidate set, in S3FSE, we expect
the significant features are transformed by the nonzero values
of the projection matrix while the less important features are
transformed by zeros value of the projection matrix during the
proposed feature extraction. As a result, the transformed result
can be regarded as a linear combination of only a subset of
all original features. To achieve this goal, one intuitive way
is to simultaneously perform both feature selection and fea-
ture extraction. The projection matrices can be expressed as
following:

P
(v) = S(v) � M(v) (20)

where � is a Hadamard product operator of matrices.
S(v) ∈ R

dv×d is the selection matrix of feature selection and
M(v) ∈ R

dv×d is the transformation matrix of feature extraction
for vth view.

In (20), the selection matrix S(v) is defined as

S(v)(i,:) =
{

1, feature i is selected

0, otherwise.
(21)

However, it is not easy to directly solve S(v) and M(v). By
combining (20) and (21), we can derive that projection matrix
P

(v)
is row sparse. To avoid this problem, we propose to obtain

a row sparse projection matrix P
(v)

directly rather than solve
the S(v) and M(v). As indicated in [34] and [44], �2,1 norm
measures the distance in feature dimensions and perform sum-
mation over different data points via �2 and �1, respectively.
When minimize the �2,1 norm of the projection matrix, some
rows of the matrix would shrink to zeros, thus the �2,1 norm
leads to row sparse as well as exploits the correlations between
different features. We therefore resort to �2,1 norm regulariza-
tion of projection matrix P

(v)
to make P

(v)
row sparse. The

regularization on the projection matrices is then given by

�
(

P
(1)

, P
(2)

, . . . , P
(V)

)
= min

V∑
v=1

∥∥∥P
(v)

∥∥∥
2,1

. (22)

It should be noted that (22) ignores the complementary
information from heterogeneous features. In order to address

the above mentioned strengths of the multiview data, we uti-
lize �2,1 norm to co-regulate the projection matrix P. The
co-regularization achieves twofold roles in making the projec-
tion matrix P row sparse and taking advantages of the comple-
mentary information from multiple views. Consequently, the
co-regularization of the projection matrices is written as

�
(
P
) = min

P

∥∥P
∥∥

2,1. (23)

Finally, we have the overall objection function of our pro-
posed S3FSE algorithm by integrating (11), (17), and (23)
together

min
P

tr
(

P
T

H1P
)

+ α tr
(

P
T

H2P
)

+ β
∥∥P

∥∥
2,1

s.t. P
T

XTXP = I (24)

where the matrices H1 and H2 have been defined
in (10) and (18), and α and β are two regularization parame-
ters, respectively.

III. OPTIMIZATION

Obviously, our objective function (24) is convex, since H1
and H2 are both positive semi-definite. It can obtain the global
optimal solution. However, the objective function in (24) con-
tains a nonsmooth regularization term, i.e., the �2,1-norm, and
in general, it cannot be easily solved.

Denote P = [p1, p2, . . . , pm]T (m = ∑V
v=1 dv) with pi as

its ith row. Following [34], we may reformulate (24) as:

min
P

tr
(

P
T

H1P
)

+ α tr
(

P
T

H2P
)

+ β tr
(

P
T

H3P
)

s.t. P
T

XTXP = I (25)

where H3 is a diagonal matrix defined as

H3 =

⎛
⎜⎜⎜⎝

1

2
∥∥∥p1

∥∥∥
2

. . .
1

2‖pm‖2

⎞
⎟⎟⎟⎠. (26)

Then, we can rewrite our objective function as

min
P

tr
[
P

T
(H1 + αH2 + βH3)P

]

s.t. P
T

XTXP = I. (27)

In (27), P can be obtained by solving the following
eigenvalue problem:

(H1 + αH2 + βH3)p = ηXTXp. (28)

Let p1, p2, . . . , pd to be the eigenvectors of (28) corre-
sponding to the d smallest eigenvalues ordered according to
η1 ≤ η2 ≤ · · · ≤ ηd. We therefore obtain the projection
matrix P = [p1, p2, . . . , pd] of our proposed method, where
pi = [p1i . . . pVi]

T .
In view of the above mathematical deduction, H3 is depend

on P, which is exactly the unknown variable we want
to optimize. In this paper, we adopt an iterative approach to
optimize (27), the complete learning procedure is discussed in
Algorithm 1. Note that it could be theoretically demonstrated
that such an alternating optimization procedure rigorously
converges to a global optimum [34].
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Algorithm 1 S3FSE

Require: Input data {X(i) ∈ R
n×di}V

i=1 and their labels
zi ∈ [1, 2, · · · , C]; regularization parameters α and β; the
target dimensionality d of low dimensional subspace;

1: The iteration set t = 0; initialize P ∈ R
m×d randomly;

2: Compute H1 according to Eq. (10);
3: Compute H2 according to Eq. (18);
4: repeat
5: Compute the diagonal matrix H3 according to Eq. (26);
6: Solve the eigenvalue problem defined in Eq. (28);
7: Obtain the P = [p1, p2, · · · , pd];
8: t = t + 1;
9: until Convergence

Ensure: Projection matrix P = [P
(1)

, P
(2)

, · · · , P
(V)

]T .

IV. EXPERIMENTS

In this section, we conduct experiments on three public
hyperspectral datasets to show the performance of our pro-
posed algorithm. Following the previous feature learning
works [25], we evaluate the performance of our proposed fea-
ture representation method in term of classification. In our
experiments, we first project the spectral and spatial features
into the learned low dimensional subspace, and then use the
SVM classifier [45] to classify the test samples in that common
feature subspace.

A. Datasets Description

The first dataset is the hyperspectral digital imagery
collection experiment (HYDICE) urban hypersepctral image,
which is an urban area captured by the HYDICE airborne
remote sensing sensor, at the location of Copperas Cove, near
Fort Hood, Texas, USA. It is composed of 187 spectral chan-
nels after removed the low signal noise ratio bands, and the
whole dataset has the size of 307 × 307 pixels.

The second dataset is the Washington DC dataset, which
was also acquired by the HYDICE sensor over a Mall in
Washington, DC, USA. The spatial size of this dataset is
1280 × 307 pixels, and there are 191 spectral channels
available for our experiment after deleted the water absorption
bands.

The third dataset is reflective optics system imaging spec-
trometer (ROSIS) Pavia city dataset, which was collected by
the ROSIS at the city of Pavia, Italy. This dataset is con-
sisted of 1400×512 pixels. Due to noise, some channels were
removed and the remaining 102 spectral channels are used for
our experiment.

B. Experiment Setup

1) Input Spectral and Spatial Features: In our experiments,
we use three kinds of features, i.e., the spectral feature, texture
feature, and morphological feature, as a case study to evaluate
the performance of our proposed multifeature learning method.
For each pixel in the hyperspectral image, each type of feature
has been represented as a single feature vector, respectively.

1) Spectral Feature: Denote νi as the reflectance value of
the ith spectral channel, the spectral feature of a pixel

in the hyperspectral image can be simply represented by
reflectance values of its all l channels, i.e., vSpectral ∈ R

l.
2) Texture Feature: The 2-D Gabor wavelet is employed to

extract texture information [46]. The PCA transforma-
tion is applied to extract the first principal component of
the hyperspectral image and then the Gabor function is
employed to convolute it. In the 2-D Gabor function, we
set the scale parameter as s = 0, 1, . . . , 4 and direction
parameter as d = 0, 1, . . . , 11, and therefore derive the
texture feature of a pixel vTexture ∈ R

60.
3) Morphological Feature: The differential morphological

profile (DMP) is employed to describe the other spa-
tial feature in our experiment. The DMP is based on
two commonly used morphological operators (opening
and closing) to gather the structural information [47].
Since the DMP is designed for the gray-level images, in
our experiments, we also use PCA to find the first 10
PC images of the hyperspectral data. After that, circular
structural elements with R = 2, 4, 6, and 8 have been
used to compute the DMP feature vector, which result
in vDMP ∈ R

80.
Nevertheless, it must be pointed out that our proposed fea-

ture learning method is actually a general framework which is
suitable for hyperspectral image classification with any kinds
of features as input.

2) Comparison Schemes: To validate the effectiveness of
our proposed algorithm, we compare it with a baseline and
several state-of-the-art dimensionality reduction methods, all
of which have accepted the same spectral and spatial feature
vectors as input. For the baseline, all the original spectral
and spatial features are concatenated into a feature vector.
As regards to other comparison methods, the state-of-the-art
dimensionality reduction methods are performed on con-
catenated spectral and spatial feature vectors. In addition,
two multiview feature learning algorithms have also been
addressed, i.e., the CoLGP (the first term of the proposed
S3FSE algorithm) and the MFC [46]. The detailed comparison
methods are enumerated as follows.

1) Baseline.
2) Sparse PCA (SPCA) [48].
3) Sparse discriminant analysis (SDA) [49].
4) Cosine-based nonparametric feature extraction

(CNFE) [50].
5) Double nearest proportion feature extraction (DNP) [51].
6) CoLGP.
7) MFC [46].
3) Implementation Details: For the comparison algorithms,

the codes of SPCA and SDA are provided by the open source
MATLAB Toolbox, i.e., SpaSM,1 and the parameters of them
are set according to their references [48] and [49], respectively.
In CNFE, there are four parameters, i.e., number of nearest
neighbors for local mean (k), weighting exponents (r1 and r2),
and regularization parameter (μ). In our experiments, we set
them as k = 5, r1 = 2, r2 = 1, and μ = 0.75 accord-
ing to [50]. In DNP, there are three parameters: 1) self-class

1http://www2.imm.dtu.dk/projects/spasm/

http://www2.imm.dtu.dk/projects/spasm/
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Fig. 2. (a) HYDICE urban dataset. (b) Ground truth map. (c) Number of
training and test samples for classification.

nearest proportion (Ps); 2) the other class nearest propor-
tion (Po); and 3) regularization parameter (μ) and we set them
as 1/8, 1/8, and 0.75, respectively [51]. As respect to the
shared model parameters in CoLGP, MFC, and S3FSE, we
empirically set the neighbor size k = 5 and the kernel width
t = 1. In addition, the tradeoff parameters of proposed S3FSE
(α and β) are tuned by using cross validation with the range of
{10−5, 10−4, . . . , 104}. For subsequent classification task, the
multiclass ones versus one support vector machine classifier
with Gaussian radial basis function kernel is adopted. In detail,
we utilize the LibSVM library2 as the software tool. And the
parameters C and γ of SVM classifier are decided via a strat-
egy of cross validation [45] within the range of {1, 10, 50, 100}
and {0.1, 1.0, 10, 100}, respectively.

C. Experiment 1: HYDICE Urban Dataset

In this experiment, we utilize HYDICE urban dataset
to detailedly evaluate the performance of our proposed
method. This dataset and its reference data are shown in
Fig. 2(a) and (b), respectively. According to the ground truth,
there are six informative classes of land covers to be analyzed:
1) roof; 2) shadow; 3) asphalt road; 4) concrete road; 5) grass;
and 6) tree. Although this dataset has a high spatial resolu-
tion (around 2 m per pixel), yet it is still a challenging one
for accurate classification. As we can learn from the previ-
ous researches that spectral curves between classes, e.g., roof
and road, grass and tree are highly similar [46], [52]. Despite
from that, we could introduce the spatial features to relieve the
misclassifications which lead by only using the spectral fea-
ture. As indicated in [46], although the different land covers
may have high correlation coefficients among each other in the
spectral domain, we might still distinguish them because they
have low correlation coefficients in the spatial feature spaces,
e.g., the texture and shape features. Therefore, it is definite
that such complementary properties of the multiple features
in the hyperspectral image have provided the sufficient infor-
mation to potentially improve the classification accuracy. In
our experiments, in order to verify the effectiveness of our

2http://www.csie.ntu.edu.tw/cjlin/libsvm/

proposed method when very few training samples are avail-
able, 30 samples of each class are randomly chosen as the
training set. The number of training and test samples is listed
in Fig. 2(c).

1) Analysis of the Learned Projection Matrix: In the spec-
tral and spatial classification, different features have different
contributions to explore the essential data structure via provid-
ing complementary information. Besides, for the classification
task, not all the original features are useful. However, it is usu-
ally difficult to interpret the results of the traditional feature
extraction method, such as the CNFE and DNP. Although the
SPCA and SDA attempt to solve this problem via �1-norm
regularization, the selected features by sparse methods are
independent for each feature dimension. Thus, the results
are still difficult to interpret. Our proposed method alleviates
this problem via simultaneous performing feature selection
and feature extraction. Here, we study the learned projec-
tion matrix P = [P

(Spectral)
, P

(Texture)
, P

(DMP)
]T from (24) with

some details. We first examine the sparsity of the learned
projection matrix. For the HYDICE urban dataset, the over-
all sparsity of projection matrix P is 41.59%. In contrast,
for spectral feature, texture feature, and DMP feature, the
sparisties are 22.99%, 70.00%, and 63.75%, respectively. It
clearly shows that the spectral feature plays the most impor-
tant role in the output feature representation. This observation
demonstrates that our proposed method effectively explores
the complementary characteristics provided by the spectral
and spatial features. In addition, the learned projection matrix
is row sparse. The non zero rows indicate that the corre-
sponding features are chosen as important features for feature
mapping, while the zero rows indicate that the correspond-
ing features are less significant for classification or even
be the noise, which should be discarded. Consequently, the
low dimensional subspace can be interpreted as a projec-
tion from only the significant or relevant subset of original
features.

2) Classification Results: Fig. 3(a)–(h) shows the classi-
fication maps of different feature representations based on
SVM. In this experiment, the training samples in accordance
with Fig. 2(c) are randomly chosen from the reference data
and the rest of all are used as test samples. The feature
dimensionalities of baseline and SDA are 327 and 5, respec-
tively, while others are fixed at 50. At first glance, we learn
that pixels of a few classes have mixed with each other in
Fig. 3(a)–(g). However, there are only a small number of
mixed pixels existing in Fig. 3(h). In summary, very little
misclassifications could be observed in the classification map
obtained by the S3FSE algorithm. These observations sug-
gest that our proposed method could effectively and efficiently
employ the spectral and spatial features for hyperspectral
image classification.

To further study the effectiveness of different feature repre-
sentation methods, the detailed mean and standard deviation of
classification rates in ten independent experiments are reported
in Table I. In this table, some observations could be derived.
To begin with, our proposed method achieves the best overall
accuracy (OA) and Kappa coefficient. Furthermore, our pro-
posed method obtains the highest classification accuracy in

http://www.csie.ntu.edu.tw/cjlin/libsvm/
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Fig. 3. Classification maps with different feature representation methods of the HYDICE urban dataset. (a) Baseline. (b) SPCA. (c) SDA. (d) CNFE. (e) DNP.
(f) CoLGP. (g) MFC. (h) S3FSE.

TABLE I
CLASS-SPECIFIC ACCURACIES IN PERCENTAGE OF THE HYDICE URBAN DATASET

Fig. 4. Embedded feature dimensionality d respects to OA of the HYDICE
urban dataset.

most of the individual classes. Finally, compare with CoLGP,
the experimental results indicate that feature selection which
discards noises and redundant features in S3FSE does great
help to boost the discriminability of the learned feature rep-
resentation. The computational costs of all the methods have
also been reported in this table, we could learn that the pro-
posed algorithm spends a little more time than its competitors,
since an iteration step is required for the S3FSE optimization.
For a more detailed comparison of the feature dimensionality
reduction methods, the means of classification OA with regard
to the reduced subspace dimensionalities from 1 to 100 have
summarized in Fig. 4, this figure suggests that our proposed
method achieves the best performance when the subspace

Fig. 5. Parameter sensitivity of the HYDICE urban dataset. (a) Regularization
parameters α and β respect to OA. (b) Parameters k and t respect to OA.

dimensionality is larger than five. In addition, our proposed
method remains a stable and leading performance when the
dimensionality is increased.

3) Parameter Sensitivity: In the proposed S3FSE algorithm,
there are several parameters, e.g., neighbor size k, kernel
width t, regularization parameters α and β, to be decided
in advance. Here, we first study the effect of parameters
α and β. In detail, we fix k = 5 and t = 1 as men-
tioned in the implementation details above, while the α and
β are set at various values of {10−5, 10−4, . . . , 104}, respec-
tively. Then classification OA respects to these two parameters
is reported in Fig. 5(a). It is obvious that we can obtain
a good performance in a wide range of α if β has been
fixed. Meanwhile, the results have also suggested that small
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TABLE II
CLASS-SPECIFIC ACCURACIES IN PERCENTAGE OF THE HYDICE WASHINGTON DC DATASET

Fig. 6. Experimental convergence of the S3FSE algorithm on the
HYDICE urban dataset. (a) Error of objective function values between
iterations. (b) Classification OAs and computational costs with different
iterations.

β (e.g., 10−5 and 10−4) degrades the performance. Because
small value β keeps too many redundancy and noisy fea-
tures which would have a invert effect on the performance.
Based on this figure, we could fix the parameters α and β

at the middle interval of the tuned range to achieve a sat-
isfactory performance in practice. We then show the effect
of parameters k and t by fix α and β as 10−1 and 10−2,
respectively, the results of which are plotted in Fig. 5(b).
In this experiment, we tune k and t in the candidate sets
of {3, 5, 10, 15, 20} and {10−4, 10−3, . . . , 103}, respectively.
It is obvious that these two parameters have less effect to the
classification performance compare to the two regularization
parameters discussed above, since the OA varies much slighter
in this figure. Therefore, it is reasonable for us to empirically
set their values when running the proposed S3FSE algorithm in
practice.

4) Convergence Study: To study the convergence charac-
teristics of the S3FSE optimization, we plot the error of
objective function values (25) between iterations in Fig. 6(a).
As seen from this figure, it is clear that the proposed algo-
rithm converges fast within less than ten iterations. We have
also enforced the maxima number of iterations of the S3FSE
optimization varies from 3 to 30 to see the classification
performance, the results are presented in Fig. 6(b). It is
clear that the classification OA reaches to a stable value
quickly when the number of iterations arrives at five, while
the corresponding running time is keeping increases linearly.
These observations demonstrate that our proposed optimiza-
tion for S3FSE is highly efficient for the hyperspectral images
classification task.

Fig. 7. (a) HYDICE Washington DC dataset. (b) Ground truth map.
(c) Number of training and test samples for classification.

D. Experiment 2: HYDICE Washington DC Dataset

The HYDICE Washington DC dataset and its reference map
are shown in Fig. 7(a) and (b). This dataset is also an urban
scene with high spectral and spatial resolutions. As given in
Fig. 7(c), there are seven significant land cover classes: 1) roof;
2) water; 3) grass; 4) tree; 5) road; 6) path; and 7) shadow. It
is also not an easy task to analysis this dataset, because some
class pairs are very spectral similar, e.g., grass and tree, roof
and road. As regard to the spectral and spatial features extrac-
tion, we have 191-D spectral feature, 60-D texture feature, and
80-D DMP feature for each pixel in this dataset. To investigate
the performance of our proposed method under few training
samples available condition, we have also randomly selected
30 samples of each class as training samples and considered
the rest of reference data as test samples. The detailed number
of training samples and test samples is given in Fig. 7(c).

The eight feature representation-based classification maps
of the HYDICE Washington DC dataset are presented in
Fig. 8(a)–(h). Among them, the dimensionalities of baseline
and SDA are 331 and 6, respectively, while the number of
low dimensional feature subspaces of other approaches is uni-
fied to 50. As shown in Fig. 8, the proposed method achieves
the best result in visual interpretation, just as the experimen-
tal results discussed in the HYDICE urban dataset above.
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Fig. 8. Classification maps with different feature representation methods of the Washington DC dataset. (a) Baseline. (b) SPCA. (c) SDA. (d) CNFE. (e) DNP.
(f) CoLGP. (g) MFC. (h) S3FSE.

TABLE III
CLASS-SPECIFIC ACCURACIES IN PERCENTAGE OF THE ROSIS PAVIA CITY DATASET

Fig. 9. Embedded feature dimensionality d respects to OA of the Washington
DC dataset.

For example, it is clear that roof pixels exist in road pixels
in all classification maps. Nevertheless, very little roof pixels
have been mixed into the road pixels in Fig. 8(h), which shows
the result of our proposed approach. For a more detailed accu-
racy assessment of all the methods, we have also reported the
mean and standard deviation of ten group of independent clas-
sification OAs in Table II, as well as the curves of OA with
regard to various d from 1 to 100 in Fig. 9, all of these statis-
tics indicate that our proposed S3FSE algorithm has achieved
the best classification performance.

Fig. 10. (a) ROSIS Pavia city dataset. (b) Ground truth map. (c) Number of
training and test samples for classification.

E. Experiment 3: Pavia City ROSIS Dataset

The Pavia city ROSIS dataset and the reference map are
shown in Fig. 10(a) and (b). According to the reference data,
there are six classes of samples that need to be analyzed, i.e.,
water, road, roof, shadow, grass, and tree. In this dataset, we
still randomly selected 30 samples per class as training sam-
ple and the reminding for testing, the numbers of training
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Fig. 11. Classification maps with different feature representation methods of the ROSIS Pavia city dataset. (a) Baseline. (b) SPCA. (c) SDA. (d) CNFE.
(e) DNP. (f) CoLGP. (g) MFC. (h) S3FSE.

Fig. 12. Embedded feature dimensionality d respects to OA of the ROSIS
Pavia city dataset.

and test samples are listed in Fig. 10(c). The classification
maps, the detailed classification accuracy statistics, and the
performance of OA with regard to various d have shown in
Fig. 11, Table III, and Fig. 12, respectively. In this experi-
ment, the detailed parameter setting of all the algorithms is in
accordance with the instructions described in the experiment
setup section. Similarly to the results reported in the previ-
ous datasets, we observe that the proposed S3FSE algorithm
achieves the best classification performance from both visual
interpretation and accuracy. Consequently, the consistent con-
clusions reported in the aforementioned three hyperspectral
datasets demonstrate that the proposed S3FSE algorithm is
an effective approach for hyperspectral images spectral and
spatial features representation and classification.

V. CONCLUSION

In this paper, we propose an S3FSE algorithm for hyper-
spectral images spectral-spatial feature representation and
classification. In S3FSE, first, the spectral and spatial fea-
tures of each pixel are extracted. Then, the geometric structure
of the spectral and spatial features are preserved and the
consistency and complementary information are exploited via
the co-manifold learning and co-graph regularization. Finally,
considering that some measurements are redundant or noisy,
we impose �2,1 norm to co-regularize the learned projection

matrices to simultaneously performance the feature selection
and feature extraction. As a result, the redundant features and
noises have been discarded, and only the significant origi-
nal features have been transformed. The learned common low
dimensional feature representation can be interpreted as a lin-
ear combination of a subset of significant original features.
Extensive experiments on three public available hyperspectral
datasets have been conducted to confirm the validity of the
S3FSE algorithm. The experimental results show that S3FSE
consistently outperforms the other comparison methods for
hyperspectral images classification. For the future work, we
will consider to extend the current S3FSE to its kernel version
to better fit for the complex datasets in practice.
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