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Abstract—Spectral unmixing is very important in hyperspectral
image analysis and processing, which aims at identifying the con-
stituent spectra (i.e., endmembers) and estimating their fractional
abundances from the mixed pixels. In recent years, sparse un-
mixing has received considerable interest. However, the acquired
hyperspectral images are generally degraded by the noise, making
sparse unmixing not faithful enough. To address this issue, this
paper proposes a novel framework to couple sparse hyperspec-
tral unmixing and abundance estimation error reduction together.
Specifically, with the definition of abundance estimation error, a
centralized constraint is incorporated into the collaborative sparse
unmixing framework by exploiting the nonlocal redundancy of
abundance map. This way we suppress the abundance estimation
error, and improve the unmixing accuracy. Meanwhile, the alter-
nating direction method of multipliers is introduced to solve the
underlying constrained model. Experimental results on both syn-
thetic and real hyperspectral data demonstrate the effectiveness of
our proposed algorithm.

Index Terms—Abundance estimation error, hyperspectral im-
ages, nonlocal means (NLM), spectral unmixing.

I. INTRODUCTION

HYPERSPECTRAL imaging collects and processes infor-
mation from across the electromagnetic spectrum. The re-

sulting hyperspectral images contain a wealth of high-resolution
spectral information permitting various applications in the field
of geoinformation science and earth observation. However, be-
cause of the limited spatial resolution, together with microscopic
material mixing and multiple scattering, the mixed pixels widely
appear in the observed hyperspectral data. Therefore, spectral
unmixing is an important technique for hyperspectral image ex-
ploitation, which tends to identify the constituent spectra (i.e.,
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endmembers) and estimate their fractional abundances from the
mixed pixel [1].

In the context of spectral unmixing, both linear and nonlin-
ear mixture models are utilized to describe the mixing process
of mixed pixels [2], [3], among which the former has attracted
significant interest of researchers in terms of its simplicity and
definite physical meaning. Specifically, the linear mixture model
(LMM) [2] assumes that the measured spectral signature can be
modeled as a linear combination of the endmembers weighted
by their fractional abundances. To date, many unmixing ap-
proaches based on LMM have been proposed from the geo-
metrical or statistical perspective [2]. The geometrical class of
approaches conjectures that the spectral vectors lie in a sim-
plex whose vertices correspond to the endmembers. The clas-
sical unmixing algorithms assume the presence of pure pixels
in the hyperspectral data, which start with endmember extrac-
tion, and then perform abundance estimation by decomposing
the mixed pixels with the nonconstrained or constrained least-
squares methods [4]. To identify the endmembers, N-FINDR
[5] and vertex component analysis (VCA) [6] are commonly
used. Specifically, N-FINDR finds the endmembers by search-
ing for a simplex with the maximum volume, whereas VCA
iteratively extracts them by the projection analysis. Neverthe-
less, they usually do not perform well in practice due to that
the pure pixel assumption can barely be fulfilled at most time.
Therefore, the minimum volume-based geometric approaches,
such as minimum volume simplex analysis (MVSA) [7] and
minimum volume enclosing simplex (MVES) [8], have been
proposed to deal with the scenarios of no pure pixels. The basic
idea is to fit a simplex of minimum volume to the hyperspectral
data for endmember extraction [9], which amounts to solving
the constrained optimization problem. The difference between
MVSA and MVES lies in the optimization strategy. Besides the
high computational complexity, these algorithms are likely to
fail in highly mixed data because there are not enough spectral
vectors in the simplex facets.

The statistical class of approaches that exploits Bayesian
paradigm to provide a natural framework for representing
variability in endmembers tends to simultaneously obtain the
endmembers and their corresponding abundances. In [10], a
fully Bayesian algorithm was proposed to generate the unmixing
results by imposing prior distributions on the model variables
to account for the nonnegativity and full additivity constraints.
In addition, the unmixing algorithms of blind source sepa-
ration, e.g., independent component analysis (ICA) [11] and
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nonnegative matrix factorization (NMF) [12], are also consid-
ered to belong to the statistical approaches [2]. ICA supposes
the spectral components to be statistically independent. But this
assumption goes against the abundance sum-to-one constraint
(ASC) in LMM, which degrades the performance of ICA
in unmixing. Different from ICA, NMF decomposes the
hyperspectral data into two nonnegative matrices (respectively
corresponding to the endmember matrix and the abundance
matrix), being subjected to the nonnegative constraint. This
nonnegative constraint naturally ensures the abundance nonneg-
ativity constraint (ANC) in LMM, thus making NMF applicable
for hyperspectral unmixing. But due to the nonconvexity of
the objective function, NMF may find some local minimum
solutions as the final results [12]. To address this issue, many
extended NMF algorithms have been proposed in the literature
[13]–[16], whose unmixing performance, however, is still
susceptible to the initial setting and the noise disturbance.

Besides that some require the presence of pure materials,
all the aforementioned algorithms need to estimate the number
of endmembers in advance for a given scene before perform-
ing the unmixing procedure. To sidestep these two obstacles,
sparse unmixing is successfully proposed as a new paradigm to
characterize the mixed pixels by finding the optimal subset of
signatures from a (potentially very large) spectral library in a
semisupervised fashion [17], [18]. It opens up new perspectives
to perform spectral unmixing. The sparse unmixing algorithm
via variable splitting and augmented Lagrangian (SUnSAL) [18]
and the collaborative SUnSAL (CLSUnSAL) [19] are two of the
most popular sparse unmixing methods. Recently, more efforts
have been devoted to incorporating the spatial-contextual infor-
mation into sparse unmixing algorithms to obtain much better
results [20], [21]. In [20], SUnSAL-TV includes a total vari-
ation (TV) regularizer to promote spatial homogeneity among
neighboring pixels. However, SUnSAL-TV may lead to over-
smoothness and blurred boundaries. Nonlocal sparse unmixing
(NLSU) [21] takes into account the nonlocal spatial information
of the whole abundance image, and enables better unmixing
performances than SUnSAL-TV. Both approaches model the
spatial information on the estimated abundances. However, due
to the noise (which cannot be avoided during the acquisition of
the hyperspectral data), the estimated abundances are often in-
accurate and variable, leading to unfaithful spatial information
modeling. In order to overcome the noise effect, an improved
NLSU algorithm is recently proposed in [22]. It first applies
the noise-adjusted principal component analysis (NAPCA) [23]
for noise reduction and information extraction, and then char-
acterizes the spatial relationships based on the first principal
component instead of the estimated abundances. However, the
spatial relationships obtained from one extracted component are
not reliable.

In this paper, we propose a centralized collaborative sparse
unmixing (CCSU) algorithm to address the aforementioned is-
sues, for which sparse unmixing and abundance estimation error
reduction are coupled together in a unified framework. Specif-
ically, abundance estimation error is first defined by calculat-
ing the difference between the estimated abundance of noisy
data and the desired abundance of original data. To make it

measurable, the nonlocal spatial information is exploited to
yield a good approximation of desired abundance, which is
implemented in an iterative manner such that the reconstructed
hyperspectral data after each iteration contains less noise than
those in the previous iterations, and can benefit the patch search-
ing and the approximation quality. Since the abundance estima-
tion error is generated during the process of sparse unmixing,
it will affect the efficiency of hyperspectral sparse unmixing.
We then take the abundance estimation error into account in our
sparse unmixing model by a centralized constraint. The abun-
dance is finally optimized by the alternating direction method
of multipliers (ADMM).

The remainder of this paper is organized as follows. In
Section II, we introduce the related work of sparse unmixing.
Section III is devoted to the development of the proposed unmix-
ing algorithm. Experimental results are reported in Section IV,
followed by concluding remarks in Section V.

II. RELATED WORK

Let A ∈ RL×m denote a spectral library having m spectral
signatures of L bands. Instead of the spectral endmembers di-
rectly extracted or generated from the hyperspectral data, linear
sparse unmixing amounts to finding the optimal subset of spec-
tral samples in A to best model each mixed pixel in the scene.
Typically, we have

y = Ax + n (1)

where y ∈ RL×1 is the observed spectral vector, x ∈ Rm×1

denotes the fractional abundance vector with regard to the library
A, still being subject to two physical constraints: ANC and
ASC (i.e., x ≥ 0 and

∑m
p=1 xp = 1). Here, only a few of the

signatures contained in A are likely contributing to the observed
mixed pixel such that x contains many values of zeros (i.e., it is
sparse).

In conventional sparse unmixing methods, the optimization
problems can be formulated as following:

min
X

1
2
‖Y −AX‖2F + λ‖X‖ρ,1 + γTV (X), s.t. X ≥ 0

(2)
where Y = [y1 , . . . ,yn ] ∈ RL×n , and X = [x1 , . . . ,xn ] ∈
Rm×n are observed data and the abundance matrix, n is the
number of the pixels in the image. Specifically, ‖ • ‖F is the
Frobenius norm.

1) By setting γ = 0 and ρ = 1, we refer to (2) as SUnSAL
[17]. In SUnSAL, ‖X‖1,1 =

∑n
j=1 ‖xj‖1 as xj denotes

the jth column of X.
2) Similarly, γ = 0 and ρ = 2 result in CLSUnSAL [19]. In

CLSUnSAL, ‖X‖2,1 =
∑m

p=1 ‖xp‖2 with xp being the
pth row of X denotes the l2,1 mixed norm that promotes
sparsity among the lines of X.

3) We term the problem of (2) with γ �= 0 and ρ = 1
as SUnSAL-TV [20], in which, TV(X) ≡∑i,j∈ε ‖xi −
xj‖ is a vector extension of the nonisotropic TV, with the
functionality of increasing piecewise smoothness on X.
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III. CCSU ALGORITHM

This section details our proposed CCSU algorithm. We start
with the definition of an abundance estimation error, and then
construct our unmixing model by considering abundance es-
timation error, followed by the abundance optimization via
ADMM.

A. Proposed CCSU Model

In the scenario of spectral unmixing, the acquired hyperspec-
tral image represents a degraded version of the original spectral
reflectance contaminated by additive noise, modeled as

Y = Z + N (3)

where Y ∈ RL×n , Z ∈ RL×n , and N ∈ RL×n are observed
data matrix, original data matrix, and noise matrix, respectively.
Ideally, the desired abundance matrix is denoted as X∗, which is
estimated from the original hyperspectral data Z by optimizing

min
X∗

1
2
‖Z−AX∗‖2F + λ‖X∗‖2,1 , s.t. X∗ ≥ 0. (4)

Since Z is not available, the unmixing will be implemented on
Y to obtain the abundance matrix X from the formulation of
(4) by substituting Y for Z. For an effective sparse unmixing,
X is expected to be as close as possible to X∗. However, due to
the noise degradation as well as the high mutual coherence of
library A, X may deviate much from X∗, yielding an inaccurate
unmixing result. Here, we define the abundance estimation error
as the difference between X and X∗

V = X−X∗. (5)

Obviously, abundance estimation error cannot be avoided during
the process of sparse unmixing, and will affect the efficiency of
spectral unmixing. With the definition of (5), the estimation
quality of X can be improved by suppressing V. Therefore,
the objective of this paper is to minimize the V, making the
estimated abundance X (from the observed hyperspectral data)
as closer as the desired abundance X∗.

However, in many applications, it is scarce to obtain the
original hyperspectral data, which indicate X∗ is almost un-
available, leading to unmeasured V directly. Nonetheless, if we
have some reasonable estimation of X∗, denoted by X̂, we can
utilize X− X̂ to approximate V, thus making it measurable.
Obviously, the accuracy of X̂ determines the approximation
quality. As we know, there are many nonlocal repetitive mate-
rials across an observed scene, which have similar spectral and
spatial structures. Such nonlocal redundancy is very helpful to
improve the accuracy of the estimated X̂. With the assump-
tion of sharing the same active set of endmembers for all the
observed pixels, pixels with similar spectral characteristic in
the hyperspectral image typically have the similar fractional
abundances. As such, we take advantage of the nonlocal means
(NLM) method to yield X̂ by exploiting nonlocal spatial in-
formation, which was first proposed for image denoising [24]
and recently has been extended for hyperspectral applications
[25], [26]. Suppose X̂ = [x̂1 , . . . , x̂n ] ∈ Rm×n is an approx-
imation of X∗, i.e., X̂ ≈ X∗. For a given pixel yj from the

Fig. 1. Diagram of nonlocal similar pixels for any given pixel yj , whose
search process is implemented by 3-D patch matching.

observed hyperspectral data, we search for a set of its similar
pixels Ωj (as illustrated in Fig. 1) in the whole image (or in a
sufficiently large window around yj ) according to the similarity
between the three-dimensional (3-D) patch Δj centered at yj

and its nonlocal 3-D patches Δk∈[1,K ] (as illustrated in Fig. 1),
defined as

‖Δj −Δk‖ =
L∑

s=1

(
Ij (s)− Ik (s)

)⊗Θ (6)

where Ij (s) and Ik (s) are the vector formulations of hyper-
spectral image patches Δj and Δk in the sth band, ⊗ is the
convolution operator and Θ is a Gaussian blur kernel. Specifi-
cally, we reshape the 2-D patches of Δj and Δk in the sth band
to generate Ij (s) and Ik (s). The Gaussian blur kernel Θ is a
spatial convolution kernel which measures the weights of the
corresponding pixels, whose value is given by

Θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

The first K most similar patches are chosen based on the K min-
imum distances between Δj and other 3-D patches in the search
window around yj calculated by (6) such that we can construct
Ωj with their central pixels. Then, having X = [x1 , . . . ,xn ]
given by the initialization or estimated in the previous iteration,
the approximated x̂j can be computed as the weighted average
of the abundances associated with the similar pixels in Ωj , i.e.,

x̂j =
∑

q∈Ω j

ωj,qxq . (8)

Here ωj,q denotes the NLM weight, which can be calculated by

ωj,q =
1
C

exp
{

− ‖ẑj − ẑq‖22
h

}

(9)



1952 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 5, MAY 2017

Fig. 2. Example of illustration for estimation procedure of x̂j .

where C =
∑

q∈Ω j
exp

{− ‖ẑj −ẑq ‖22
h

}
is a normalization fac-

tor, h is a predetermined scalar, and ẑj = Axj and ẑq = Axq

are the approximations of original spectra zj and zq∈Ω j
, respec-

tively. An example of illustration for estimation procedure of x̂j

is shown in Fig. 2.
To suppress the abundance estimation error and improve the

unmixing quality, we propose a CCSU model as

min
X

1
2
‖Y −AX‖2F + λ‖X‖2,1 + γ‖X− X̂‖1 , s.t. X ≥ 0

(10)
where γ and λ are regularization parameters. The third term
of (10) is the centralized constraint, which enforces the sparse
unmixing abundance X to approach its NLM estimate. Abun-
dance estimation error is reduced iteratively, thus improving the
accuracy of the estimated abundance. Similar constraint has al-
ready been applied in image restoration [27]. Mathematically,
the optimization problem of (10) can be rewritten as

min
X

1
2
‖Y −AX‖2F + λ‖X‖2,1 + γ‖X− X̂‖1 + ιR+ (X)

(11)
where ιR+ (X) =

∑n
j=1 ιR+ (xj ) is the indicator function with

ιR+ (xj ) = 0 when xj belongs to the nonnegative orthant, oth-
erwise ιR+ (xj ) = +∞.

With X̂ in hand, we can optimize the estimated abundance
X iteratively by solving the objective function of (11). Af-
ter each iteration, a newly reconstructed hyperspectral data
Ẑ(t) = AX(t) can be obtained, which contains less noise than
those (Ẑ(t−1) , Ẑ(t−2) , . . .) in the previous iterations. To improve
the approximation quality, we recalculate X̂ (i.e., X̂(t)) by bet-
ter searching the nonlocal patches in Ẑ(t) with the spatial–
spectral similarity of (6). As such, our proposed unmixing
method ensures the estimated abundance X(t) become closer
and closer to the desired abundance X∗ through V(t) , i.e.,
‖V(t)‖1 ≤ ‖V(t−1)‖1 .

B. Optimization With the ADMM

To solve (11), we adopt the ADMM [28] in such a way that
the difficult problem of (11) is decomposed into a sequence of
simpler ones [17], [29], [30]. The ADMM, originally proposed
in [28], has emerged recently as a flexible and efficient tool for
convex optimization. Specifically, the proposed optimization
problem (11) can be equivalently formulated as

min
X ,V1 ,V2 ,V3 ,V4

1
2
‖Y −V1‖2F + λ‖V2‖2,1

+ γ‖V3 − X̂‖1 + ιR+ (V4)

s.t. V1 = AX,V2 = X,V3 = X,V4 = X. (12)

Then, (12) can be further expressed in a compact form

min
X ,V

g(V) GX + BV = 0 (13)

where V = (V1 ,V2 ,V3 ,V4), g(V) = 1
2 ‖Y −V1‖2F +

λ‖V2‖2,1 + γ‖V3 − X̂‖1 + ιR+ (V4), and G and B are,
respectively, given by

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

A

I

I

I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−I 0 0 0

0 −I 0 0

0 0 −I 0

0 0 0 −I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14)

By introducing the scaled Lagrange multipliers D =
(D1 ,D2 ,D3 ,D4), the augmented Lagrangian associated with
the optimization of (13) is written as

L(X,V,D) ≡ g(V) +
μ

2
‖GX + BV −D‖2F

=
1
2
‖V1 −Y‖2F + λ‖V2‖2,1 + γ‖V3 − X̂‖1

+ ιR+(V4) +
μ

2
‖AX−V1 −D1‖2F

+
μ

2
‖X−V2 −D2‖2F +

μ

2
‖X−V3 −D3‖2F

+
μ

2
‖X−V4 −D4‖2F . (15)

with μ > 0 being a penalty parameter. The ADMM iteratively
minimizes L(X,V,D) with respect to X and V followed by
an update of D in three consecutive steps

⎧
⎪⎪⎨

⎪⎪⎩

X(t+1) ← arg minX L(X,V(t) ,D(t)) (16a)

V(t+1) ← arg minV L(X(t+1) ,V,D(t)) (16b)

D(t+1) ← D(t) −GX(t+1) −BV(t+1) (16c)

until some stopping criterion is satisfied. Specifically, X, V,
and D can be computed as follows. The solution of X is derived
from a reduced quadratic optimization problem of (16a), given
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Fig. 3. DC1 and its related true fractional abundances for five endmembers: (a) synthetic image, (b) abundances of endmember 1, (c) abundances of endmember
2, (d) abundances of endmember 3, (e) abundances of endmember 4, and (f) abundances of endmember 5.

by

X(t+1) = (AT A + 3I)−1
(

AT

(

V(t)
1 + D(t)

1

)

+
(

V(t)
2 + D(t)

2

)

+
(

V(t)
3 + D(t)

3

)

+
(

V(t)
4 + D(t)

4

))

(17)

where I is the identity matrix, and the superscript character T
denotes the transpose operator. Since V1 , V2 , V3 , and V4 are
fully separable in (16b), the minimization can be implemented
in a component-wise manner. From (16b), it is easy to derive

V(t+1)
1 =

1
1 + μ

[
Y + μ

(
AX(t+1) −D(t)

1

)]
. (18)

As for V2 , the closed-form solution [19] is explicitly given by

V(t+1)
2 = T VST

row

(

X(t+1) −D(t)
2 ,

λ

μ

)

(19)

where T VST
row (U, τ) denotes the row-by-row implementation

of the vectorial soft-threshold function b→ u(max{‖u‖2 −
τ, 0}/(max{‖u‖2 − τ, 0}+ τ)) [31], [32] for a matrix U. The
optimization of V3 is solving an l1-norm minimization, such
that the shrinkage operator [33], [34] is utilized to obtain

V(t+1)
3 = soft

(
X(t+1) −D(t)

3 − X̂(t) ,
γ

μ

)
+ X̂(t) (20)

in which soft(U, τ) is a component-wise application of the
soft-threshold function u→ sign(u)max{|u| − τ, 0}. The proof
process of (20) is detailed in Appendix A. The value of V4 is
given by [20], [19]

V(t+1)
4 = max

(

X(t+1) −D(t)
4 , 0

)

. (21)

Algorithm 1: Proposed CCSU Algorithm.
1: Initialization
2: set t = 0, choose K, h, μ, λ and γ
3: initialize X(0) , V(0) and D(0)

4: search for Ω(0)
j in Y for ∀j according to (6)

5: compute W(0) with (9)
6: compute X̂(0) of X∗ using (8)
7: repeat
8: compute X(t+1) according to (17)
9: compute

V(t+1) = (V1
(t+1) ,V2

(t+1) ,V3
(t+1) ,V4

(t+1))
with (18)-(21) successively

10: update
D(t+1) = (D1

(t+1) ,D2
(t+1) ,D3

(t+1) ,D4
(t+1))

using (22)
11: update Z(t+1) with Z(t+1) = AX(t+1)

12: search for Ω(t+1)
j in Z(t+1) for ∀j according to (6)

13: recompute W(t+1) and X̂(t+1) using (9) and (8)
14: t = t + 1
15: until some stopping criterion is satisfied.

The following step is to update all the scaled Lagrange mul-
tipliers with

⎧
⎨

⎩

D(t+1)
1 = D(t)

1 −AX(t+1) + V(t+1)
1

D(t+1)
i = D(t)

i −X(t+1) + V(t+1)
i , i = 2, 3, 4.

(22)

The algorithmic procedure of the proposed method which
uses CCSU to couple sparse unmixing and abundance estima-
tion error reduction for hyperspectral data is formally stated in
Algorithm 1. As for the stopping criterion, we make use of the
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Fig. 4. DC2 and its related true fractional abundances for nine endmembers: (a) synthetic image, (b) abundances of endmember 1, (c) abundances of endmember
2, (d) abundances of endmember 3, (e) abundances of endmember 4, (f) abundances of endmember 5, (g) abundances of endmember 6, (h) abundances of
endmember 7, (i) abundances of endmember 8, and (j) abundances of endmember 9.

maximum iteration number and ‖GU(t) + BV(t)‖F < ε, but
only one of them is required to be satisfied.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, unmixing experiments are performed on the
synthetic and real hyperspectral images to illustrate the effec-
tiveness of our proposed CCSU algorithm. Results of other state-
of-the-art unmixing methods such as NCLS [4], SUnSAL [17],
CLSUnSAL [19], and SUnSAL-TV [20] are given for compar-
ison purpose.

A. Synthetic Data Experiments

The spectral library used in these synthetic image experiments
is A ∈ R224×240 , which is generated by selecting 240 different
materials from the USGS library, being available online1. It
comprises spectral signatures with reflectance values given in
224 spectral bands and distributed uniformly over the interval
0.4− 2.5μm. We generate the following two different simulated
hyperspectral data cubes by using this library.

1http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 5. SRE obtained by CCSU as a function of parameters λ and γ on the DC1 under different SNR levels: (a) SNR = 20 dB, (b) SNR = 30 dB, and (c) SNR
= 40 dB.

Fig. 6. SRE obtained by CCSU as a function of parameters λ and γ on the DC2 under different SNR levels: (a) SNR = 20 dB, (b) SNR = 30 dB, and (c) SNR
= 40 dB.

TABLE I
PARAMETER SETTINGS FOR THE SYNTHETIC DATA

SNR Algorithm Parameter DC1 DC2

20 dB SUnSAL λ 2e–1 1e–1
CLSUnSAL λ 2 1
SUnSAL-TV λ 5e–3 5e–3

λTV 5e–2 5e–2
CCSU λ 1.5 0.5

γ 0.4 0.4

30 dB SUnSAL λ 1e–1 5e–2
CLSUnSAL λ 2 0.5
SUnSAL-TV λ 5e–3 5e–4

λTV 5e–3 5e–3
CCSU λ 0.5 0.1

γ 0.3 0.1

40 dB SUnSAL λ 5e–3 5e–3
CLSUnSAL λ 0.5 0.05
SUnSAL-TV λ 5e–4 5e–4

λTV 5e–3 5e–4
CCSU λ 0.2 0.05

γ 0.05 0.1

1) Simulated Data Cube 1 (DC1): We simulate the DC1 sim-
ilar to as in [20], with 75× 75 pixels and 224 bands. Five
spectral signatures are randomly selected from the library
A as the endmembers. In Fig. 3(a), there are pure regions
as well as mixed regions constructed using mixtures rang-
ing from two to five endmembers (from top to bottom),
distributed spatially in the form of distinct square regions.

2) Simulated Data Cube 2 (DC2): The abundance images
of DC2 are created based on the Gaussian fields method
[35], whose type is Mattern. Similarly, nine spectral sig-
natures of A are randomly extracted as the endmembers to
simulate the DC2 with the same number of bands as that
of DC1, but composed of 70× 70 pixels following the
LMM. Fig. 4 shows the DC2 and its related true fractional
abundances of nine endmembers. Obviously, the DC2 re-
sembles the real scenario due to the spatial variability in
abundances.

We add Gaussian noise into the above obtained data cubes
with three different levels of the signal-to-noise ratio (SNR),
i.e., 20, 30, and 40 dB.

Besides the visual interpretation, two objective metrics
[18], i.e., the signal-to-reconstruction error (SRE) and the
probability of success ps , are adopted for quantitative
evaluation. Specifically, the SRE in decibels, given by SRE =
10 log10(E[‖x‖22 ]/E[‖x− x̃‖22 ]), measures the quality of the
reconstruction of spectral mixtures, and ps is defined as
ps = P (‖x̃− x‖2/‖x‖2 ≤ 3.16), giving an indication about
the stability of the estimation, where x̃ is the estimation of
the fractional abundance vector x. Here, the choice of 3.16
means that the unmixing result is considered successful when
‖x̃− x‖2/‖x‖2 ≤ 3.16. This threshold was demonstrated in
the previous work to provide satisfactory results [18]. The
larger the both quantities are, the better the performance of the
algorithm for recovering the abundances is. Six experiments



1956 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 5, MAY 2017

Fig. 7. SRE obtained by CCSU on the DC1 with respect to different parameters: (a) K , (b) h, and (c) μ.

TABLE II
SRE (IN DECIBELS) VALUES ON THE SYNTHETIC DATA

Noise NCLS SUnSAL CLSUnSAL SUnSAL-TV CCSU

DC1 SNR = 20 dB 2.3675 3.4982 4.7750 10.8890 12.4267
SNR = 30 dB 7.3294 7.6253 12.2891 18.7212 22.9100
SNR = 40 dB 10.4596 15.7232 21.5225 28.1640 33.6695

SNR = 20 dB 1.7683 5.3238 5.7104 8.0866 11.5120
DC2 SNR = 30 dB 7.4286 11.0013 11.9338 16.4257 17.6911

SNR = 40 dB 12.8895 16.7371 17.9520 19.9911 21.1396

TABLE III
ps VALUES ON THE SYNTHETIC DATA

Noise NCLS SUnSAL CLSUnSAL SUnSAL-TV CCSU

DC1 SNR = 20 dB 0.2944 0.3392 0.4724 0.9889 0.9962
SNR = 30 dB 0.5456 0.9596 0.9998 1 1
SNR = 40 dB 1 1 1 1 1

DC2 SNR = 20 dB 0.1961 0.4152 0.7043 0.9889 0.9622
SNR = 30 dB 0.8071 0.9335 0.9493 0.9965 1
SNR = 40 dB 0.9784 1 1 1 1

are conducted on synthetic data to evaluate the proposed algo-
rithm. Specifically, we first focus on the parameter settings, and
then investigate the influence of noise, purity, the number of
endmembers, as well as different spectral libraries, on unmix-
ing performances. The last experiment aims at analyzing the
convergence and computational complexity.

1) Experiment 1 (Parameter Settings): For the proposed
CCSU algorithm, the involving parameters need to be deter-
mined before proceeding to the experiments. In specific im-
plementation, the maximum number of iterations is set to 200.
To reduce the computational complexity, the search of similar
pixels and the update of X̂ are performed in every 20 itera-
tions, where we use the patch of size 3× 3× L to find out the
similar pixels within an 11× 11× L search window. Also, we
set K = 15, h = 0.025, μ = 0.5, and tune λ and γ to achieve
better unmixing performance. The algorithm is tested on both
DC1 and DC2 using different values of the parameters λ and
γ in a finite set {0.0005, 0.005, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1,
1.5, 2}.

Figs. 5 and 6 illustrate the SRE (in dB) of the proposed
technique when these two parameters λ and γ vary under each
SNR level. As can be seen, the use of a centralized constraint
has the potential to efficiently improve the spectral unmixing
performance, especially in the low SNR case. With the increase
of the SNR, one should choose the relatively small values of λ

and γ since there exits good fitness between Y and AX. For the
CCSU’s performance, the l2,1 mixed norm sparsity constraint is
more dominant than the centralized constraint, and as λ is given,
it shows some stability with respect to γ beyond a certain value.
As such, from intuitive analysis and experimental results, λ and
γ are set for both DC1 and DC2 at all considered SNR levels
to give good results, see Table I. To make a fair comparison
among the comparative methods, we have carefully tuned their
parameters in the same finite set as given above to achieve the
quasi-optimal performance.

Furthermore, we examine the effect of parameters K, h, and μ
on the unmixing performance of the proposed CCSU algorithm.
When analyzing one specific parameter, the other parameters
are fixed as their corresponding chosen values. Fig. 7 shows the
sensitivity of CCSU on DC1 with respect to different param-
eters, respectively. Three SRE curves shown in Fig. 7(a) first
improve as K increases, and then begin to decrease slightly
after the maximum value. By considering the tradeoff between
performance and computational complexity, K = 15 is well ac-
cepted for all the cases of SNR. The similar variations can be
observed in Fig. 7(c), and the choice of μ in high SNR case
has less impact than in low SNR case. Comparatively speaking,
CCSU shows the stable tendency in the unmixing performance
with the change of h on the whole, as shown in Fig. 7(b).

2) Experiment 2 (Antinoise Capability): Tables II and III, re-
spectively, report the SRE and ps values obtained by applying
different unmixing methods to all the synthetic hyperspectral
data degraded by three different levels of noise. From both
tables, we can observe that the overall performance of each un-
mixing method tends to degrade as the noise level increases.
NCLS yields the worst unmixing performance, by only consid-
ering the nonnegative physical constraint. Moreover, as stated in
[19] and [20], CLSUnSAL and SUnSAL-TV outperform SUn-
SAL due to the benefits of incorporating the subspace nature
and spatial-contextual information of the hyperspectral data, re-
spectively. In addition, the proposed CCSU algorithm performs
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Fig. 8. Abundance maps obtained by different unmixing methods for endmember 5 in DC1: (a) NCLS, (b) SUnSAL, (c) CSUnSAL, (d) SUnSAL-TV, and
(e) CCSU.

better than the others in all the cases for the quantitative met-
rics (i.e., SRE and ps). This is because the proposed unmixing
method considers abundance estimation error reduction during
the procedure of unmixing.

For visual comparison, we take the case of SNR=20 dB as
an example, and show the abundance maps estimated by five
unmixing methods for the endmember 5 of DC1 in Fig. 8. Ob-
viously, Fig. 8(a) and (b) looks noisy. Although the line spar-
sity constraint promotes the solutions of CLSUnSAL, Fig. 8(c)
is still noisy. SUnSAL-TV imposes spatial consistency to sig-
nificantly improve the quality of unmixing results, but it will
oversmooth the abundances due to the piecewise constant as-
sumption. CCSU provides much better estimation which are
more similar to the ground-truth values [see Figs. 8(e) and 3(f)].
Moreover, from Fig. 9, it can be seen that CCSU and SUnSAL-
TV have better antinoise capabilities than NCLS, SUnSAL, and
CLSUnSAL, which indicates that the use of spatial informa-
tion can alleviate the influence of noise on the sparse unmix-
ing algorithms. The results shown in Fig. 9(m)–(o) reveal that
CCSU achieves the best quality of abundance recovery, whereas
SUnSAL-TV will yield some distortion in transition regions and
structural details [see Fig. 9(j)–(l)].

3) Experiment 3 (Robustness Analysis to Purity): This ex-
periment aims to comparatively analyze the robustness of four
sparse unmixing algorithms to purity, since the mixing degrees
in real hypespectral images vary from image to image. To this
end, we take the DC2 as an example, and change the purity level
from 1 to 0.6 for all considered SNR levels while keeping the
number of endmembers together with the image size being fixed
as that in the previous experiments. Fig. 10 shows the perfor-
mance of each method on DC2 with different purities. We can
observe that all algorithms present increasingly better unmixing
results when the purity level approaches to 1. Meanwhile, CCSU

outperforms other three sparse unmixing algorithms, showing
its robustness to the highly mixed hyperspectral data.

4) Experiment 4 (Generalization to the Number of Endmem-
bers): This experiment is taken to evaluate the unmixing per-
formance of different algorithms when the synthetic data are
generated by different numbers of endmembers. The DC2 is de-
graded by three levels of Gaussian noise (i.e., SNR=20, 30, and
40 dB) and generated by various numbers of endmembers with
varying from 3 to 9, whose corresponding results are shown in
Fig. 11. The higher the endmember number is, the more the
difficulty for the hyperspectral image unmixing is. As shown
in Fig. 11, the SREs of these four algorithms decline gradually
when the number of endmembers increases, which is consistent
with the observation discussed in [19]. This indicates that the
sparsity of the solution can mitigate the sparse unmixing lim-
itations caused by the usually high correlation of the spectral
library. Nevertheless, CCSU can always obtain better estimation
of the abundances than SUnSAL-TV. Both CSUnSAL and SUn-
SAL perform relatively worse, giving the smaller SRE values.

5) Experiment 5 (Impact of Different Spectral Libraries): In
this experiment, we test the impact of different spectral libraries
on various sparse unmixing algorithms. Here, three libraries
(i.e., A0 , A1 , and A2) are utilized, where A0 ∈ R224 × 498 refer
to the original USGS library, A1 ∈ R224 × 240 is exactly the li-
brary A used in the previous experiments, and A2 ∈ R224 × 117

denotes the refined version of A0 by restricting spectral angles
between the signatures of A2 equal to 7. Fig. 12 shows the SRE
values obtained by each method with three spectral libraries on
DC2 under different levels of SNR. According to Fig. 12, we
can summarize that CCSU performs better on each library no
matter how the SNR varies, further verifying the importance
of simultaneously taking abundance estimation error reduction
and nonlocal spatial information into account. In addition, the
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Fig. 9. Abundance maps obtained by different unmixing methods in DC2. From left to right: corresponding to the first, second, and fifth endmembers, respectively.
From top to bottom: NCLS, SUnSAL, CSUnSAL, SUnSAL-TV, and CCSU.

proposed unmixing methods perform increasingly better when
using A0 , A1 , and A2 , respectively. The reason is that the mu-
tual coherence of three libraries progressively becomes weaker,
since A1 and A2 are two subsets of A0 (having its mutual co-
herence close to 1), especially where the spectral signatures of
A2 can be regarded as quite different ones.

6) Experiment 6 (Convergence Analysis and Computational
Complexity): The goal of this experiment is to analyze the con-
vergence and computational complexity. As is known, all the
four sparse unmixing algorithms adopt the ADMM to solve the
underlying optimization problems. Therefore, as far as the con-
vergence is concerned, it can be guaranteed from [29, Th. 8]
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Fig. 10. Comparison of SUnSAL, CLSUnSAL, SUnSAL-TV and CCSU on DC2 in terms of SRE with respect to the purity level for all considered SNR levels:
(a) SNR = 20 dB, (b) SNR = 30 dB, and (c) SNR = 40 dB.

Fig. 11. Comparison of SUnSAL, CLSUnSAL, SUnSAL-TV, and CCSU on DC2 in terms of SRE with respect to the number of endmembers for all considered
SNR levels: (a) SNR = 20 dB, (b) SNR = 30 dB, and (c) SNR = 40 dB.

Fig. 12. Comparison of SUnSAL, CLSUnSAL, SUnSAL-TV, and CCSU on DC2 in terms of SRE with respect to different spectral libraries for all considered
SNR levels: (a) SNR = 20 dB, (b) SNR = 30 dB, and (c) SNR = 40 dB.

Fig. 13. Convergence curves of four sparse unmixing algorithms on DC2 at
SNR = 20 dB.

TABLE IV
PARAMETER SETTINGS FOR REAL DATA

Algorithm Parameter Value

CLSUnSAL λ 0.5
SUnSAL-TV λ 1e− 3

λTV 1e− 3
CCSU λ 0.2

γ 0.1

since each G matrix has full column rank, and all involved
functions in g(V) are closed, proper, and convex. To visually il-
lustrate the convergence, Fig. 13 plots the ‖GU(t) + BV(t)‖F
curves of these four algorithms on DC2 at SNR=20 dB. By
comparing their convergence curves, we can see that CCSU
provides the smallest ‖GU(t) + BV(t)‖F value, and it has
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Fig. 14. Fractional abundance maps estimated for the AVIRIS Cuprite subscene. From left to right: Alunite, Buddingtonite, and Chalcedony. From top to bottom:
CLSUnSAL, SUnSAL-TV, and CCSU.

faster convergence speed than SUnSAL, CLSUnSAL, and
SUnSAL-TV.

Next, the computational complexity of four sparse unmixing
algorithms is comparatively analyzed. To this end, we make use
of the CPU execution time of programs to estimate it. All the
algorithms are implemented in MATLAB R2010b on a desk-
top computer with Intel Pentium CPU G2020 (2.90 GHz) and
2-GB RAM. For the SUnSAL, CLSUnSAL, and SUnSAL-TV
algorithms, the average computational times of three levels of
noise are about 64, 65, and 199 s, respectively. As far as CCSU
is concerned, the main computational demand lies in the search
of nonlocal similar patches, for which a MEX file including one
built-in subroutine in C programming is called to improve the
efficiency of its MATLAB program. The corresponding average
time is 631 s for three levels of noise. It is obvious that CCSU has
highest computational cost due to the exploitation of nonlocal
redundancy of abundance map, followed by SUnSAL-TV. Only
analyzing the hyperspectral data without incorporating spatial
information, SUnSAL and CLSUnSAL require less running
time. Besides the inferiority of computational complexity, more
importantly CCSU achieves the better unmixing performance.

In practice, the general-purpose graphics processing units
(GPUs) can be adopted to greatly accelerate the CCSU algo-
rithm.

B. Real Data Experiments

The real hyperspectral image is a subscene of the well-known
AVIRIS Cuprite data set, having 250× 190 pixels and 188 bands
with the removal of water absorption and low SNR bands. The
spectral library used here is A ∈ R188 × 498 from the USGS
library with the corresponding bands removed. Prior to unmix-
ing, the band-dependent correction strategy [18] is utilized to
minimize the mismatches between the real pixel spectra and
that available in the library. The same parameters are used as
that mentioned in Section IV-A except h = 0.01, μ = 0.05, and
all regularization parameters of CLSUnSAL, SUnSAL-TV, and
CCSU are listed in Table IV. Because the true abundances of
the real hyperspectral data are unavailable, we just can make
a qualitative analysis with reference to the distribution map of
minerals provided online.2 Fig. 14 shows the abundance maps

2http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif
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of three dominant materials (i.e., Alunite, Buddingtonite, and
Chalcedony) in the scene estimated by CLSUnSAL, SUnSAL-
TV, and CCSU. As evidenced from Fig. 14, three algorithms
have shown the acceptable unmixing results, with high abun-
dances at the pixels showing the existence of the minerals.
However, CLSUnSAL yields the abundance maps without good
spatial consistency of minerals of interest, and has some more
inaccurate abundance estimates which are obvious in the abun-
dance maps corresponding to Buddingtonite and Chalcedony
[i.e., Fig. 14(b) and (c)]. Meanwhile, the estimated abundances
by SUnSAL-TV may exhibit an oversmooth visual effect. Com-
pared with CLSUnSAL and SUnSAL-TV, our proposed CCSU
is more effective for sparse unmixing.

V. CONCLUSION

In this paper, we proposed a CCSU algorithm for hyperspec-
tral images. A main contribution of this proposed algorithm is
to suppress abundance estimation error which is defined in our
paper. It is unavoidable in traditional sparse unmixing methods
and will affect the accuracy of unmixing results. To minimize
the abundance estimation error, from a different perspective, we
introduced a centralized sparsity constraint and coupled it with
sparse unmixing together. Experimental results have demon-
strated that the proposed CCSU algorithm can unmix the hyper-
spectral data more effectively against NCLS, SUnSAL, CLSUn-
SAL, and SUnSAL-TV. Future work will be devoted to auto-
matically determining the underlying regularization parameters
under a Bayesian inference framework.

APPENDIX A
MATHEMATICAL PROOF OF (20)

To compute V3 , the optimization problem to be solved is

V3
(t+1) ← arg min

V3

γ‖V3 − X̂(t)‖1

+
μ

2
‖X(t+1) −V3 −D(t)

3 ‖2F . (23)

The formula (23) can be rewritten as follows:

V3
(t+1) ← arg min

V3

γ‖V3 − X̂(t)‖1

+
μ

2
‖X(t+1) − (V3 − X̂(t))− X̂(t) −D(t)

3 ‖2F (24)

whose solution is the well-known soft threshold [31], i.e.,

V3
(t+1) − X̂(t) = soft

(
X(t+1) − X̂(t) −D(t)

3 ,
γ

μ

)
. (25)

At last, we have

V(t+1)
3 = soft

(
X(t+1) −D(t)

3 − X̂(t) ,
γ

μ

)
+ X̂(t) . (26)

This completes the mathematical proof of (20).
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