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Abstract—In conjunction with the recently developed morpho-
logical building index (MBI), the proposed postprocessing frame-
work describes the characteristics of buildings by simultaneously
considering the spectral, geometrical, and contextual information,
and can be successfully applied to large high–spatial-resolution
images. In this way, the proposed framework can alleviate the
amount of false alarms to a remarkable extent, which mainly come
from the bright soil and vegetation in rural and mountainous ar-
eas. Validated on a series of large test images obtained by the
widely used commercial satellite sensors, the experiments confirm
the promising performance of the proposed framework over var-
ious areas, including urban, mountainous, rural, and agricultural
areas. Furthermore, the proposed framework increases the quality
index by 11% and 9% on average compared to the performance
of the original MBI and DMP-SVM, respectively. In addition, the
parameter sensitivity is analyzed in detail and appropriate ranges
of the parameters are suggested. The proposed building detection
framework is designed to be of practical use for building detection
from high-resolution imagery.

Index Terms—Building detection, building index, feature extrac-
tion, high resolution, mathematical morphology.

I. INTRODUCTION

MONOCULAR building extraction has been an active
research topic in photogrammetry and computer vision

for many years [1]. The precise detection of buildings is of great
importance to urbanization evaluation, urban management and
planning, and the estimation of human population [2]. In China,
with the rapid development of the economy, extremely dynamic
urbanization has resulted in new social and environmental
issues that need to be addressed [3]. Nowadays, commercial
high-resolution satellite images with multispectral channels
can provide more detailed ground information, and, hence, are
better suited for object detection, land-cover/use monitoring,
and human activity analysis.
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Although the high-resolution imagery provides more abun-
dant detailed information in the spatial domain, detecting build-
ings or built-up areas are still a challenging task. The major
obstacle is the high intraclass variance and low interclass vari-
ance for the spectral statistics of ground features [4], and it is
widely agreed that the high spatial resolution does not necessar-
ily facilitate high interpretation accuracy [5]. Previous studies
focusing on building detection can be categorized from the fol-
lowing aspects. Supervised machine-learning approaches [6]–
[8], which combine spectral information with spatial features,
are among the most widely used approaches, e.g., differential
morphological profiles (DMPs) [9], wavelet-based textures [10],
the pixel shape index [11], and gray-level cooccurrence matrix
textures [12]. It is also worth mentioning that such approaches
are subject to the trivial selection of training samples and the
time-consuming process of machine learning. Meanwhile, re-
searchers have also focused on automatic building detection
from high-resolution images, using spectral/spatial priors [13]–
[16], marked point process models [17], and semantic-based
shadow/building symbiosis [18]–[20]. A number of building
feature indices have also been proposed, which can be used to
indicate the possible presence of buildings. These indices are
effective for supporting the automatic processing of massive
high-resolution satellite data. For instance, Pesaresi et al. [12]
proposed a procedure for the calculation of a texture-derived
built-up presence index, namely PanTex, which is based on
the assumption that buildings and their surrounding shadow can
lead to high local contrast. Several improved versions of PanTex
[21], e.g., approaches considering the vegetation components or
highlighting the morphological characteristics of built-up struc-
tures, have also been proposed for building extraction from
high-resolution images [12], [21] and synthetic aperture radar
images [22].

More recently, Huang and Zhang [23] proposed the morpho-
logical building index (MBI) for automatic building extraction,
the fundamental principle of which is to apply the morphologi-
cal operators (e.g., top-hat by reconstruction, granulometry, and
directionality) to describe the implicit characteristics of build-
ings (e.g., brightness, size, and contrast). Furthermore, an im-
proved version of the original MBI, with the aid of object-based
analysis and shadow/building symbiosis (i.e., the morphological
shadow index) [24], has been proposed to alleviate the commis-
sion and omission errors in urban areas. The effectiveness of
the MBI, as well as its variants, in high building density urban
areas has been verified by a lot of research, including studies
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of urban land-use classification [25] and building change de-
tection [26], [27]. Nevertheless, it should be mentioned that the
aforementioned methods based on the MBI have been focused
on urban areas and they have not considered the difficulty of
building detection in suburban, mountainous, agricultural, and
rural areas. Although there are several automatic shadow-based
building detection approaches which can be applied to com-
plex scenes [18]–[20], they are limited by the shadow detection
performance.

In this study, a new building detection postprocessing frame-
work aligned with the MBI is designed to detect buildings in
complex image scenes, not only urban areas. In view of this, the
drawbacks of the MBI are investigated in the case of dealing
with images of mountainous, agricultural, and rural areas, e.g.,
the MBI is subject to commission errors when bright soil, open
areas, and roads present a brighter intensity than their neigh-
borhoods and show similar spectral characteristics to buildings.
This can be attributed to the fact that the traditional MBI does
not make full use of the spectral and contextual information
to prune the confusing land-cover classes with similar spectral
and morphological properties. To deal with such problems, by
integrating the morphological, spectral, contextual, and geomet-
rical information in a sequential procedure, the proposed post-
processing framework can efficiently remove these false alarms
and extract buildings in more complex and challenging environ-
ments. The proposed framework aims to improve the MBI by
introducing a set of effective constraints. Specifically, the spec-
tral constraint is first used to eliminate the apparent false alarms
caused by bright soil and agricultural fields. Shadow verifica-
tion functions as a contextual filter aiming to prune the isolated
and bright components without surrounding shadow. It is also
worth mentioning that the role of the proposed shadow-based
contextual constraint is focused on building candidate screen-
ing, which is independent of the coarse detection step [18]–[20].
The shape constraint, e.g., the area and length–width ratio, is
taken as a screening to remove small errors, e.g., roads and other
narrow objects. The proposed framework is efficient and easy to
implement, and, thus, has potential for rapid building detection
from large-area high-resolution remote-sensing imagery.

The rest of this paper is organized as follows. Section II
reviews the original MBI algorithm. The proposed framework
is introduced in Section III. Section IV presents the datasets, the
experimental results, and a discussion, which is followed by the
conclusion in Section V.

II. MORPHOLOGICAL BUILDING INDEX

Using a set of morphological operators, the MBI aims to
describe the spatial characteristics of buildings. Specifically, the
following key features of buildings are modeled.

1) Local Contrast: Buildings often cast shadows, leading to
high local contrast. Therefore, the morphological white
top-hat (WTH) transform, which can highlight the bright
structures with high local contrast, is used to represent the
characteristics of buildings.

2) Size and Directionality: Unlike roads, which are elon-
gated structures, the sizes of buildings are always within a

limited range, and they are relatively isotropic. Therefore,
the MBI is constructed based on a set of linear structures,
which are used to model the size and directionality of
buildings.

The principle of the MBI is shown in flowchart format in
Fig. 1, and its calculation is briefly introduced as follows. First,
the maximum value of each pixel in the visible bands is recorded
as the brightness. The brightness image is focused on the consid-
eration that buildings are brighter than their neighboring pixels
[12]. Second, multiscale and multidirectional WTH operators
are used to construct the DMPs, which can be viewed as the
shape spectra of the objects [6]. The WTH operators are able
to describe the local contrast of buildings, and the multiscale
and multidirectional structural elements (SE) are used to repre-
sent their spatial sizes and isotropy. In this study, the multiscale
and multidirectional WTH operators are input into the DMPs
to highlight the spatial patterns of buildings in different scales
and directions. Finally, the multiscale DMP-WTH profiles are
integrated by an averaging operator to emphasize the presence
of buildings. The MBI is, therefore, defined as

MBI =
∑

s∈S

∑
d∈D (DMP − WTH(s, d))

Ns × ND
(1)

where DMP-WTH is the WTH-based DMPs, d and s represent
the direction and scale of the WTH operator, and NS and ND

are the total number of scales and directions, respectively. Since
buildings show a high local contrast in different directions, they
always have large MBI feature values.

Although the MBI can show satisfactory results in urban ar-
eas, it is subject to a large number of false alarms in nonurban
regions, e.g., suburban, agricultural, rural, and mountainous ar-
eas, which has prevented its application in large-area building
mapping. To address this problem, in this study, by considering
additional constraints (e.g., spectral, shadow, and shape) on the
original MBI, we propose a new building detection framework
for automatic building detection in complicated image scenes
and environments.

III. PROPOSED FRAMEWORK

The proposed framework sequentially conducts spectral con-
straints (abbreviated as SPE), shadow verification (abbreviated
as SHD), and shape constraints (abbreviated as SHA) on the
initial MBI. First, the normalized difference vegetation index
(NDVI), the normalized difference water index (NDWI) [28],
and the hue component (H) of the images are taken as the
spectral prior to refine the original MBI feature. The resulting
building map can then be aggregated into a series of connected
components, so as to further describe the shape attributes and
contextual relationship. Second, shadow verification is used to
remove the structures without shadows existing in the illumina-
tion direction. Third, shape constraints, including the area and
the length–width ratio, can further alleviate small errors, roads,
and other narrow objects, resulting in the final detection map of
the proposed framework.
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Fig. 1. Flowchart of MBI calculation for multispectral high-resolution remotely sensed imagery.

Fig. 2. Flowchart of SPE.

A. Spectral Constraints

It is difficult to directly apply spectral constraints to buildings
due to their diverse spectral characteristics, but it is possible to
impose the spectral constraints on the nonbuilding areas, and,
therefore, refine the output of the original MBI, as illustrated in
Fig. 2. In this section, we consider the NDVI, the hue component
(H), and the NDWI of the high-resolution imagery

NDVI =
NIR − R
NIR + R

(2)

NDWI =
G − NIR
G + NIR

(3)

H1 =

⎧
⎨

⎩

(G − B) /C × 60 if R = max(R,G,B)
120 + (B − R) /C × 60 if G = max(R,G,B)
240 + (R − G) /C × 60 if B = max(R,G,B)

IFH1 < 0,THENH ← 360 + H1;ELSEH ← H1 (4)

where NIR, R, G, and B represent the reflectance values in the
near-infrared, red, green, and blue channels, respectively, and C
is a constant that is equal to max(R,G,B) − min(R,G,B).

1) Vegetation/Soil Elimination (VE): Bright vegetation and
soil constitute the main source of commission errors for building
detection, and VE is still a big challenge for the current build-
ing detectors. In this study, the vegetation index and the HSV
(hue, saturation, value) color space are integrated to reduce the
false alarms from bright vegetation and soil. In an ideal case,
a high built-up density area with a lower probability of vegeta-
tion presence should be allocated a higher NDVI threshold, and
vice versa. In view of this, a dual-threshold filter for VE can

be useful. Meanwhile, some low building density areas will be
overestimated by the initial MBI, due to the false alarms. To deal
with this problem, a reasonable building density estimation alle-
viating the overestimation is required before the dual-threshold
processing. That is, aiming at pruning the potential false alarms
following the density estimation, a rough low NDVI threshold
in conjunction with the hue constraint is first utilized to produce
a temporary MBI-based mask for high-/low-density area sep-
aration (see ©1 in Fig. 2). As this rough step increases the gap
between the high- and low-density areas, the density distribution
for every pixel is recorded by locally averaging the temporary
MBI-based mask in an N×N window. Otsu’s method [29] is then
used to extract the low-density area from the initial MBI (see
©2 in Fig. 2), by use of the refined density distribution. Finally, a
low NDVI threshold (that is, vlow ) in conjunction with the hue
constraint is used to screen the vegetation/soil false alarms in
the low building density area; while a high NDVI threshold (that
is, vhigh ) in conjunction with the hue constraint is used in the
high-density area (see ©3 in Fig. 2). It is notable that although
the first rough NDVI threshold may remove some buildings as
well, the goal of the density separation is easy to achieve. For
simplicity, we can set the value of the rough NDVI threshold
to the same as vlow , without degrading the performance. The
dual-threshold step can be expressed as

IFNDVI (xhigh) ≥ vhigh ANDhmin < H(xhigh) < hmax ,

THENMBI (xhigh) = 0

IFNDVI (xlow ) ≥ vlow ANDhmin < H(xlow ) < hmax ,

THENMBI (xlow ) = 0

where vhigh and vlow denote the vegetation index threshold in the
high-density and low-density regions, respectively. NDVI(.),
H(.), and MBI(.) denote the specific feature values, respec-
tively. hmin and hmax are fixed values representing the green
and yellow components in the HSV space, corresponding to
the spectral characteristics of vegetation and soil, respectively.
Please note that some buildings (e.g., blue roofs) that show high
NDVI values (see Fig. 3(b)) can be incorrectly removed when
only considering the NDVI. In this study, therefore, both the
NDVI and hue are jointly used to remove the bright vegetation
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Fig. 3. Example of VE: (a) RGB; (b) NDVI; (c) binary hue image, where the white pixels are within the range of hm in and hm ax in the H component;
(d) original MBI; and (e) MBI feature after VE.

Fig. 4. Example of water body elimination: (a) RGB; (b) NDWI; (c) MBI; (d) MBI with VE; and (e) MBI with SPE constraint (including VE and WE).

and soil. As demonstrated in Fig. 3, by simultaneously con-
sidering NDVI and hue, the false alarms caused by the bright
vegetation and soil can be effectively removed, and the blue
buildings with high NDVI values can also be preserved.

2) Wetland Elimination (WE): As a robust water index, the
NDWI can be useful for refining the morphological building
detection (see ©4 in Fig. 2). The rule of WE can be expressed as
follows:

IFNDWI (x) ≥ w,THENMBI (x) = 0

where w and NDWI(.) denote the water index threshold and
the NDWI feature value, respectively. As can be seen in Fig. 4,
a water body (left bottom), which shows a high NDVI response
due to eutrophication, can be removed with the aid of the NDWI
constraint.

After the spectral filtering, we then binarize the modified
MBI feature to obtain an initial building map, as an input to the
following analysis.

B. Shadow Verification and Shape Constraints

1) Shadow Elimination: Shadow can serve as a constraint
for building extraction to remove false alarms, such as soil,
roads, parking lots, and open areas. In this paper, we utilize
the histogram thresholding approach [30] for shadow detection
(see Fig. 5(b)), where the NIR band is considered due to its
superior separability for shadow. Subsequently, the resulting
shadow feature image is dilated the NIR band is considered due
to its superior separability for shadow. Subsequently, the result-
ing shadow feature image is dilated the NIR band is considered
due to its superior separability for shadow. Subsequently, the
resulting shadow feature image is dilated using a linear SE in

Fig. 5. Example of shadow verification: (a) RGB; (b) initial result for buildings
and shadow, where the yellow and blue pixels represent buildings and shadow,
respectively; (c) dilation of shadow, where the cyan pixels represent the dilated
shadow areas; and (d) the result after shadow verification.

the opposite direction to the solar illumination angle. This con-
straint is used to test whether or not the candidate buildings are
spatially adjacent to the shadow they cast. If there is an overlap,
then the detected buildings can be retained; otherwise, the de-
tected buildings are removed. The rule of SHD can be expressed
as follows:

IF SPE (x) ∪ dilate (S (x)) =∅,
THENx is identified as a non − building structure

where SPE(x) represents the refined building detection result of
pixel x after the spectral constraint, S(.) is the shadow map,
and dilate(.) denotes the morphological dilation operator. As
shown in Fig. 5, buildings that are adjacent to the dilated shadow
are confirmed and retained, but a playing field (circled by the
red border) without surrounding shadow can be successfully
filtered out.

2) Shape Elimination: Shape features, such as the area and
length–width ratio, can be used as constrained conditions for
buildings. On the basis of the building map generated by the con-
nected component analysis, the area is calculated by counting
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Fig. 6. Four selected test datasets: (a) the Hangzhou image and test patches #1 and #2; (b) the Shenzhen image and test patches #3 and #4; (c) the Panzhihua
image and test patches #5 to #7; and (d) the Harbin image and test patches #8 and #9.

TABLE I
DETAILS OF THE DATASETS CONSIDERED IN THIS RESEARCH

Test image Satellite sensor Spatial resolution Spatial size Major coverage Major error sources

Hangzhou WorldView-2 2.0 2454 × 2750 Medium-density urban roads, bright soil, open areas
Shenzhen QuickBird 2.4 4507 × 5360 highly dense urban roads, bright soil, open areas
Panzhihua QuickBird 2.4 8805 × 9449 mountainous roads, bright soil, open areas, paddy fields
Harbin QuickBird 2.4 7310 × 3554 agricultural, rural bright soil, roads

the total number of pixels in an object, and the length–width
ratio is measured as the ratio between the maximum and min-
imum lengths of an object. The aim of the shape constraints
is to alleviate the commission errors by removing small er-
rors, e.g., narrow and elongated roads. The rule of SHA can be
expressed as

IFCount (x) < c ORLWR (x) > r
THENx is identified as a nonbuilding structure

where Count(.) indicates the number of pixels in an object and c
denotes its threshold. LWR(.) represents the length–width ratio
and r is its threshold.

IV. EXPERIMENTS AND DISCUSSION

A. Datasets

We selected four high-resolution datasets covering the cities
of Hangzhou, Shenzhen, Panzhihua, and Harbin to validate the
performance of the proposed framework. Located in different
regions of China, these study areas represent a variety of typical
scenes, such as urban, rural, mountainous, and agricultural areas.
The study images, as well as a set of representative test patches
(for detailed analysis and comparison), are shown in Fig. 6, and
the details of these datasets are listed in Table I.

B. Experimental Settings

To investigate the effectiveness of the proposed framework,
the original MBI [23] and DMP-SVM [24] were used as com-
parison methods (see Section IV-C1). First, please note that the
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TABLE II
PARAMETERS OF THE PROPOSED FRAMEWORK FOR THE STUDY DATASETS

N (m) vm in vm a x w hm in hm a x r c b

Hangzhou 120 0.12 0.2 0.5 20 140 7 9 0.12
Shenzhen 120 0.12 0.2 0.5 20 140 7 4 0.12
Panzhihua 120 0.12 0.2 0.5 20 140 7 4 0.20
Harbin 120 0.12 0.2 0.5 20 140 7 4 0.25

threshold values for the MBI and the proposed framework are
different due to their different motivations. The threshold of the
MBI is aimed at maximizing the discrimination between build-
ing and nonbuilding structures, but the proposed framework
prefers a smaller threshold value, so as to keep more building
candidates before importing the spectral, shadow, and shape
filters. Meanwhile, DMP-SVM utilizes multiscale and multidi-
rectional DMPs as features and support vector machine (SVM)
[31] as the classifier in a binary classification framework to dis-
criminate between buildings and nonbuildings. In this case, 300
building pixels and 300 background pixels were randomly and
manually delineated from each image as training samples.

To further explore the role of the shadow verification of the
proposed framework, two recent shadow-based detectors, kindly
implemented by the original authors, were used for a detailed
comparison (see Section IV-C2). The first shadow-based de-
tector is GrabCut [18], which models the directional spatial
relationship between buildings and their shadows using a new
fuzzy landscape generation approach, and the buildings are then
detected by GrabCut with the help of the detected shadow and
landscape regions. The second detector is multilabel partitioning
[19], which improves the GrabCut [18] approach by the use of
the two-level graph theory approach. Both of these approaches
were designed for the automatic detection of buildings in com-
plex environments, and they can perform well in challenging
scenes. Due to the availability of the metadata of the test site, a
relatively large area in Shenzhen was tested (see Section IV-C2).
For a fair comparison, the results of both the benchmark meth-
ods achieved by the optimal parameter settings are reported, and
the suggested parameter settings for the proposed framework in
all the test datasets are listed in Table II (the hue images were
rescaled to [0,255]). Concerning the NIR band is considered due
to its superior separability for shadow. Subsequently, the result-
ing shadow feature image is dilated the NIR band is considered
due to its superior separability for shadow. Subsequently, the
resulting shadow feature image is dilated the parameter selec-
tion, several issues should be noted. First, appropriate ranges
of parameters for the proposed framework are suggested in this
study. Second, most of the parameters can be kept the same for
different datasets. The parameter sensitivity is further analyzed
in Section IV-C. All the experimental steps, except for SVM,
which was implemented with the help of the LibSVM pack-
age using C++, were performed using MATLAB R2015b on
a workstation with a single i7-3770K 2.80 GHz processer and
64.0 Gb of RAM.

To quantitatively evaluate the building detection results, a
large number of manually delineated representative reference

samples were uniformly distributed in the images. The refer-
ence samples were generated by field investigation and careful
image interpretation of the study areas. The following metrics
were used to assess the building detection accuracy: complete-
ness (Com), correctness (Cor), and quality (Q). Referring to as
the “detection rate,” completeness is the percentage of correctly
detected buildings to the total number of reference buildings.
Correctness is the percentage of correctly detected buildings to
the total number of detected buildings [32]. An ideal detection
result should simultaneously have high completeness and cor-
rectness. The quality of the results provides a tradeoff metric
that balances completeness and correctness [33].

C. Experimental Results

1) General Results and Analysis of the Representative Test
Patches: The building detection results are shown in Fig. 7,
where the white and black pixels represent the detected build-
ings and background, respectively. The quantitative accuracies
are listed in Table III, where the best results for each qual-
ity index are labeled in bold, and the suboptimal results for
each quality index are underlined. In general, the MBI shows
the worst performance and the proposed framework obtains the
best performance for all cases, in terms of both the visual inter-
pretation and quantitative assessment. In the four test images,
building extraction for Panzhihua and Harbin, corresponding
to mountainous and rural/agricultural areas, respectively, was
challenging, but the proposed framework still presents promis-
ing performances in these areas, i.e., the quality indices are
∼82%. The detection results obtained by the proposed frame-
work, MBI, and DMP-SVM are further discussed as follows.

MBI performs well in the urban areas, but it is subject to over-
estimation (false alarms) in the nonurban areas, due to the com-
plexity of the challenging scenes, especially in Panzhihua and
Harbin. According to Table III, it is apparent that the proposed
framework is superior to the original MBI in both completeness
and correctness. For instance, the increase of completeness, cor-
rectness, and quality are 0.55%, 7.91%, and 6.48% in Hangzhou,
and 5.75%, 18.75%, and 18.84% in Panzhihua, respectively. The
significant improvements in correctness indicate that a number
of false alarms can be successfully removed by the use of the
filters in the proposed framework. Meanwhile, compared to the
original MBI, a smaller binary threshold for the proposed frame-
work preserves more potential buildings, and, hence, ensures a
higher completeness in the experiments.

Benefiting from the supervised machine learning, the accu-
racy of DMP-SVM is better than the original MBI, and the
completeness is close to that achieved by the proposed frame-
work. However, similar to the MBI, DMP-SVM does not solve
the problem of false alarms, resulting in a lower correctness (see
Table III). Furthermore, DMP-SVM requires intensive manual
labor since additional training samples need to be manually col-
lected to precisely model the features of the buildings. To fur-
ther compare the performance of the proposed framework and
DMP-SVM, the computational efficiency (computation time)
is reported in Table III. Despite ignoring the time cost for the
selection of the training samples, the proposed framework can
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Fig. 7. Building detection results: (a) original RGB images; (b) building maps with the result of the MBI; (c) building maps with the result of DMP-SVM; and
(d) building maps with the result of the proposed framework. The green color represents the boundary between the high-density and low-density areas.

TABLE III
REFERENCE INFORMATION, ACCURACY (%), AND COMPUTATION TIMES (S) OF THE STUDY DATASETS

# Test samples MBI DMP-SVM The proposed framework

Test image Buildings Background Com Cor Q Time Com Cor Q Time Com Cor Q Time

Hangzhou 121671 296094 85.86 87.39 76.40 7.8 86.10 88.51 77.44 28.3 86.41 95.30 82.88 12.9
Shenzhen 134979 244670 89.11 90.65 81.61 34.0 89.32 91.07 82.12 105.0 93.84 92.42 87.14 43.4
Panzhihua 112780 916871 83.65 72.74 63.69 140.6 87.81 73.91 67.03 348.5 89.40 91.49 82.53 174.1
Harbin 77317 365455 86.74 80.25 71.48 44.5 86.45 83.78 74.06 130.2 89.58 96.07 86.41 52.6
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Fig. 8. Building detection results and the ground reference for the representative test patches: (a) original RGB images with ground reference (with red boundary);
(b) the results of the MBI; (c) the results of DMP-SVM; and (d) the results of the proposed framework.
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Fig. 9. Building detection results: (a) original RGB image; (b) result of GrabCut [18]; (c) result of multilabel partitioning [19]; and (d) result of the proposed
framework.

Fig. 10. Building detection results and the ground reference (with red boundary) for the representative examples: (a) original RGB images; (b) results of GrabCut
[18]; (c) results of multilabel partitioning [19]; and (d) results of the proposed framework.
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TABLE IV
ACCURACY (%) OF THE BUILDING DETECTION RESULTS FOR EACH STEP OF THE PROPOSED FRAMEWORK

Initial MBI SPE SPE + SHD SPE + SHD + SHA

Test image Com Cor Q Com Cor Q Com Cor Q Com Cor Q

Hangzhou 87.90 85.12 76.19 86.63 91.81 80.41 86.42 94.70 82.43 86.41 95.30 82.88
Shenzhen 94.64 81.19 77.62 94.20 87.95 83.42 94.17 90.95 86.10 93.84 92.42 87.14
Panzhihua 90.91 49.50 47.17 89.89 86.48 78.82 89.48 89.47 80.96 89.40 91.49 82.53
Harbin 90.19 70.37 65.37 89.67 93.52 84.42 89.58 95.51 85.96 89.58 96.07 86.41

TABLE V
Q INDEX (%) OF THE BUILDING DETECTION RESULTS FOR THE SPECTRAL, SHADOW, AND SHAPE CONSTRAINTS

Test image Initial MBI SPE SHD SHA SPE + SHA + SHD SPE + SHD + SHA

Hangzhou 76.19 80.41 80.19 76.97 82.75 82.88
Shenzhen 77.62 83.42 81.48 78.95 86.86 87.14
Panzhihua 47.17 78.82 58.36 49.12 81.47 82.53
Harbin 65.37 84.42 81.86 66.00 85.97 86.41

Fig. 11. Building detection results and the ground reference for patches #1, #5, and #9: (a) original RGB images with ground reference (with red boundary);
(b) results of the initial MBI; (c) results of the initial MBI + spectral constraint; (d) results of the initial MBI + spectral constraint + shadow verification; and
(e) results of the initial MBI + spectral constraint + shadow verification + shape constraint. The red, yellow, and purple regions emphasize the performances of
the spectral, shadow, and shape constraints, respectively.

be carried out much more rapidly than DMP-SVM. The above
experimental results confirm that the proposed framework is
efficient for building detection from high-resolution imagery.

The results of the set of representative test patches (see Fig. 6)
are further compared and analyzed in this section. The original
image, the reference data, and the results of the MBI, DMP-
SVM, and the proposed framework are shown in Fig. 8, where

the ground reference is delineated with a red boundary in the
original image. As can be seen in the figure, the proposed frame-
work is the most robust and promising detector in the various
challenging scenes. In these test patches, it can be clearly seen
that the MBI and the DMP-SVM are subject to many false
alarms, especially in the nonurban scenes. Each example patch
is analyzed in detail in the following.
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In patch #1, which is a typical urban area, all the detec-
tors show similar completeness but different correctness, as
the MBI and DMP-SVM wrongly detect a number of false
alarms, such as playing fields (green rectangles), open areas,
and bare soil (yellow rectangle). In patches #2, #3, and #4,
where the landscapes mostly consist of natural green space,
both the MBI and DMP-SVM are subject to false alarms, such
as bare soil (green rectangles) and roads (yellow rectangles).
As for the mountainous areas, e.g., patches #5, #6, and #7, a
large quantity of bare soil, open areas, and paddy fields are
incorrectly identified, corresponding to the relatively low cor-
rectness values reported in Table III. In particular, patch #5,
where no buildings exist, was used to test the commission er-
rors of the different building detectors. In this case, the pro-
posed framework achieves the best results, but the MBI and
DMP-SVM lead to a series of commission errors, with a num-
ber of bright soil and vegetation areas incorrectly detected.
Patches #8 and #9 are associated with agricultural areas, where
there is confusion between the buildings/dry farmland in patch
#8 (green rectangle) and the elongated roads/buildings (yellow
rectangle) in patch #9, due to their similar spectral reflectance.
All in all, the representative test patches show that the pro-
posed framework is able to produce more robust and desir-
able results in various image scenes than the two comparative
methods.

2) Comparison With Recent Shadow Detection-Based De-
tectors: In order to compare the proposed framework with the
existing shadow detection-based approaches, the building detec-
tion maps of the test image (a relatively large area in the Shen-
zhen test image) obtained with the proposed framework, Grab-
Cut [18], and multilabel partitioning [19] are shown in Fig. 9,
and the according representative patches are displayed in Fig. 10
for further analysis. GrabCut [18] and multilabel partitioning
[19] are shadow-based methods, which tend to be limited by the
shadow detection results, although the multilabel partitioning
[19] is less sensitive, which can be attributed to the introduction
of a two-level graph partitioning framework. According to
Fig. 9, the proposed framework provides comparable or even
slightly better results than the multilabel partitioning [19], and
both methods perform better than GrabCut [18], since it misses
more buildings. Specifically, the proposed framework performs
better than the two comparative methods in some local regions
because the shadow detection result may not be very good in
these regions, but the multilabel partitioning [19] acquires better
building shape preservation and higher completeness in some
local regions. As can be seen in Fig. 10, all of the approaches
perform well since they detect most of the buildings in these
representative patches. GrabCut [18] is subject to the most
severe omission problem, and the multilabel partitioning [19]
also misses some buildings due to the difficulty of precisely de-
tecting the shadow in such a complex and large image, while the
proposed framework shows less sensitivity because the shadow
is only utilized to verify the detected building candidates.
However, some dark buildings are still left out of the results of
the proposed framework, which is one of the drawbacks of the
original MBI.

D. Experimental Analysis

1) Constraints of the Proposed Framework: To clearly illus-
trate the specific roles of the different constraints in the proposed
framework, the results of the filters are displayed step by step
in Table IV and Fig. 11. The accuracy indices in the table show
that, when compared with the original MBI, the correctness
and quality scores are raised significantly, but the complete-
ness scores only decreases slightly when the SPE, SHD, and
SHA constraints are gradually considered. In this regard, it can
be stated that the proposed framework successfully removes a
large number of false alarms, and at the same time hardly misses
any correct buildings. Specifically, the spectral constraints ef-
fectively remove the bare soil in patch #1 (urban area), the soil
and paddy fields in patch #5 (mountainous area), and the dry
farmland and road in patch #9 (agricultural area). The shadow
constraint (SHD) effectively filters out the playing fields and
open areas in patch #1 and the bright soil in patch #5. Finally,
the shape constraint can clear up the residual dry farmland and
roads in patch #9.

Furthermore, the effects of the three filters are individually
displayed in Table V, columns 2–4, which list the quality scores
(Q) of the detection results associated with the specific filter
(SPE, SHD, and SHA). Among these filters, with regard to the
Q scores (see Table V), the spectral constraint achieves the best
results in terms of improving the original MBI. The shape con-
straint presents only a slight improvement over the initial MBI,
as it is only aimed at removing small noise points and elongated
objects. Moreover, the order of the three filters was investi-
gated, and two different combinations are compared in last two
columns of Table V. This shows that the most appropriate order
for the filters of the proposed framework is spectral, shadow,
and shape in order.

2) Parameters of the Proposed Framework: In this section,
suggestions for the parameter settings are given and the sensi-
tivity of some of the critical parameters is analyzed.

a) Window Size N (m): N is used to calculate the average
MBI value of the pixels in an N × N window size, which is
used to separate high MBI areas from low MBI areas. In order
to investigate the impact of N, the completeness, correctness,
and quality scores of the building detection results with different
window sizes are displayed in Fig. 12. N is not sensitive to these
test images as their results are relatively stable when the value
of N is varied from 60 to 300. However, the performances with
120 and 180 are better than the performances with the other
sizes, while the former size has a lower computational cost.

b) Spectral Constraint: The dual thresholds of the NDVI
(vhigh and vlow ) are applied to eliminate vegetation and soil
in different degrees for high MBI areas and low MBI ar-
eas. In Fig. 13, the completeness, correctness, and quality
of the building detection results with different combinations
of vhigh and vlow are shown in order to analyze the impact
of the thresholds of the NDVI. The Hangzhou, Shenzhen,
Panzhihua, and Harbin datasets achieve the highest quality
score when vlow = 0.12 and vhigh = 0.24, vlow = 0.12 and
vhigh = 0.2, vlow = 0.08 and vhigh = 0.2, and vlow = 0.12 and
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TABLE VI
ACCURACY (%) OF THE BUILDING DETECTION RESULTS FOR THE AUTOMATIC SELECTION OF THRESHOLDS

MBI NDVI (Otsu’s) NDWI (Otsu’s) Binary threshold (Otsu’s) The proposed framework

Test image Com Cor Q Com Cor Q Com Cor Q Com Cor Q Com Cor Q

Hangzhou 85.86 87.39 76.40 84.18 96.06 81.37 58.58 97.82 57.82 62.02 98.84 61.57 86.41 95.30 82.88
Shenzhen 89.11 90.65 81.61 94.21 87.71 83.22 25.80 91.41 25.19 84.52 97.60 82.80 93.84 92.42 87.14
Panzhihua 83.65 72.74 63.69 89.83 87.18 79.35 15.48 77.11 14.80 82.59 92.10 77.13 89.40 91.49 82.53
Harbin 86.74 80.25 71.48 90.27 93.59 85.01 49.27 87.70 46.09 82.73 96.93 80.61 89.58 96.07 86.41

Fig. 12. Correlation between the window size N and the building detection accuracies: (a) completeness; (b) correctness; and (c) quality.

vhigh = 0.24, respectively. That is, the optimal value in each
subfigure belongs to the nondiagonal ones, which confirms the
superiority of the dual-threshold setting. According to the au-
thors’ experience, the suggested thresholds of vhigh and vlow are
in the range [0.1, 0.16] and [0.2, 0.3], respectively, where the
quality scores are satisfactory and stable.

Thresholds of the NDWI (w) and hue component (hmin and
hmax ): The NDWI is aimed at filtering out the commission er-
rors of water features, and its threshold w was fixed as 0.5 in this
study. However, the threshold may need to be changed when the
NDWI is applied to different high-resolution remote-sensing
images. Although it may be difficult to select a threshold to
distinguish water from other targets, it is easy to select a rel-
atively large threshold in order to filter out the bright water
and retain the buildings. The thresholds of the hue compo-
nent are used to highlight the green and yellow components
in the color space. Therefore, hmin and hmax can be safely
set as 20 and 140, respectively (the hue image is rescaled to
[0, 255]).

c) Binary Threshold (b): The binary threshold b is the
threshold used to extract the initial building structures from
the original MBI. It is suggested that it is set as a small value
in order to keep more building candidates for the subsequent
spectral, shadow, and shape filters. The building detection ac-
curacies for the proposed framework with regard to parameter
b in all four datasets are displayed in Fig. 14. I can be said
that this parameter should be fine-tuned according to the dif-
ferent test datasets. For instance, an appropriate range of b is
between 0.04 and 0.12 for the Hangzhou dataset, but the pa-
rameter is not sensitive to the other three test images as their

results are relatively stable when its value is changed from 0.04
to 0.28. In general, however, the preferred threshold can be se-
lected in terms of the Q score to balance the completeness and
correctness.

d) Shape Constraint: Thresholdof the area (c): The area is
used to remove small noise points. Considering that most small
buildings have an area of approximately 5 × 5 m [13], in this
study, the area threshold was fixed as c = 4 for the QuickBird
images and c = 9 for the WV-2 images.

Threshold of the length–width ratio (r): The length–width
ratio is used to remove narrow and elongated nonbuilding struc-
tures. The correlation between the threshold of the length–
width ratio and the building detection accuracies is illustrated in
Fig. 15. It can be seen in Fig. 15 that a small value of r can filter
out some buildings, leading to decrease in the completeness (see
Fig. 15(a)). The correctness index shows an improvement as the
value of r is increased from 4 to 12 (see Fig. 15(b)), illustrating
that the shape constraint is able to reduce the false alarms. In
general, a suitable range for threshold r is from 7 to 10 in terms
of the Q score reported in Fig. 15(c).

3) Threshold Setting Approaches: As a typical automatic ap-
proach, Otsu’s method, which partitions the whole data into two
clusters (i.e., background and target) by measuring the vari-
ance, was used as a comparison. The thresholds associated
with the NDVI, the NDWI, and the binary thresholds (b) were
investigated. We manually fixed the other parameters as the
corresponding optimal and focused on one specific parameter
at a time. The quantitative accuracies are listed in Table VI,
where the best results for each quality index are labeled in bold.
In general, the superior Q scores in the last column and the
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Fig. 13. Correlation between the thresholds of the NDVI and the building detection accuracies: the horizontal axis and vertical axis represent the values of vhigh
and vlow , respectively.

Fig. 14. Correlation between the binary threshold b and the building detection accuracies: (a) completeness, (b) correctness, and (c) quality.

Fig. 15. Correlation between the threshold of the length–width ratio (r) and the building detection accuracies: (a) completeness; (b) correctness; and (c) quality.
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inferior values associated with Otsu’s method confirm the supe-
rior performance of the proposed framework.

For the first case, the thresholds of vhigh and vlow were equiv-
alent to the automatic NDVI threshold. The Q scores for the au-
tomatic NDVI threshold show a decrease in accuracy for all the
datasets compared to the manually selected thresholds, although
the completeness presents a tiny improvement in these datasets,
except for the Hangzhou dataset. The results of the automatic
NDWI threshold are very poor, which is related to the propor-
tion of water in these images. However, it is a good idea to select
a relatively large threshold in order to filter out the bright water
and retain the buildings. The automatic binary threshold tends
to be too large, and the completeness values are significantly
lower while the correctness values are only slightly higher, thus
causing a decrease in the quality. Overall, the automatic ap-
proach is sensitive to the amount of the land cover, especially
when dealing with rare target cases. In view of this, using the
suggested ranges for the parameters may be a better approach.

V. CONCLUSION

In this study, a new building detection postprocessing frame-
work has been proposed, aiming at adapting and extending
building detection to different and complex environments, such
as urban, agricultural, mountainous, and rural areas. To this
end, the newly proposed framework improves the recently devel-
oped MBI detector by additionally considering spectral, shadow,
and shape constraints, which actually form a filtering system to
deal with more challenging image scenes. Four high-resolution
images acquired by commercial high-spatial-resolution sensors
(e.g., QuickBird, WorldView-2) were used to validate the pro-
posed framework, and the results were promising and robust as
the quality scores of all the test images were higher than 80%.

The advantages of the proposed framework can be summa-
rized as follows: 1) it is a robust and effective building detector
for high-resolution remote-sensing imagery, by simultaneously
integrating multiple constraints, including morphological, spec-
tral, shadow, and shape features. 2) The proposed framework is
able to achieve satisfactory performances for various challeng-
ing scenes (not only in urban areas); thus, showing its potential
for building detection from large-area high-resolution remote-
sensing imagery. 3) The appropriate range for the thresholds
has been suggested based on a large number of tests. 4) The
high computational efficiency and simple implementation of
the proposed framework show its potential for not only build-
ing detection, but also for other applications, such as building
density estimation, urban environmental monitoring, socioeco-
nomic parameter analysis, etc.
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